Lecture 16

The Homogeneous Self-Dual Method
The Homogeneous Self-Dual Problem

Primal-Dual Pair

\[
\begin{align*}
\text{maximize} & \quad c^T x \\
\text{subject to} & \quad Ax \leq b \\
& \quad x \geq 0
\end{align*}
\quad \quad \begin{align*}
\text{minimize} & \quad b^T y \\
\text{subject to} & \quad A^T y \geq c \\
& \quad y \geq 0
\end{align*}
\]

Homogeneous Self-Dual Problem

\[
\begin{align*}
\text{maximize} & \quad 0 \\
\text{subject to} & \quad -A^T y + c\phi \leq 0 \\
& \quad Ax - b\phi \leq 0 \\
& \quad -c^T x + b^T y \leq 0 \\
& \quad x, y, \phi \geq 0
\end{align*}
\]

In Matrix Notation:

\[
\begin{align*}
\text{maximize} & \quad 0 \\
\text{subject to} & \quad \begin{bmatrix}
0 & -A^T & c \\
A & 0 & -b \\
-c^T & b^T & 0
\end{bmatrix} \begin{bmatrix}
x \\
y \\
\phi
\end{bmatrix} \leq \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\end{align*}
\]

HSD is self-dual (constraint matrix is skew symmetric).

HSD is feasible \((x = 0, y = 0, \phi = 0)\).

HSD is homogeneous—i.e., multiplying a feasible solution by a positive constant yields a new feasible solution.

Any feasible solution is optimal.
If ϕ is a null variable, then either primal or dual is infeasible (see text).
Theorem. Let \((x, y, \phi)\) be a solution to HSD. If \(\phi > 0\), then

- \(x^* = x/\phi\) is optimal for primal, and
- \(y^* = y/\phi\) is optimal for dual.

Proof.

\(x^*\) is primal feasible—obvious.

\(y^*\) is dual feasible—obvious.

Weak duality theorem implies that \(c^T x^* \leq b^T y^*\).

3rd HSD constraint implies reverse inequality.

Primal feasibility, plus dual feasibility, plus no gap implies optimality.
Change of Notation

\[
\begin{bmatrix}
0 & -A^T & c \\
A & 0 & -b \\
-c^T & b^T & 0
\end{bmatrix} \rightarrow A
\begin{bmatrix}
x \\
y \\
\phi
\end{bmatrix} \rightarrow x \quad n + m + 1 \rightarrow n
\]

In New Notation:

\[
\text{maximize} \quad 0 \\
\text{subject to} \quad Ax + z = 0 \\
\quad x, z \geq 0
\]

More Notation

\[
\text{Infeasibility:} \quad \rho(x, z) = Ax + z \\
\text{Complementarity:} \quad \mu(x, z) = \frac{1}{n}x^Tz
\]

Nonlinear System

\[
A(x + \Delta x) + (z + \Delta z) = \delta(Ax + z) \\
(X + \Delta X)(Z + \Delta Z)e = \delta \mu(x, z)e
\]

Linearized System

\[
A \Delta x + \Delta z = -(1 - \delta) \rho(x, z) \\
Z \Delta x + X \Delta z = \delta \mu(x, z)e - XZe
\]
Algorithm

Solve linearized system for $(\Delta x, \Delta z)$.

Pick step length θ.

Step to a new point:

$$\bar{x} = x + \theta \Delta x, \quad \bar{z} = z + \theta \Delta z.$$

Even More Notation

$$\bar{\rho} = \rho(\bar{x}, \bar{z}), \quad \bar{\mu} = \mu(\bar{x}, \bar{z})$$
Theorem 2

1. $\Delta z^T \Delta x = 0$.
2. $\bar{\rho} = (1 - \theta + \theta \delta) \rho$.
3. $\bar{\mu} = (1 - \theta + \theta \delta) \mu$.
4. $\bar{X} \bar{Z} e - \bar{\mu} e = (1 - \theta)(XZ e - \mu e) + \theta^2 \Delta X \Delta Z e$.

Proof.

1. Tedious but not hard (see text).
2.

 \[
 \bar{\rho} = A(x + \theta \Delta x) + (z + \theta \Delta z) \\
 = Ax + z + \theta(A \Delta x + \Delta z) \\
 = \rho - \theta(1 - \delta) \rho \\
 = (1 - \theta + \theta \delta) \rho.
 \]

3.

 \[
 \bar{x}^T \bar{z} = (x + \theta \Delta x)^T (z + \theta \Delta z) \\
 = x^T z + \theta(z^T \Delta x + x^T \Delta z) + \theta^2 \Delta x^T \Delta z \\
 = x^T z + \theta e^T (\delta \mu e - XZ e) \\
 = (1 - \theta + \theta \delta)x^T z.
 \]

 Now, just divide by n.

