1 Introduction

These theorems are fairly complicated, especially in their proofs, so I will start with an example of the one-dimensional case and then move to higher dimensions. First I want to recall some terminology about functions.

Suppose that $f: \mathbb{R}^n \to \mathbb{R}^m$ and suppose $W \subset \mathbb{R}^m$. We define the “inverse image of W under f” as follows:

$$ f^{-1}(W) := \{ x \in \mathbb{R}^n | f(x) = y \text{ for some } y \in W \}. $$

This definition does not require that the function f has an inverse. There might be more than one x for each y. As an example, if $n = m = 1$, $f(x) = x^2$ and $W = (0, 1)$, then $f^{-1}(W) = (-1, 1)$. The function f is not 1:1 on $(-1, 1)$ and so doesn’t have an inverse there. However, the function $f|_{(0,1)}$ is 1:1 on $(0,1)$ and does have an inverse, which is $g(y) = \sqrt{y}$ for $0 < y < 1$.

Now recall Theorem 4.1.4 on page 180. One consequence of this theorem is the following:

Lemma 1 Suppose that $f: \mathbb{R}^n \to \mathbb{R}^m$. Then f is continuous if and only if $f^{-1}(W)$ is an open set for each open subset W of \mathbb{R}^m.

As examples, we can consider again $f(x) = x^2$ and notice that $f^{-1}(0,1) = (-1,1)$. On the other hand, suppose that

$$ f(x) = \begin{cases} x & \text{if } x \leq \frac{1}{2} \\ -x & \text{if } x > \frac{1}{2} \end{cases} $$

Let $W = (\frac{1}{4}, \frac{3}{4})$. Then $f^{-1}(W) = (\frac{1}{4}, \frac{1}{2}] \cup (\infty, -\frac{1}{2})$. This is not an open set.

2 Inverse function theorem in one variable

Theorem 2 Suppose $f: \mathbb{R} \to \mathbb{R}$ and $f \in C^1$. (That is, $f'(x)$ exists for each $x \in \mathbb{R}$ and f' is continuous.) Suppose that $f(a) = b$ and $f'(a) \neq 0$. Then there are open neighborhoods U of a and W of b such that
1. \(f (U) = W \) and \(f | U \) is one to one.

2. If \(h \) is the inverse of \(f | U \), then \(h \in C^1 \).

3. For each \(x \in U \), \(h' (f (x)) = \frac{1}{f' (x)} \).

Proof. We will first prove the theorem under the assumptions that \(a = b = 0 \) and \(f' (0) = 1 \). In this case, let

\[
G (x) = x - f (x).
\]

Then \(G (0) = G' (0) = 0 \). Since \(f' \) is continuous, \(G \in C^1 \), and so there is an \(\varepsilon > 0 \) such that if \(-2\varepsilon \leq x \leq 2\varepsilon \), then \(|G' (x)| \leq \frac{1}{2} \). Let

\[
W = (-\varepsilon , \varepsilon),
\]

and

\[
U = f^{-1} (W) \cap (-2\varepsilon , 2\varepsilon) = \{ x \in (-2\varepsilon , 2\varepsilon) \mid f (x) \in W \}.
\]

Then \(f (U) = W \). \(W \) is open, and since the inverse image of continuous function is open, \(U \) is open as well. (\(U \) is the intersection of two open sets.) We must show that \(f | U \) is 1 : 1. This is pretty easy to prove, but we will give a proof which can be generalized to the \(n \)-dimensional case.

For each \(y \in W \), let \(g_y (x) = y + G (x) \). Then \(g_y \in C^1 \), and \(g'_y (x) = G' (x) \). Hence, if \(x \in [-2\varepsilon , 2\varepsilon] \), then \(|g'_y (x)| \leq \frac{1}{2} \). This shows that \(g_y \) is a contraction on \((-2\varepsilon , 2\varepsilon) \).

