The reals as cuts

George Sparling
Laboratory of Axiomatics
August 31, 2014

The defining properties of the natural numbers

We begin with the natural numbers \(\mathbb{N} \): these can be added and multiplied and are ordered (obeying all the usual rules of basic number theory); also they have a multiplicative identity 1.

Specifically we have, when \(a, b \) and \(c \) are in \(\mathbb{N} \):

- \(a + b \in \mathbb{N} \) and \(ab \in \mathbb{N} \),
- \(a + b = b + a \) and \((a + b) + c = a + (b + c) \),
- \(ab = ba \) and \((ab)c = a(bc) \),
- \(a(b + c) = ab + ac \) and \((b + c)a = ba + bc \),
- \(1(a) = a(1) = 1 \).
- If \(S \) is a subset of \(\mathbb{N} \) such that \(1 \in S \) and if \(k \in S \), then \(k + 1 \in S \), then \(S = \mathbb{N} \).

We remind ourselves of the following key properties:

- For \(a, b \) and \(c \) elements of \(\mathbb{N} \), we have additive cancellation:
 \[
 \text{If } a + b = a + c, \text{ then } b = c.
 \]

- For \(a, b \) and \(c \) elements of \(\mathbb{N} \), we have multiplicative cancellation:
 \[
 \text{If } ab = ac, \text{ then } b = c.
 \]
Next we define the ordering of \mathbb{N}:

- If p and q are in \mathbb{N}, then $p > q$ if and only if there exists $r \in \mathbb{N}$ (necessarily unique by additive cancellation), such that $p = q + r$.

The ordering properties are:

- Trichotomy: for a and b elements of \mathbb{N}, exactly one of $a < b$, $b < a$, $a = b$ holds.

- Transitivity: for a, b and c elements of \mathbb{N}, if $a < b$ and $b < c$, then $a < c$.

- For a, b and c elements of \mathbb{N}, if $a < b$ then $ca < cb$.

- For any $x \in \mathbb{N}$, we have $x < 1$ is false.

We can also add 0 to the natural numbers.

For any $0 \notin \mathbb{N}$, put $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, equipped with the additional rules, valid for any $x \in \mathbb{N}$: $0 < x$, whereas $x < 0$ is false, $0 + x = x + 0 = x$ and $0x = x0 = 0$; also $00 = 0$ and $0 + 0 = 0$.

Note that for \mathbb{N}_0 additive cancellation still holds, namely that for a, b and c in \mathbb{N}_0, if $a + b = a + c$, then $b = c$, but multiplicative cancellation is modified to: if $ab = ac$, for a, b and c in \mathbb{N}_0, then $a = 0$ or $b = c$.

Operations on \(\mathbb{N}^2 \)

Now consider \(\mathbb{N}^2 = \{(x, y) : x \in \mathbb{N} \text{ and } y \in \mathbb{N}\} \).

If \(a \) and \(b \) are in \(\mathbb{N}^2 \), so \(a = (p, q) \) and \(b = (r, s) \), for \(p, q, r \) and \(s \) in \(\mathbb{N} \), we define:

- \(a + b = (ps + qr, qs) \),
- \(ab = (pr, qs) \),
- \(a > b \) if and only if \(ps > qr \).

These operations are commutative and associative and there is a multiplicative identity, namely \((1, 1)\).

By repeated addition of \((1, 1)\) to itself, we can generate a copy of \(\mathbb{N} \), with the correct induced operations for \(\mathbb{N} \), as the set of all \((n, 1) \in \mathbb{N}^2\) such that \(n \in \mathbb{N} \).

Note however that multiplication is in general not distributive over addition: for example we have:

\[
(3, 2)((5, 2) + (7, 2)) = (3, 2)(24, 4) = (72, 8),
\]

\[
(3, 2)(5, 2) + (3, 2)(7, 2) = (16, 4) + (20, 4) = (144, 16).
\]

The ordering properties are:

- Anti-symmetry: for \(a \in \mathbb{N} \), \(a < a \) is false.
- Transitivity: for \(a, b \) and \(c \) elements of \(\mathbb{N} \), if \(a < b \) and \(b < c \), then \(a < c \).
- For \(a, b \) and \(c \) elements of \(\mathbb{N} \), if \(a < b \) then \(ca < cb \).

Operations on subsets of \(\mathbb{N}^2 \)

Let \(r \) and \(s \) be subsets of \(\mathbb{N}^2 \).

