3.4.2 \[\dot{x} = rx - \sinh x \]

\[x = 0 \text{ is a fixed point for all } r \]

\[
\frac{d}{dx} \sinh x \bigg|_{x=0} = \cosh 0 = 1 \Rightarrow r_c = 1
\]

\[r < 1 \quad \rightarrow \quad r > 1 \]

Supercritical pitchfork

3.4.9 \[\dot{x} = x + \tanh(rx) \]

\[\tanh(rx) = -x \quad x = 0 \text{ is a fixed point for all } x \]

\[
\frac{d}{dx} \tanh(rx) = \frac{d}{dx}(-x)
\]

\[\frac{r}{\cosh(rx)} = -1 \quad \text{at } x = 0, \quad r_c = -1
\]

\[r < r_c \quad \rightarrow \quad r > r_c \]

Subcritical pitchfork
3.4.10 \[
\dot{x} = r x + \frac{x^3}{1 + x^2} = \left(r + \frac{x^2}{1 + x^2} \right) x
\]

Fixed points:
\[x = 0 \]
\[r(1 + x^2) = -x^2 \]
\[x^2 = -1 - r \]
\[x_{\pm} = \pm \sqrt{1 - r} \]

Subcritical pitchfork for \(-1 < r \leq 0\)

bifurcation diagram

3.4.14 \[
\dot{x} = r x + x^3 - x^5
\]

a) Fixed points:
\[x = 0 \]
\[r + x^2 - x^4 = 0 \Rightarrow x^2 = \frac{1 \pm \sqrt{1 + 4r}}{2} \]

Real for \(r \geq \frac{1}{4}\)

4 solutions for \(-\frac{1}{4} < r < 0\)

Saddle node at \(r_c = -\frac{1}{4}\)

Subcritical pitchfork at \(r_c = 0\)

bifurcation diagram
\[u = au + bu^3 - cu^5 \quad b, c > 0 \]

Let \(u = Vx \), \(\dot{T} = T\dot{\theta} \)

\[\dot{u} = \frac{V}{T} \frac{dx}{d\tau} = aVx + bV^3x^2 - cV^5x^5 \]

\[\text{divide by} \ V \]

\[V = \sqrt{\frac{b}{c}} \]

Let \(V \) be such that \(b = cV^2 \)

Then
\[\frac{1}{\sqrt{\frac{b}{c}}} \frac{dx}{d\tau} = aVx + b\left(\frac{b}{c}\right)^{\frac{3}{2}}(x^3 - x^5) \]

Divide by \(\sqrt{\frac{b}{c}} \)

Let
\[\frac{1}{T} \frac{dx}{d\tau} = aVx + \frac{b^2}{c}(x^3 - x^5) \]

Let \(T = \frac{c}{b^2} \)

\[\frac{dx}{d\tau} = \frac{ac}{b^2}x + x^3 - x^5 \]

Let \(r = \frac{ac}{b^2} \)

\[r\dot{x} + x^3 - x^5 \]
$x = rx + ax^2 - x^3$

Fixed points: $x = 0$

$r + ax - x^2 = 0 \Rightarrow x = \frac{a \pm \sqrt{a^2 + 4r}}{2}$ real if $r > -\frac{a^2}{4}$

a) Bifurcation diagrams

- $a < 0$
- $a = 0$
- $a > 0$

Transcritical at $r = 0$
Saddle node at $r = -\frac{a^2}{4}$

b)

3 fixed pts

r

Transcritical

$\rightarrow a$

3 fixed pts.

r = -\frac{a^2}{4}$

Saddle-node
\[\dot{g} = \frac{g_1 s_0 - g_2 g + \frac{g_2 g^2}{g_1 + g^2}}{g_1 + g^2} \]

9) Let \(g = A \tau \), \(t = B \tau \)

\[\dot{\tau} = \frac{A}{B} \frac{dx}{dt} = \frac{A}{B} (s_0 - A x^2) + \frac{A^2 x^2}{g_1 + A x^2} \]

Let \(A = g_4^2 \)

\[\frac{g_4^2}{B} \frac{dx}{dt} = g_1 s_0 - g_2 g_4 x^2 + \frac{g_3 x^2}{1 + x^2} \]

Let \(B = \frac{g_4^2}{g_3} \)

\[\frac{dx}{dt} = \frac{g_1 s_0}{g_3} - \frac{g_2 g_4 x^2}{g_3} + \frac{x^2}{1 + x^2} \]

Let \(s = \frac{g_1 s_0}{g_3} \), \(r = \frac{g_2 g_4}{g_3} \)

b) For \(s = 0 \)

\[x = -r x + \frac{x^2}{1 + x^2} \]

Fixed points:

\[x = 0 \]

\[-r(1 + x^2) + x = 0 \]

\[\alpha_{1,2} = \frac{-1 \pm \sqrt{1 - 4r^2}}{-2r} \]

2 fixed points for \(0 < r < r_c = \frac{1}{2} \)

\[\text{saddle-node bifurcation} \]

\[r \]

\[\frac{1}{2} \]
c) \[x = S - rx + \frac{x^2}{1+x^2} \]

Assume \(S \) is the bifurcation parameter, \(r \) is fixed.

Bifurcation diagram

When \(g(0) = 0 \), solution is on the lower stable branch. As \(S \) is slowly increased, it moves towards the bifurcation point and then jumps onto the upper branch. It will remain there as \(S \) is decreased back to 0.

When \(g(0) = 0 \), solution is on the lower stable branch. As \(S \) is slowly increased, it moves towards the bifurcation point and then jumps onto the upper branch. It will remain there as \(S \) is decreased back to 0.

\[0 = \frac{d}{dx} S = \frac{d}{dx} \left(rx - \frac{x^2}{1+x^2} \right) = r - \frac{2x}{(1+x^2)^2} = 0 \]

\[r = \frac{2x}{(1+x^2)^2} \]

Substitute back

\[S = rx - \frac{x^2}{1+x^2} = \frac{2x^2}{(1+x^2)^2} - \frac{x^2}{1+x^2} = \frac{x^2(1-x^2)}{(1+x^2)^2} \]