Lecture 5

Duality
Resource Allocation

Recall the resource allocation problem \((m = 2, n = 3)\):

\[
\begin{align*}
\text{maximize} & \quad c_1 x_1 + c_2 x_2 + c_3 x_3 \\
\text{subject to} & \quad a_{11} x_1 + a_{12} x_2 + a_{13} x_3 \leq b_1 \\
& \quad a_{21} x_1 + a_{22} x_2 + a_{23} x_3 \leq b_2 \\
& \quad x_1, x_2, x_3 \geq 0,
\end{align*}
\]

where

\[
\begin{align*}
c_j &= \text{profit per unit of product } j \text{ produced} \\
b_i &= \text{units of raw material } i \text{ on hand} \\
a_{ij} &= \text{units of raw material } i \text{ required to produce one unit of product } j.
\end{align*}
\]

Forgoing production and selling off raw materials.

If we produce one unit less of product \(j\), then we free up:

- \(a_{1j}\) units of raw material 1 and
- \(a_{2j}\) units of raw material 2.

Selling these unused raw materials for \(y_1\) and \(y_2\) dollars/unit, yields \(a_{1j} y_1 + a_{2j} y_2\) dollars.

Only interested if this exceeds lost profit on product \(j\):

\[
a_{1j} y_1 + a_{2j} y_2 \geq c_j.
\]

We want these inequalities for \(j = 1, 2, 3\).

Consider a buyer offering to purchase our entire inventory. Subject to above constraints, buyer wants to minimize cost:

\[
\begin{align*}
\text{minimize} & \quad b_1 y_1 + b_2 y_2 \\
\text{subject to} & \quad a_{11} y_1 + a_{21} y_2 \geq c_1 \\
& \quad a_{12} y_1 + a_{22} y_2 \geq c_2 \\
& \quad a_{13} y_1 + a_{23} y_2 \geq c_3 \\
& \quad y_1, y_2 \geq 0.
\end{align*}
\]
Duality

Every Problem:

\[
\begin{align*}
\text{maximize} & \quad \sum_{j=1}^{n} c_j x_j \\
\text{subject to} & \quad \sum_{j=1}^{n} a_{ij} x_j \leq b_i & i = 1, 2, \ldots, m \\
& \quad x_j \geq 0 & j = 1, 2, \ldots, n,
\end{align*}
\]

Has a Dual:

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{m} b_i y_i \\
\text{subject to} & \quad \sum_{i=1}^{m} y_i a_{ij} \geq c_j & j = 1, 2, \ldots, n \\
& \quad y_i \geq 0 & i = 1, 2, \ldots, m.
\end{align*}
\]

Notes:

- Original problem is the primal problem.
- A problem is defined by its data (notation used for the variables is arbitrary).
- Dual is negative transpose of primal (see below).
- Dual of dual is primal.

Dual in “Standard” Form:

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=1}^{m} -b_i y_i \\
\text{subject to} & \quad \sum_{i=1}^{m} -a_{ij} y_i \leq -c_j & j = 1, 2, \ldots, n \\
& \quad y_i \geq 0 & i = 1, 2, \ldots, m.
\end{align*}
\]
Weak Duality Theorem

If \((x_1, x_2, \ldots, x_n)\) is feasible for the primal and \((y_1, y_2, \ldots, y_m)\) is feasible for the dual, then

\[
\sum_j c_j x_j \leq \sum_i b_i y_i.
\]

Why? Consider the following chain of inequalities:

\[
\begin{align*}
\sum_j c_j x_j &\leq \sum_j \left(\sum_i y_i a_{ij} \right) x_j \\
&= \sum_{ij} y_i a_{ij} x_j \\
&= \sum_i \left(\sum_j a_{ij} x_j \right) y_i \\
&\leq \sum_i b_i y_i,
\end{align*}
\]

An important question:

Is there a gap between the largest primal value and the smallest dual value?
Answer: Later (Strong Duality Theorem)
Simplex Method and Duality

An Example:

Its Dual:

Notes:

- Dual is negative transpose of primal.
- Primal is feasible, dual is not.