- Define \(r + s = \{a + b : a \in r, b \in s\} \).
- Define \(rs = \{ab : a \in r, b \in s\} \).

These operations are associative and commutative.
Defining the set \mathbb{R}^+ of extended positive reals

Now we can define the extended positive reals.

- Let $s \subset \mathbb{N}^2$.
 We say that s is upper complete if when $a \in s$, then $b \in s$, for any $b \in \mathbb{N}^2$, such that $b > a$.

- Let $s \subset \mathbb{N}^2$.
 We say that s is downwardly open, if given any $c \in s$, there exists $d \in s$, such that $d < c$.

Then the set of extended positive reals, denoted \mathbb{R}^+, is by definition the set of subsets r of \mathbb{N}^2, such that r is both upper complete and downwardly open. The addition and multiplication operations of \mathbb{R}^+ are those of subsets of \mathbb{N}^2, as just defined above.

The ordering for \mathbb{R}^+ is given by the relation $r \leq s$, for r and s in \mathbb{R}^+ if and only if $s \subset r$.

Examples

- The empty set \emptyset is in \mathbb{R}^+, since it obeys the defining conditions of a real vacuously.
 This extended positive real is denoted ∞.
 We have $x \leq \infty$ for any $x \in \mathbb{R}^+$.
 If $x \in \mathbb{R}^+$ obeys $x < \infty$, then x is said to be finite.

- The set \mathbb{N}^2 is in \mathbb{R}^+.
 This extended positive real is denoted 0.
 We have $x \geq 0$ for any $x \in \mathbb{R}^+$.
 If $x \in \mathbb{R}^+$ obeys $x > 0$, then x is said to be positive.

- If $a \in \mathbb{N}^2$, put $[a] = \{x \in \mathbb{N}^2 : x > a\}$.
 Then $[a]$ is a positive real.
 $[a]$ is called a rational number.
 Note that for a and b in \mathbb{N}^2, we have $[a] = [b]$ if and only if $a < b$ and $b < a$ are both false.
 If $a = (p, q)$ we often denote the rational number $[a]$ by $[a] = \frac{p}{q}$.

 Then for example, we have $[(9, 6)] = [(120, 80)] = [(3, 2)] = \frac{9}{6} = \frac{120}{80} = \frac{3}{2}$.
• Let \(z = \{(x, y) \in \mathbb{N}^2 : xx > yy + yy\} \).
 Then \(z \) is a real number that is not rational. The extended positive real \(z \) is denoted \(\sqrt{2} \).

• Let \(t = \{(x, y) \in \mathbb{N}^2 : xx > yy + yy + yy\} \).
 Then \(t \) is a real number that is not rational. The extended positive real \(t \) is denoted \(\sqrt{3} \).

A (formal) polynomial in two variables, with coefficients in \(\mathbb{N}_0 \) is a map \(p : \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0 \). We add two such polynomials term-wise:

\[
(p + q)(s, t) = p(s, t) + q(s, t), \text{for any } (s, t) \in \mathbb{N}_0 \times \mathbb{N}_0
\]

We multiply by convolution:

\[
(pq)(s, t) = \sum_{s_1+s_2=s, t_1+t_2=t, (s_1,s_2,t_1,t_2) \in \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0} p(s_1, t_1)q(s_2, t_2), \text{ for any } (s, t) \in \mathbb{N}_0 \times \mathbb{N}_0.
\]

We write \(p \) as:

\[
p(x, y) = \sum_{a=(a_1, a_2) \in \mathbb{N}_0 \times \mathbb{N}_0} p(a)x^{a_1}y^{a_2}.
\]

A polynomial \(p \) is said to be homogenous of degree \(n \in \mathbb{N}_0 \), if \(p(a) \) vanishes for any \(a = (a_1, a_2) \in \mathbb{N}_0 \times \mathbb{N}_0 \) with \(a_1 + a_2 \neq n \). A (non-formal) polynomial is a finite sum of homogeneous polynomials. The sum and product of non-formal polynomials is again non-formal. For example, the polynomial \((x + y)^n\) is homogeneous of degree \(n \). We have:

\[
(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}.
\]

Here the positive integer \(\binom{n}{k} \), called a binomial coefficient, is determined uniquely by the formula, valid for any non-negative integers \(r \) and \(s \):

\[
r!s! \binom{r+s}{r} = (r+s)!.
\]