We want to apply the contraction mapping theorem, but to do this we need to show that \(g_y : (-2\varepsilon , 2\varepsilon) \to (-2\varepsilon , 2\varepsilon) \). If \(x \in (-2\varepsilon , 2\varepsilon) \), then

\[
|g_y (x)| = |y + G (x)| \leq |y| + |G (x)|.
\]

Since \(y \in W \), \(|y| < \varepsilon \). Since \(|G' (c)| \leq \frac{1}{2} \) for \(c \in (-2\varepsilon , 2\varepsilon) \), and \(G (0) = 0 \), the mean value theorem implies that \(|G (x)| \leq \frac{1}{2} |x| \) for \(x \in (-2\varepsilon , 2\varepsilon) \). Hence,

\[
|g_y (x)| < \varepsilon + \varepsilon = 2\varepsilon.
\]

Therefore \(g_y \) is a contraction and maps \((-2\varepsilon , 2\varepsilon) \) into itself. Hence, there is a unique \(x \in (-2\varepsilon , 2\varepsilon) \) such that

\[
y + x - f (x) = x,
\]

which implies that \(f (x) = y \). On the other hand, if \(f (x) = y \), then \(x \) is a fixed point for \(g_y \).

We get such an \(x \) for each \(y \in W \). Define \(h : W \to (-2\varepsilon , 2\varepsilon) \) by letting \(h (y) \) be the unique fixed point of \(g_y \) in \((-2\varepsilon , 2\varepsilon) \). The uniqueness of \(h (y) \) implies that
\[f|_{(-2\varepsilon, 2\varepsilon)} = 1 : 1, \text{ and since } U \subset (-2\varepsilon, 2\varepsilon), \ f|_U \text{ is } 1 : 1 \text{ and } h = (f|_U)^{-1}. \] We have left to show that \(h \) is differentiable and \(h'(y) = \frac{1}{f'(h(y))} \).

We first show that \(h \) is continuous. Suppose \(y_1 \) and \(y_2 \) are in \(W \), and let \(x_1 = h(y_1), x_2 = h(y_2). \) Since \(x = f(x) + G(x) \), we obtain that

\[
|x_1 - x_2| = |f(x_1) - f(x_2) + G(x_1) - G(x_2)| \leq |f(x_1 - f(x_2))| + \frac{1}{2} |x_1 - x_2|,
\]
or

\[
\frac{1}{2} |x_1 - x_2| \leq |f(x_1) - f(x_2)|.
\]

In other words,

\[
|h(y_1) - h(y_2)| \leq 2 |y_1 - y_2|,
\]
showing that \(h \) is continuous.

Next note that on \((-2\varepsilon, 2\varepsilon)\), \(f' = 1 - G' \), and since \(|G'(x)| \leq \frac{1}{2} \), \(f'(x) \geq \frac{1}{2} \). In particular, \(f'(h(y)) \neq 0 \). To show that \(h \) is differentiable we use the definition of derivative, and compute

\[
\lim_{y \to y_0} \frac{h(y) - h(y_0) - \frac{1}{f'(h(y_0))} (y - y_0)}{|y - y_0|}
\]
for some \(y_0 \in (-\varepsilon, \varepsilon) \). If \(x \) and \(x_0 \) are in \((-2\varepsilon, 2\varepsilon)\), and \(h(x) = y, h(x_0) = y_0 \), then

\[
\frac{|h(y) - h(y_0) - \frac{1}{f'(h(y_0))} (y - y_0)|}{|y - y_0|} = \frac{|x - x_0| - \frac{1}{f'(x_0)} (f(x) - f(x_0))}{|f(x) - f(x_0)|}.
\]

Applying the mean value theorem to \(f(x) - f(x_0) \) in both the numerator and denominator,

\[
\frac{|h(y) - h(y_0) - \frac{1}{f'(h(y_0))} (y - y_0)|}{|y - y_0|} = \frac{|x - x_0| - f'(c)(x - x_0)}{|f'(c)(x - x_0)|} \cdot \frac{|f'(c)|}{|f'(x_0)|} \left(1 - \frac{f'(c)}{f'(x_0)}\right),
\]
where \(c \) is between \(x \) and \(x_0 \). From (1) the first term is bounded by 2. Since \(h \) is continuous, \(\lim_{y \to y_0} (x - x_0) = \lim_{y \to y_0} (h(y) - h(y_0)) = 0. \) Since \(f' \) is continuous and \(c \) is between \(x \) and \(x_0 \), the second term tends to zero as \(x \to x_0 \), proving that \(h'(y_0) \) exists and that \(h'(y_0) = \frac{1}{f'(h(y_0))} \). This proves Theorem 2 in the case where \(f(0) = 0 \) and \(f'(0) = 1 \). \(\blacksquare \)