Use primal to choose pivot: x_2 enters, w_2 leaves.
Make analogous pivot in dual: z_2 leaves, y_2 enters.
Second Iteration

After First Pivot:

Primal (still feasible):

\[
\begin{array}{cccccc}
\text{obj} & = & \frac{3}{2} & + & \frac{-3}{2} & x_1 + \frac{-1}{2} & v_2 + \frac{1}{2} & x_3 \\
v_1 & = & \frac{3}{4} & - & \frac{3}{4} & x_1 - \frac{1}{4} & v_2 - \frac{9}{4} & x_3 \\
x_2 & = & \frac{3}{4} & - & \frac{3}{4} & x_1 - \frac{1}{4} & v_2 - \frac{1}{4} & x_3 \\
\end{array}
\]

Dual (still not feasible):

\[
\begin{array}{cccccc}
\text{obj} & = & \frac{-3}{2} & + & \frac{-3}{4} & y_1 + \frac{-3}{4} & z_2 \\
v_1 & = & \frac{3}{2} & - & \frac{3}{4} & y_1 - \frac{3}{4} & z_2 \\
y_2 & = & \frac{1}{2} & - & \frac{1}{4} & y_1 - \frac{1}{4} & z_2 \\
z_3 & = & \frac{-1}{2} & - & \frac{-9}{4} & y_1 - \frac{-1}{4} & z_2 \\
\end{array}
\]

Note: negative transpose property intact.

Again, use primal to pick pivot: \(x_3\) enters, \(w_1\) leaves. Make analogous pivot in dual: \(z_3\) leaves, \(y_1\) enters.
After Second Iteration

Primal:

<table>
<thead>
<tr>
<th></th>
<th>5/3</th>
<th>-4/3</th>
<th>x1</th>
<th>-5/9</th>
<th>v2</th>
<th>-2/3</th>
<th>v1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x3</td>
<td>1/3</td>
<td>-1/3</td>
<td>x1</td>
<td>1/9</td>
<td>x1</td>
<td>-2/3</td>
<td>v1</td>
</tr>
<tr>
<td>x2</td>
<td>2/3</td>
<td>-2/3</td>
<td>x1</td>
<td>2/9</td>
<td>x1</td>
<td>-1/9</td>
<td>v1</td>
</tr>
</tbody>
</table>

Dual:

<table>
<thead>
<tr>
<th></th>
<th>-5/3</th>
<th>-1/3</th>
<th>z3</th>
<th>-2/3</th>
<th>z2</th>
</tr>
</thead>
<tbody>
<tr>
<td>z1</td>
<td>4/3</td>
<td>z3</td>
<td>z3</td>
<td>z3</td>
<td>z2</td>
</tr>
<tr>
<td>y2</td>
<td>5/9</td>
<td>-1/9</td>
<td>z3</td>
<td>-2/9</td>
<td>z2</td>
</tr>
<tr>
<td>y1</td>
<td>2/9</td>
<td>-4/9</td>
<td>z3</td>
<td>1/9</td>
<td>z2</td>
</tr>
</tbody>
</table>

Notes:

- Primal is **optimal**.
- Negative transpose property is intact.
- Dual is **optimal**.

Conclusion

Simplex method applied to primal problem (two phases, if necessary), solves both the primal and the dual.
Strong Duality Theorem

Conclusion on previous slide is the essence of the strong duality theorem which we now state:

If the primal problem has an optimal solution,
\[x^* = (x_1^*, x_2^*, \ldots, x_n^*) , \]
then the dual also has an optimal solution,
\[y^* = (y_1^*, y_2^*, \ldots, y_m^*) , \]
such that
\[\sum_{j} c_j x_j^* = \sum_{i} b_i y_i^* . \]

Paraphrase:

If primal has an optimal solution, then there is no duality gap.
Duality Gap

Four possibilities:

- Primal optimal, dual optimal (no gap).
- Primal unbounded, dual infeasible (no gap).
- Primal infeasible, dual unbounded (no gap).
- Primal infeasible, dual infeasible (infinite gap).

Example of infinite gap:

\[
\begin{align*}
\text{maximize} & \quad 2x_1 - x_2 \\
\text{subject to} & \quad x_1 - x_2 \leq 1 \\
& \quad -x_1 + x_2 \leq -2 \\
& \quad x_1, x_2 \geq 0.
\end{align*}
\]
Complementary Slackness

At optimality, we have

\[x_j z_j = 0, \quad \text{for } j = 1, 2, \ldots, n, \]
\[w_i y_i = 0, \quad \text{for } i = 1, 2, \ldots, m. \]