Here the formulas \(0! = 1 \), \(1! = 1 \) and \((k+1)! = k!(k+1) \), for any \(k \in \mathbb{N} \), defines the factorial function recursively.
• For \(p(x, y) \) and \(q(x, y) \) homogenous polynomials in variables \(x \) and \(y \), with coefficients in \(\mathbb{N} \), of the same degree, put:

\[
[[p, q]] = \{(a, b) \in \mathbb{N}^2 : p(a, b) > q(a, b) \text{ and if } (c, d) > (a, b), \text{ then } p(c, d) > q(c, d)\}.
\]

Then \([[p, q]] \) is an extended real number: \([[p, q]] \) is called an extended positive algebraic number. In general a positive real number \(\alpha \) is said to be algebraic if there exists positive integers \(r, s \) and \(t \) and an extended positive algebraic number \(\beta = [[p, q]] \), for some \(p(x, y) \) and \(q(x, y) \) homogenous polynomials in variables \(x \) and \(y \), with coefficients in \(\mathbb{N} \), such that \(r\alpha \beta = s\beta + t \). All the preceding examples of real numbers that we have given are algebraic, as is easily seen.

• For \(n \) a positive integer, put \(s_n = \sum_{k=0}^{n} \left(\frac{n!}{k!} \right) \).

The sequence \(S = \{s_n : n \in \mathbb{N}\} \) begins:

\[
2, 5, 16, 65, 326, 1957, 13700, 109601, 9864101, \ldots.
\]

Then define:

\[
e = \{a \in \mathbb{N}^2 : a > (s_n, n!), \text{ for all } n \in \mathbb{N}\}.
\]

Note that the sequence \((s_n, n!) \) is increasing, since we have the recursion \(s_{n+1} = 1 + (n + 1)s_n \), which implies the relation \(s_{n+1}n! - s_n(n + 1)! = n! \), valid for each \(n \in \mathbb{N}_0 \), which gives the formula: \((s_n, n!) = \sum_{k=0}^{n} (1, k!) \), for any \(n \in \mathbb{N} \).

Then \(e \) is an extended positive real number and is transcendental: it is not algebraic.

In particular, we have the rational bound:

\[
[27182818284590, 10000000000000] < e < [27182818284591, 100000000000000].
\]
Supremum and infimum

Let $S \subset \mathbb{R}^+$.

- $\inf(S) = \bigcup_{s \in S}$.
- $\sup(S) = \inf\{t \in \mathbb{R}^+ : t > s, \text{ for all } s \in S\}$.

The set S is said to be bounded above if and only if $\sup(S)$ is finite, if and only if there exists a finite positive real $r \in \mathbb{R}^+$, such that $s \leq r$, for all $s \in S$.

- If S is a finite set, then $\sup(S) = \bigcap_{s \in S} s$.

Examples

- For $S = \{(1, n) : n \in \mathbb{N}\}$, we have $\inf(S) = 0$ and $\sup(S) = (1, 1)$. This is a version of the Archimedean Principle.
- For $S = \{(n, 1) : n \in \mathbb{N}\}$, we have $\inf(S) = (1, 1)$ and $\sup(S) = \infty$. This is another version of the Archimedean Principle.
- For $S = \{(3, 10), (33, 100), (333, 1000), (3333, 10000), \ldots\}$, we have $\inf(S) = (3, 10)$ and $\sup(S) = (1, 3)$.
- For $S = \{(s_n, n!) : n \in \mathbb{N}_0\}$, where $s_n = \sum_{k=0}^{n} \frac{(n)!}{k! \binom{n}{k}}$, for any $n \in \mathbb{N}$, we have $\inf(S) = (2, 1)$ and $\sup(S) = e$.