4.

 \[
 \bar{X} \bar{Z} e - \bar{\mu} e = (X + \theta \Delta X)(Z + \theta \Delta Z)e - (1 - \theta + \theta \delta) \mu e \\
 = XZ e - \mu e + \theta(X \Delta z + Z \Delta x + (1 - \delta) \mu e) + \theta^2 \Delta X \Delta Z e \\
 = (1 - \theta)(XZ e - \mu e) + \theta^2 \Delta X \Delta Z e.
 \]
Neighborhoods of \{(x, z) > 0 \; x_1z_1 = x_2z_2 = \cdots = x_nz_n\}

\[\mathcal{N}(\beta) = \{(x, z) > 0 \; \|XZe - \mu(x, z)e\| \leq \beta \mu(x, z)\} \]

Note: \(\beta < \beta'\) implies \(\mathcal{N}(\beta) \subset \mathcal{N}(\beta')\).

Predictor-Corrector Algorithm

Odd Iterations–Predictor Step

Assume \((x, z) \in \mathcal{N}(1/4)\).

- Compute \((\Delta x, \Delta z)\) using \(\delta = 0\).
- Compute \(\theta\) so that \((\bar{x}, \bar{z}) \in \mathcal{N}(1/2)\).

Even Iterations–Corrector Step

Assume \((x, z) \in \mathcal{N}(1/2)\).

- Compute \((\Delta x, \Delta z)\) using \(\delta = 1\).
- Put \(\theta = 1\).
Let

\[u_j = x_j z_j \quad j = 1, 2, \ldots, n. \]
Well-Definedness of Algorithm

Must check that preconditions for each iteration are met.

Technical Lemma.

1. If \(\delta = 0 \), then \(\| \Delta X \Delta Ze \| \leq \frac{n}{2} \mu \).
2. If \(\delta = 1 \) and \((x, z) \in \mathcal{N}(\beta)\), then \(\| \Delta X \Delta Ze \| \leq \frac{\beta^2}{1-\beta} \mu / 2 \).

Proof. Tedious and tricky. See text.

Theorem.

1. After a predictor step, \((\bar{x}, \bar{z}) \in \mathcal{N}(1/2)\) and \(\bar{\mu} = (1 - \theta) \mu\).
2. After a corrector step, \((\bar{x}, \bar{z}) \in \mathcal{N}(1/4)\) and \(\bar{\mu} = \mu\).

Proof.

1. \((\bar{x}, \bar{z}) \in \mathcal{N}(1/2)\) by definition of \(\theta\).
 \[\bar{\mu} = (1 - \theta) \mu \] since \(\delta = 0\).

2. \(\theta = 1\) and \(\beta = 1/2\). Therefore,
 \[\| \bar{\bar{X}} \bar{Z}e - \bar{\mu} e \| = \| \Delta X \Delta Ze \| \leq \mu / 4 \].

Need to show also that \((\bar{x}, \bar{z}) > 0\). Intuitively clear (see earlier picture) but proof is tedious. See text.
Complexity Analysis

Progress toward optimality is controlled by the size of the step length θ.

Theorem. In predictor steps, $\theta \geq \frac{1}{2\sqrt{n}}$.

Proof.

Consider taking a step with step length $t \leq 1/2\sqrt{n}$:

$$x(t) = x + t \Delta x, \quad z(t) = z + t \Delta z.$$

From earlier theorems and lemmas,

$$\|X(t)Z(t)e - \mu(t)e\| \leq (1 - t)\|XZe - \mu e\| + t^2\|\Delta X\Delta Ze\|$$

$$\leq (1 - t)\frac{\mu}{4} + t^2 \frac{n\mu}{2}$$

$$\leq (1 - t)\frac{\mu}{4} + \frac{\mu}{8}$$

$$\leq (1 - t)\frac{\mu}{4} + (1 - t)\frac{\mu}{4}$$

$$\leq \frac{\mu(t)}{2}.$$

Therefore $(x(t), z(t)) \in N(1/2)$ which implies that $\theta \geq 1/2\sqrt{n}$.
Since
\[\mu^{(2k)} = (1 - \theta^{(2k-1)}) (1 - \theta^{(2k-3)}) \cdots (1 - \theta^{(1)}) \mu^{(0)} \]
and \(\mu^{(0)} = 1 \), we see from the previous theorem that
\[\mu^{(2k)} \leq \left(1 - \frac{1}{2\sqrt{n}} \right)^k. \]

Hence, to get a small number, say \(2^{-L} \), as an upper bound for \(\mu^{(2k)} \) it suffices to pick \(k \) so that:
\[\left(1 - \frac{1}{2\sqrt{n}} \right)^k \leq 2^{-L}. \]

This inequality is implied by the following simpler one:
\[k \geq 2 \log(2)L \sqrt{n}. \]

Since the number of iterations is \(2k \), we see that \(4 \log(2)L \sqrt{n} \) iterations will suffice to make the final value of \(\mu \) be less than \(2^{-L} \).

Of course,
\[\rho^{(k)} = \mu^{(k)} \rho^{(0)} \]
so the same bounds guarantee that the final infeasibility is small too.
Back to Original Primal-Dual Setting

Just a final remark: If primal and dual problems are feasible, then algorithm will produce a solution to HSD with $\phi > 0$ from which a solution to original problem can be extracted.

See text for details.