Why? Recall the proof of the Weak Duality Theorem:

\[
\sum_j c_j x_j \leq \sum_j (c_j + z_j) x_j
\]

\[
= \sum_j \left(\sum_i y_i a_{ij} \right) x_j
\]

\[
\Rightarrow \quad \sum_{ij} y_i a_{ij} x_j
\]

\[
= \sum_i \left(\sum_j a_{ij} x_j \right) y_i
\]

\[
= \sum_i (b_i - w_i) y_i
\]

\[
\leq \sum_i b_i y_i.
\]

The inequalities come from the fact that

\[x_j z_j \geq 0, \quad \text{for } j = 1, 2, \ldots, n, \]
\[w_i y_i \geq 0, \quad \text{for } i = 1, 2, \ldots, m. \]

By Strong Duality Theorem, the inequalities are equalities at optimality.
Dual Simplex Method

When: dual feasible, primal infeasible (i.e., pinks on the left, not on top).

An Example. Showing both primal and dual dictionaries:

Looking at dual dictionary: y_2 enters, z_2 leaves.
On the primal dictionary: w_2 leaves, x_2 enters.

After pivot:
Dual Simplex Method: Second Pivot

Going in, we have:

Looking at dual:
- \(y_1 \) enters, \(z_4 \) leaves.

Looking at primal:
- \(w_1 \) leaves, \(x_4 \) enters.

Dual Simplex Method Pivot Rule:
Refering to the primal dictionary,

- Pick leaving variable from those rows that are infeasible.
- Pick entering variable from a box with a negative value and which can be increased the least (on the dual side).

Next primal dictionary shown on next page...
Dual Simplex Method: Third Pivot

Going in, we have:

<table>
<thead>
<tr>
<th></th>
<th>obj</th>
<th>x_1</th>
<th>v_2</th>
<th>x_3</th>
<th>v_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>-15.7143</td>
<td>-5.1429</td>
<td>-2.2857</td>
<td>0.0</td>
<td>-1.4286</td>
</tr>
<tr>
<td>x_2</td>
<td>2.7143</td>
<td>-0.1429</td>
<td>-0.2857</td>
<td>0.0</td>
<td>-0.4286</td>
</tr>
<tr>
<td>w_3</td>
<td>-0.1429</td>
<td>-0.5714</td>
<td>-0.1429</td>
<td>0.0</td>
<td>0.2857</td>
</tr>
</tbody>
</table>

Which variable must leave and which must enter?

See next page...
Dual Simplex Method: Third Pivot—Answer

Answer is: \(x_2\) leaves, \(x_1\) enters.

Resulting dictionary is OPTIMAL:

<table>
<thead>
<tr>
<th></th>
<th>(x_4)</th>
<th>(x_1)</th>
<th>(x_3)</th>
<th>(w_3)</th>
<th>(w_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>17.0</td>
<td>-9.0</td>
<td>-1.0</td>
<td>0.0</td>
<td>-4.0</td>
</tr>
<tr>
<td>x_4</td>
<td>2.75</td>
<td>-0.25</td>
<td>-0.25</td>
<td>0.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>x_1</td>
<td>0.25</td>
<td>-1.75</td>
<td>0.25</td>
<td>0.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>w_3</td>
<td>2.0</td>
<td>7.0</td>
<td>0.0</td>
<td>3.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Dual-Based Phase I Method

An Example:

Notes:

- Two objective functions: the true objective (on top), and a fake one (below it).
- For Phase I, use the fake objective—it’s dual feasible.
- Two right-hand sides: the real one (on the left) and a fake (on the right).
- Ignore the fake right-hand side—we’ll use it in another algorithm later.

Phase I—First Pivot: w_3 leaves, x_1 enters.

After first pivot:
Dual-Based Phase I Method—Second Pivot

Recall current dictionary:

<table>
<thead>
<tr>
<th></th>
<th>obj</th>
<th>w1</th>
<th>w2</th>
<th>x1</th>
<th>w4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-12.0</td>
<td>-6.0</td>
<td>-9.0</td>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.0</td>
<td></td>
</tr>
</tbody>
</table>

Dual pivot: w_2 leaves, x_2 enters.