Properties of 0 and ∞

Note the properties of the extended positive reals 0 and ∞:

- For every $x \in \mathbb{R}^+$, we have $0 \leq x \leq \infty$.
- If $x \in \mathbb{R}^+$ obeys $x \geq (n, 1)$, for all $n \in \mathbb{N}$, then $x = \infty$.
- If $x \in \mathbb{R}^+$ obeys $x \leq (1, n)$, for all $n \in \mathbb{N}$, then $x = 0$.
- We have:

 $$0 + 0 = 0, \quad 0 + \infty = \infty, \quad \infty + \infty = \infty.$$
- We have:

 $$0 \cdot 0 = 0, \quad 0 \cdot \infty = \infty, \quad \infty \cdot \infty = \infty.$$
- For every extended positive real x, we have:

 $$0 + x = x, \quad x + \infty = \infty.$$
- For every extended positive real x that is finite, i.e. $x \neq \infty$, we have:

 $$0 \cdot x = 0, \quad x \cdot \infty = \infty.$$
- We have, for extended positive reals a and b:

 $$a + b = 0, \text{ iff } a = b = 0,$$

 $$a + b = \infty, \text{ iff } a = \infty, \text{ or } b = \infty,$$

 $$ab = 0, \text{ iff both } a \text{ and } b \text{ are finite and } a = 0 \text{ or } b = 0,$$

 $$ab = 0, \text{ iff } a = \infty \text{ or } b = \infty.$$

8
The full real number system

A (formal) polynomial in one variable, with coefficients in \(\mathbb{R}^+ \) is by definition a map from \(\mathbb{N}_0 \) to \(\mathbb{R}^+ \). We add and multiply such polynomials by the rules, valid for any polynomials \(f \) and \(g \) and for each \(n \in \mathbb{N}_0 \):

\[
(f + g)(n) = f(n) + g(n),
\]
\[
(fg)(n) = \sum_{r+s=n, (r,s) \in \mathbb{N}_0 \times \mathbb{N}_0} f(r)g(s).
\]

For each \(k \in \mathbb{N}_0 \), the polynomial \(f = x^k \) is defined by the formulas, for \(n \in \mathbb{N} \):

\[
x^k(n) = 0, \text{ unless } n = k,
\]
\[
x^k(k) = 1.
\]

Then we have \(x^k x^m = x^{k+m} \), for any \(k \) and \(m \) in \(\mathbb{N}_0 \).

We then often write for the general polynomial \(f \):

\[
f(x) = \sum_{k=0}^{\infty} f(k)x^k.
\]

The degree of \(f \neq 0 \) is the smallest \(n \in 0 \cup \mathbb{N} \cup \infty \), such that \(f(j) = 0 \), for all integral \(j > n \). Then the sum representing \(f \) is a formal sum unless \(f \) has finite degree, in which case \(f \) is just called a polynomial and then \(f \) is just a finite sum of its non-zero terms.
Let \(m \) be a polynomial with coefficients in \(\mathbb{R}^+ \). We define a relation \(\mod m \) (called stable equivalence modulo \(m \)) on formal polynomials with coefficients in \(\mathbb{R}^+ \), by the formula, for formal polynomials \(f \) and \(g \):

- \((f, g) \in \mod m\), if and only if there exist formal polynomials \(p \) and \(q \), such that:
 \[
 f + pm = g + qm.
 \]

When \((f, g) \in \mod m\), we write \(f \equiv_m g \).

It is routine to prove that \(\mod m \) is an equivalence relation and that the operations of multiplication and addition of polynomials respect the equivalence relations, so pass down to the equivalence classes.

- When \(m(x) = x + 1 \), the space of equivalence classes modulo \(m \) of all polynomials (of finite degree), with finite coefficients in \(\mathbb{R}^+ \), is, by definition, the set \(\mathbb{R} \) of reals.

- When \(m(x) = x^2 + 1 \), the space of equivalence classes modulo \(m \) of all polynomials (of finite degree), with finite coefficients in \(\mathbb{R}^+ \), is, by definition, the set \(\mathbb{C} \) of complex numbers.

The non-zero finite elements of \(\mathbb{R}^+ \) embed into \(\mathbb{R} \) as the (equivalence classes of) polynomials of zero degree. The zero element of \(\mathbb{R} \) is the polynomial \(x + 1 \); the additive inverse of 1 is \(x \). We have the relation \(x^2 = 1 \) in \(\mathbb{R} \), by the formula:

\[
x^2 \equiv_{x+1} x^2 + 1(x + 1) = x^2 + x + 1 = 1 + (x^2 + x) \equiv_{x+1} 1 + x(x + 1).
\]

In \(\mathbb{C} \), the additive inverse of 1 is \(x^2 \) and we have \(x^4 \equiv_{x^2+1} 1 \). The reals embed inside \(\mathbb{C} \), by the mapping \(f(x) \rightarrow f(x^2) \), for any \(f(x) \) representing an element of \(\mathbb{R} \).