The story of $\sqrt{2}$: Pythagoras and Dedekind
Pythagoras: the square root of 2 does not exist!

We prove the following theorem:

- Let \(x \) be a rational number.

 Then \(x^2 \neq 2 \).

Proof:

A rational number is one of the form \(\frac{p}{q} \), where \(p \) and \(q \) are integers and \(q \neq 0 \). So the theorem to be proved is equivalent to the following theorem:

- The only solution to the equation \(x^2 = 2y^2 \), with \(x \) and \(y \) integers is

 \(x = y = 0 \).

Since \((-x)^2 = x^2 \), for \(x \in \mathbb{Z} \), we may rephrase the theorem to be proved as:

- Let \(x \) and \(y \) be positive integers.

 Then \(x^2 \neq 2y^2 \).

Proof:

Let \(S = \{ s : s = p + q \text{ and } (p, q) \in \mathbb{N} \times \mathbb{N} \text{ and } p^2 = 2q^2 \} \).

We must show that \(S \) is the empty set.

If \(S \) is not the empty set, then since \(S \subseteq \mathbb{N} \), by the Well Ordering Principle, POW, the set \(S \) has a least element, \(k \), say and there exist positive integers \(t \) and \(u \) such that \(t^2 = 2u^2 \) and \(t + u = k \).

Note that \(k \geq 3 \), since if \(k \leq 2 \), we would have to have \(k = 2 \) and then we would have to have \(t = u = 1 \); but then \(t^2 = 2u^2 \) is false.

Note that \(t^2 \) is even.

Then \(t \geq 2 \), since if \(t = 1 \), then \(t^2 = 1 \), which is not even.

But \(t^2 - t = t(t-1) \) is also even, being the product of two consecutive positive integers. So \(t = t^2 - (t^2 - t) \) is also even.

So we may write \(t = 2r \), where \(r \in \mathbb{N} \).

Then we have \(2u^2 = t^2 = (2r)^2 = 2(2r^2) \), so \(u^2 = 2r^2 \).

Then \(p = u \) and \(q = r \) solves the equation \(p^2 = 2q^2 \), with \(p \) and \(q \) positive integers.

This gives the element \(s = p + q = u + r \) of \(S \).

But then \(s = u + r < u + r + r = u + 2r = u + t = k \).

So \(s < k \), which contradicts the definition of \(k \).

So the hypothesis that \(S \) is non-empty leads to a contradiction.

Therefore \(S \) is the empty set and we are done.
Note that we used the following properties of evenness:

- A positive integer n is even if and only if $n = 2m$ for some positive integer m.

This is just the definition of evenness of positive integers.

- 1 is not even.

Proof:
If $1 = 2m$, with $m \in \mathbb{N}$, then we have $m \geq 1$, so $1 = 2m \geq 2$, so $1 \geq 2$, which is false.

- If a and b are even positive integers, then $a + b$ is even.

Proof:
We have $a = 2c$ and $b = 2d$, for c and d in \mathbb{N}.
Then $a + c = 2c + 2d = 2(c + d)$ and $c + d \in \mathbb{N}$, so $a + c$ is even.

- If a and b are even positive integers, and $a > b$, then $a - b$ is even.

Proof:
We have $a = 2c$ and $b = 2d$, for integers c and d.
If now $d \geq c$, then $2d \geq 2c$, so $b \geq a$, which is false, so $c > d$.
So $c - d \in \mathbb{N}$ and then we have $a - b = 2c - 2d = 2(c - d)$, so $a - b$ is even.

- If n is a positive integer, then $s(n) = n(n + 1)$ is even.

Proof:
We use induction.

- When $n = 1$, we have $s(1) = 1(1 + 1) = 1(2) = 2(1)$, so $s(1)$ is even, the base case.