After pivot:

<table>
<thead>
<tr>
<th></th>
<th>obj</th>
<th>w1</th>
<th>w2</th>
<th>x1</th>
<th>w4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-3.0</td>
<td>-1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>-0.6667</td>
<td>-0.3333</td>
<td>0.3333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.5</td>
<td></td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.0</td>
<td></td>
</tr>
</tbody>
</table>
Dual-Based Phase I Method—Third Pivot

Current dictionary:

obj	-3.0	+	-1.0	w3	+	1.0	w2	+	-2.0	x3		
------	------	+	------	----	+	------	----	+	-------	----		
w1	-1.5	+	1.0	-	0.5	w3	-	0.5	w2	-	5.5	x3
x2	1.5	+	-0.6667	-	0.5	w3	-	0.1667	w2	-	0.1667	x3
x1	1.5	+	-0.3333	-	0.5	w3	-	0.1667	w2	-	-1.1667	x3
w4	2.0	+	0.3333	-	0.5	w3	-	0.3333	w2	-	-2.3333	x3

Dual pivot: w_1 leaves, w_2 enters.

After pivot:

obj	0.0	+	0.0	w3	+	2.0	w1	+	9.0	x3		
------	------	+	------	----	+	------	----	+	-------	----		
w2	3.0	+	-2.0	-	1.0	w3	-	-2.0	w1	-	-11.0	x3
x2	2.0	+	-1.0	-	0.6667	w3	-	-0.3333	w1	-	-1.6667	x3
x1	1.0	+	0.0	-	-0.3333	w3	-	0.3333	w1	-	0.6667	x3
w4	1.0	+	1.0	-	-0.6667	w3	-	0.6667	w1	-	1.3333	x3

It’s feasible!
Fourth Pivot—Phase II

Current dictionary:

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>+</th>
<th>0.0</th>
<th>v3</th>
<th>+</th>
<th>2.0</th>
<th>w1</th>
<th>+</th>
<th>9.0</th>
<th>x3</th>
</tr>
</thead>
<tbody>
<tr>
<td>w2</td>
<td>3.0</td>
<td>+</td>
<td>-2.0</td>
<td></td>
<td>-1.0</td>
<td>v3</td>
<td>-</td>
<td>-2.0</td>
<td>v1</td>
<td>-</td>
</tr>
<tr>
<td>x2</td>
<td>2.0</td>
<td>+</td>
<td>-1.0</td>
<td></td>
<td>-0.6667</td>
<td>v3</td>
<td>-</td>
<td>-0.3333</td>
<td>v1</td>
<td>-</td>
</tr>
<tr>
<td>x1</td>
<td>1.0</td>
<td>+</td>
<td>0.0</td>
<td></td>
<td>-0.3333</td>
<td>v3</td>
<td>-</td>
<td>0.3333</td>
<td>v1</td>
<td>-</td>
</tr>
<tr>
<td>w4</td>
<td>1.0</td>
<td>+</td>
<td>1.0</td>
<td></td>
<td>-0.6667</td>
<td>v3</td>
<td>-</td>
<td>0.6667</td>
<td>v1</td>
<td>-</td>
</tr>
</tbody>
</table>

It’s feasible.
Ignore fake objective.
Use the real thing (top row).

Primal pivot: x_3 enters, w_4 leaves.

After pivot:

<table>
<thead>
<tr>
<th></th>
<th>6.75</th>
<th>+</th>
<th>4.5</th>
<th>v3</th>
<th>+</th>
<th>-2.5</th>
<th>w1</th>
<th>+</th>
<th>-6.75</th>
<th>v4</th>
</tr>
</thead>
<tbody>
<tr>
<td>w2</td>
<td>11.25</td>
<td>+</td>
<td>6.25</td>
<td></td>
<td>-6.5</td>
<td>v3</td>
<td>-</td>
<td>3.5</td>
<td>v1</td>
<td>-</td>
</tr>
<tr>
<td>x2</td>
<td>3.25</td>
<td>+</td>
<td>0.25</td>
<td></td>
<td>-1.5</td>
<td>v3</td>
<td>-</td>
<td>0.5</td>
<td>v1</td>
<td>-</td>
</tr>
<tr>
<td>x1</td>
<td>0.5</td>
<td>+</td>
<td>-0.5</td>
<td></td>
<td>0.0</td>
<td>v3</td>
<td>-</td>
<td>0.0</td>
<td>v1</td>
<td>-</td>
</tr>
<tr>
<td>x3</td>
<td>0.75</td>
<td>+</td>
<td>0.75</td>
<td></td>
<td>-0.5</td>
<td>v3</td>
<td>-</td>
<td>0.5</td>
<td>v1</td>
<td>-</td>
</tr>
</tbody>
</table>

Problem is **unbounded!**