L’Hôpital’s rule: a proof

Let \(f \) and \(g \) be defined and differentiable on \((a, b) \subset \mathbb{R}\) with \(a < b \). Here \(b \) could be \(\infty \).

- Suppose that \(g'(x) \neq 0 \), for any \(x \in (a, b) \).
- Suppose that \(f(x) \to 0 \) and \(g(x) \to 0 \) as \(x \to b^- \). Alternatively suppose that \(|g(x)| \to \infty \), as \(x \to b^- \).
- Suppose that \(\frac{f'(x)}{g'(x)} \to L \) as \(x \to b^- \).

Then we have:

\[
\lim_{x \to b^-} \frac{f(x)}{g(x)} = L.
\]

Proof:

By the Intermediate Value Property of the derivative, \(g'(x) \) always has the same sign on \((a, b)\), so \(g \) is strictly monotonic on \((a, b)\) by the Mean Value Theorem.

In particular we have \(g(x) \neq g(t) \) if \(x \neq t \) and \(x \) and \(t \) lie in \((a, b)\). Also since \(g(x) \) is strictly monotonic, \(g(x) \) can be zero at at most one point, \(c \), say, with \(a < c < b \) again by the Mean Value Theorem.

By shrinking the interval \((a, b)\) to the interval \((c, b)\), if necessary, we may assume henceforth that \(g(x) \) is everywhere non-zero on the interval \((a, b)\).

Let \(\epsilon > 0 \) be given.

Since \(\lim_{u \to b^-} \frac{f'(u)}{g'(u)} = L \), there is real number \(a_\epsilon \) in \((a, b)\) such that, for any \(z \in (a_\epsilon, b) \), we have:

\[
\left| \frac{f'(z)}{g'(z)} - L \right| < \frac{\epsilon}{2}.
\]

Fix \(x \) in \((a_\epsilon, b)\).

By the Cauchy Mean Value Theorem, we have, for any \(t \in (x, b) \), that a real number \(c(x, t) \) exists with \(a_\epsilon < x < c(x, t) < t < b \), such that:

\[
\frac{f(x) - f(t)}{g(x) - g(t)} = \frac{f'(c(x, t))}{g'(c(x, t))}.
\]
In particular for any \(t \in (x, b) \), we have \(c(x, t) \in (a_\varepsilon, b) \) also.
So we have for any given \(x \in (a_\varepsilon, b) \), the relation, valid for any \(x < t < b \):

\[
\left| \frac{f(x) - f(t)}{g(x) - g(t)} - L \right| < \frac{\varepsilon}{2}.
\]

- First we consider the case that \(f(u) \to 0 \) and \(g(u) \to 0 \) as \(u \to b^- \).
 Take the limit of this relation as \(t \to b^- \), giving for each \(x \in (a_\varepsilon, b) \):
 \[
 \left| \frac{f(x)}{g(x)} - L \right| = \left| \frac{f(x) - 0}{g(x) - 0} - L \right| = \lim_{t \to b^-} \left| \frac{f(x) - f(t)}{g(x) - g(t)} - L \right| \leq \frac{\varepsilon}{2} < \varepsilon.
 \]
 So \(\lim_{x \to b^-} \frac{f(x)}{g(x)} = L \) and we are done.

- Now we consider the case that \(|g(t)| \to \infty \) as \(t \to \infty \).

By the above work, we have, for any given (fixed) real \(x \in (a_\varepsilon, b) \), the relation, valid for any real \(t \) such that \(x < t < b \):

\[
\left| \frac{f(x) - f(t)}{g(x) - g(t)} - L \right| = \left| \frac{\frac{f(t)}{g(t)} - \frac{f(x)}{g(x)}}{1 - \frac{g(x)}{g(t)}} - L \right| < \frac{\varepsilon}{2},
\]

\[
-\frac{\varepsilon}{2} \left| 1 - \frac{g(x)}{g(t)} \right| < \frac{f(t)}{g(t)} - L - \left(\frac{f(x) - Lg(x)}{g(t)} \right) < \frac{\varepsilon}{2} \left| 1 - \frac{g(x)}{g(t)} \right|,
\]

\[
-\frac{\varepsilon}{2} \left| 1 - \frac{g(x)}{g(t)} \right| + \left(\frac{f(x) - Lg(x)}{g(t)} \right) < \frac{f(t)}{g(t)} - L < \frac{\varepsilon}{2} \left| 1 - \frac{g(x)}{g(t)} \right| + \left(\frac{f(x) - Lg(x)}{g(t)} \right),
\]

As \(t \to b^- \), for fixed \(x \in (a_\varepsilon, b) \), since \(|g(t)| \to \infty \), whereas the terms \(f(x), g(x) \) and \(L \) are fixed and bounded, the quantity \(\left| 1 - \frac{g(x)}{g(t)} \right| \to 1 \) and the quantity \(\left(\frac{f(x) - Lg(x)}{g(t)} \right) \to 0 \), so the left hand side of the above inequality is larger than \(-\varepsilon \) and the right hand side is less than \(\varepsilon \), for \(a_\varepsilon < x < \delta_\varepsilon < t < b \).

So we have, for \(\delta_\varepsilon < t < b \):

\[
\left| \frac{f(t)}{g(t)} - L \right| < \varepsilon.
\]

So \(\lim_{t \to \infty} \frac{f(t)}{g(t)} = L \), as required and we are done.