There are three steps to complete the proof of the theorem.
1. We remove the requirement that \(f'(0) = 1 \), and only require that \(f'(0) \neq 0 \). If \(f'(0) = \alpha \), let \(g(x) = f(x/\alpha) \). Then \(g'(0) = 1 \). Prove the theorem for \(g \) and it easily gives a comparable theorem for \(f \).

2. Suppose this is done, and we only require that \(f'(0) \neq 0 \). We now remove the requirement that \(f(0) = 0 \). Introduce a new \(g : g(x) = f(x) - f(0) \). Then \(g(0) = 0 \), and the theorem for \(g \) implies the theorem for \(g \).

3. To remove the requirement that \(a = b = 0 \), let \(z = x - a \) and \(h(z) = f(z + a) - b \). then \(h(0) = 0 \) and we are back to a previous case.

3 Inverse function theorem for \(f : \mathbb{R}^n \to \mathbb{R}^n \).

See that auxiliary notes Notes 6a, which follow the exercises below, where a side by side comparison is given of the one dimensional and \(n \)-dimensional cases. This is restricted to the case of \(f(0) = 0 \), \(Df(0) = I \) (the identity transformation). Steps similar to 1,2,3 above give the general case, in which it is assumed that \(Df(x_0) \) is a 1 : 1 map; that is \(Df(x_0)(u) = 0 \) if and only if \(u = 0 \). This is equivalent saying that the standard matrix of \(Df(x_0) \) (which is \(n \times n \)) is non-singular. We then get the theorem in the text (pg. 393), which I will not copy here.

4 Implicit function theorem.

The following is another way of stating the inverse function theorem:

Theorem 3 Suppose that \(f : \mathbb{R}^n \to \mathbb{R}^n \) satisfies the conditions of the inverse function theorem (as given in notes 6a). Suppose that \(f(x_0) = y_0 \). Then in a neighborhood \(U \times W \) of the point \((x_0, y_0) \) of \(\mathbb{R}^n \times \mathbb{R}^n \), the equations

\[
 f_i(x_1, \ldots, x_n) = y_i, \quad \text{for } i = 1, \ldots, n \tag{2}
\]

can be solved for \((x_1, \ldots, x_n) \) in terms of \((y_1, \ldots, y_n) \).

Note that (2) is a system of \(n \) equations for the \(n \) unknowns \(x_1, \ldots, x_n \). For any \(y \in W \), the unique solution \(x \) of these equations in \(U \) is \(x = f^{-1}(y) \), where \(f^{-1} \) is the function \(h \) found in the inverse function theorem.

The one dimensional version of this is particularly simple: The implicit function theorem is a generalization of this.
Theorem 4 Suppose that $F : R^n \times R^m \rightarrow R^m$, and $F \in C^1$. Suppose the $F(x_0, y_0) = 0 \in R^m$, for some $(x_0, y_0) \in R^n \times R^m$. Let

$$\Delta = \det \begin{pmatrix} \frac{\partial F_1}{\partial y_1}(x_0, y_0) & \frac{\partial F_1}{\partial y_2}(x_0, y_0) & \cdots & \frac{\partial F_1}{\partial y_m}(x_0, y_0) \\ \frac{\partial F_2}{\partial y_1}(x_0, y_0) & \frac{\partial F_2}{\partial y_2}(x_0, y_0) & \cdots & \frac{\partial F_2}{\partial y_m}(x_0, y_0) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial y_1}(x_0, y_0) & \frac{\partial F_m}{\partial y_2}(x_0, y_0) & \cdots & \frac{\partial F_m}{\partial y_m}(x_0, y_0) \end{pmatrix}.$$

Assume that $\Delta \neq 0$. Then there are open neighborhoods U of x_0 in R^n and V of y_0 in R^m, and a unique function $f : U \rightarrow V$ such that $F(x, f(x)) = 0$ for all $x \in U$. Further, f is differentiable at each $x \in U$.