- If $s(n)$ is even, so $n(n + 1) = 2t$, for $t \in \mathbb{N}$, then we have:

$$s(n + 1) = (n + 1)(n + 1 + 1) = (n + 1)(n + 2)$$

$$= (n + 1)n + (n + 1)(2) = s(n) + 2(n + 1) = 2t + 2(n + 1) = 2(t + n + 1).$$

So $s(n + 1)$ is even, since $t + n + 1 \in \mathbb{N}$.

So by IMP, the Principle of Mathematical Induction, we are done.
Dedekind: the square root of 2 does exist!

We prove the following theorem:

- There is a unique positive real number, \(x \), such that \(x^2 = 2 \).
 Also \(1 < x < 2 \).

Proof:

We observe first that if \(0 < x < y \), with \(x \) and \(y \) real, then \(0 < x^2 < xy \) and \(0 < xy < y^2 \), so \(0 < x^2 < y^2 \).

So if \(x \geq 2 \), then \(x^2 \geq 4 > 2 \), so \(x^2 > 2 \) and \(x^2 = 2 \) is false.

Also if \(0 < x \leq 1 \), then \(0 < x^2 \leq 1 < 2 \), so \(x^2 < 2 \) and \(x^2 = 2 \) is false.

So if \(x \) is real and \(x^2 = 2 \), with \(x > 0 \), then \(1 < x < 2 \), as required.

Also if \(x^2 = 2 \) and \(y^2 = 2 \), with \(x > 0 \) and \(y > 0 \), then we have:

\[
0 = x^2 - y^2 = (x - y)(x + y) \text{ and } x + y > 0, \text{ so } x = y.
\]

So if \(x > 0 \) and \(x^2 = 2 \), then \(1 < x < 2 \) and \(x \) is unique as required.

It remains to prove that there is a real \(x \) such that \(1 \leq x \leq 2 \) and \(x^2 = 2 \).

To do this, we define two sets:

\[S = \{ s \in \mathbb{R} : 1 \leq s \leq 2 \text{ and } s^2 < 2 \}, \]

\[T = \{ t \in \mathbb{R} : 1 \leq t \leq 2 \text{ and } t^2 > 2 \}. \]

Then if \(s \in S \) and \(t \in T \), we have \(t^2 > 2 > s^2 \), so \(t^2 - s^2 > 0 \), so we have:

\((t - s)(t + s) > 0.\)

But \(t + s \geq 1 + 1 = 2 > 0 \), so \(t - s > 0 \) also and \(t > s \).

Also \(2 \in T \) and \(1 \in S \), so \(S \) is non-empty and bounded above by \(2 \), so \(\alpha = \sup(S) \) exists.

Also, since \(S \subset [1, 2] \), we have \(1 \leq \alpha \leq 2 \).

Also \(T \) is non-empty and bounded below by \(1 \), so \(\beta = \inf(T) \) exists.

Also, since \(T \subset [1, 2] \), we have \(1 \leq \beta \leq 2 \).

Since \(s < t \), for any \(s \in S \) and \(t \in T \), any fixed \(t \in T \) is an upper bound for \(S \), so we have \(\alpha \leq t \), for any \(t \in T \).

This means that \(\alpha \) is a lower bound for \(T \), so we get \(\alpha \leq \beta \).

So we have shown that \(1 \leq \alpha \leq \beta \leq 2 \).
We next show that $\alpha \beta = 2$.

- If $s \in \mathbb{S}$, then $1 \leq s \leq 2$ and $s^2 < 2$.

 Put $t = \frac{2}{s}$.

 Since $0 < 1 \leq s \leq 2$, we have $\frac{1}{2} \leq \frac{1}{s} \leq 1$, so $1 \leq \frac{2}{s} \leq 2$, so $1 \leq t \leq 2$.

 Also $t^2 = \frac{4}{s^2} > \frac{4}{2} = 2$.

 So $t^2 > 2$.

 So $t \in \mathbb{T}$, so $t \geq \beta$.