We will only prove the theorem in the case $n = 3, m = 2$, in which case we can write out everything explicitly. Before giving the proof, we give examples in this case. The easiest examples are linear, such as

$$\begin{align*}
x + y + z &= u + v \\
x - y - z &= u - v
\end{align*} \tag{3}$$

In this case,

$$F(x, y, z, u, v) = \begin{pmatrix} x + y + z - u - v \\ x - y - z - u + v \end{pmatrix},$$

and (3) is equivalent to $F(x, y, z, u, v) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. We see that

$$\Delta = \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix},$$

so $\det \delta = -2$. We can solve for u and v in terms of x, y, z by adding and subtracting the equations, which give

$$\begin{align*}
u &= x \\
v &= \frac{1}{2} (y + z).
\end{align*}$$

We can set $U = R^3, V = R^2$, since this solution is valid for all (x, y, z).

Now change the equations a bit:

$$\begin{align*}
x + y + z &= u^2 + v \\
x - y - z &= u - v \tag{4}
\end{align*}$$
Adding the equation gives
\[u^2 + u = 2x \]
We can solve this for \(u \) in terms of \(x \) by using the quadratic formula:
\[u^2 + u - 2x = 0 \]
\[u = \frac{-1 \pm \sqrt{1 + 8x}}{2}. \]
Then we can solve for \(v \):
\[v = \frac{-1 \pm \sqrt{1 + 8x}}{2} - (x - y - z). \] (5)

We see that the solution is not unique. This is where neighborhoods come in. Looking at the statement of the theorem, we see that we need to pick a point \((x_0, y_0)\) which is a solution of the set of equations. First, though, let’s write down the function \(F \):
\[F(x, y, z, u, v) = \begin{pmatrix} x + y + z - u^2 - v \\ x - y - z - u + v \end{pmatrix}. \]
Next we need to pick a specific point in \(R^3 \times R^2 \) (the point called \((x_0, y_0)\) in the theorem). For instance, we can chose the point \((0, 0, 0, 0) \in R^3 \times R^2\). We see that \(F(0, 0, 0, 0, 0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \). Now we find \(\Delta \):
\[\Delta = \det \begin{pmatrix} -2u & -1 \\ -1 & 1 \end{pmatrix} \big|_{(0,0,0,0,0)} = -1. \]
This is nonzero, so the theorem applies. We can solve for \((u, v)\) in terms of \((x, y, z)\), and indeed, we did so. But to get a unique solution we need to choose neighborhoods. The point \(x_0 \) is now \((0, 0, 0)\), and the point \(y_0 \) is \((0, 0)\). The solution \(y = f(x) \) is now written \((u, v) = f(x, y, z)\), and we must have \((0, 0) = f(0, 0, 0)\). Notice in (5) and the equation just above, that if we choose the minus sign, we get \(f(0, 0, 0) = (-1, -1) \). Therefore we must choose the plus sign. We get
\[f(x, y, z) = \begin{pmatrix} \frac{-1 + \sqrt{1 + 8x}}{2} \\ \frac{-1 + \sqrt{1 + 8x}}{2} - (x - y - z) \end{pmatrix}. \]
This doesn’t make sense of \(x < -\frac{1}{8} \). And the solution to (4) is not unique if we allow \(U \times W \) to include the point \((-1, -1, 0, 0, 0)\). For neighborhoods we could choose
\[U = \left\{ (x, y, z) \mid -\frac{1}{8} < x \right\}, \quad W = \left\{ (u, v) \mid u > -\frac{1}{2} \right\} \]
If we take the alternate sign in the solution, the minus sign, then we obtain $u < -\frac{1}{2}$. So in U there is a unique solution for (u, v) which lies in W.

5 Homework due February 16

1. Suppose $f : \mathbb{R}^2 \to \mathbb{R}^1$. Suppose that $f \in C^1$. Can $f|_U$ have an inverse for some open set U? Can $f|_U$ have a continuous inverse? Can $f|_U$ have a differentiable inverse?

2. pg. 396, # 1.

3. pg. 396, # 2

4. pg. 400, # 1

5. pg. 401, # 5.