 So $\frac{2}{s} \geq \beta$, so $s \leq \frac{2}{\beta}$.

 So $\frac{2}{\beta}$ is an upper bound for \mathbb{S}.

 So $\alpha \leq \frac{2}{\beta}$, so $\alpha \beta \leq 2$.

- If $t \in \mathbb{T}$, then $1 \leq t \leq 2$ and $t^2 > 2$.

 Put $s = \frac{2}{t}$.

 Since $0 < 1 \leq t \leq 2$, we have $\frac{1}{2} \leq \frac{1}{t} \leq 1$, so $1 \leq \frac{2}{t} \leq 2$, so $1 \leq s \leq 2$.

 Also $s^2 = \frac{4}{t^2} < \frac{4}{2} = 2$.

 So $s^2 < 2$.

 So $s \in \mathbb{S}$, so $s \leq \alpha$.

 So $\frac{2}{t} \leq \alpha$, so $t \geq \frac{2}{\alpha}$.

 So $\frac{2}{\alpha}$ is a lower bound for \mathbb{T}.

 So $\beta \geq \frac{2}{\alpha}$, so $\alpha \beta \geq 2$.

Since $\alpha \beta \leq 2$ and $\alpha \beta \geq 2$, we have $\alpha \beta = 2$.
Summarizing, we have proved that both $\alpha = \sup(\mathbb{S})$ and $\beta = \inf(\mathbb{T})$ exist and obey:

$$1 \leq \alpha \leq \beta \leq 2, \quad \alpha \beta = 2.$$

- If now $\alpha = \beta$, we are done, since then $\alpha \beta = \alpha^2 = 2$.

- If instead, $\alpha \neq \beta$, then $\alpha < \beta$.

 Let a real number u be chosen, so that $\alpha < u < \beta$.

 Then u exists: for example, we may take $u = \frac{\alpha + \beta}{2}$.

 Then since $\alpha \geq 1$ and $\beta \leq 2$, we have $1 \leq \alpha < u < \beta \leq 2$, so $1 \leq u \leq 2$.

 - If $u^2 < 2$, then $u \in \mathbb{S}$, by definition of \mathbb{S}.

 So $u \leq \alpha$, by definition of α, which contradicts that $u > \alpha$.

 - If $u^2 > 2$, then $u \in \mathbb{T}$, by definition of \mathbb{T}.

 So $u \geq \beta$, by definition of β, which contradicts that $u < \beta$.

So $u^2 < 2$ and $u^2 > 2$ each leads to a contradiction, so by trichotomy $u^2 = 2$ and we are done.

Actually, the last case, $\alpha < \beta$, cannot occur, since if $\alpha < \beta$, we may choose two numbers u and v, such that $1 \leq \alpha < u < v < \beta \leq 2$:

For example take $u = \frac{1}{3}(2\alpha + \beta)$ and $v = \frac{1}{3}(\alpha + 2\beta)$.

Then the argument given above, applied separately to each of u and v, shows that $u^2 = v^2 = 2$, so $(u - v)(u + v) = u^2 - v^2 = 0$, so $u - v = 0$, since $u + v \geq 2 > 0$, so $u = v$, which contradicts that $u < v$. So $\alpha < \beta$ is impossible.

Alternatively in the argument given above, if $\alpha < \beta$, by the density theorem, we may choose u to be rational and $\alpha < u < \beta$.

Then the argument above shows that $u^2 = 2$, and u is rational, contradicting Pythagoras. So $\alpha < \beta$ is impossible.

Since $\alpha < \beta$ is false, we have $\alpha = \beta$ and we have proved the additional result, pinning down the square root of two:

- We have $\sup(\mathbb{S}) = \inf(\mathbb{T}) = \sqrt{2}$.

This formula allows us to systematically calculate $\sqrt{2}$ to any required degree of precision.

Finally note that we did not need to use the Archimedean Principle in the above proof.