Lecture 13

Network Flows–Applications
Transportation Problem

Each node is one of two types:

- source (supply) node
- destination (demand) node

Every arc has:

- its tail at a supply node
- its head at a demand node

Such a graph is called \textit{bipartite}.
Solving with Pivot Tool

Best to arrange:

- supply nodes vertically on left
- demand nodes horizontally across top

Data:

Note that arc data appears as a neat table.
Tree Solution

Leaving arc: (a,b)
Entering arc: (i,h)

Etc., etc., etc.
Assignment Problem

Transportation problem in which

- Equal number of supply and demand nodes.
- Every supply node has a supply of one.
- Every demand node has a demand for one.
- Each supply node is connected to every demand node (called a complete bipartite graph).
- Solution is required to be all integers.

Notes:

- These problems are very common.
- They are notoriously degenerate ($2n$ constraints but only n nonzero flows).
Shortest Paths Problem

Given:

- Network: \((\mathcal{N}, \mathcal{A})\)
- Costs = Travel Times: \(c_{ij}, (i, j) \in \mathcal{A}\)
- Home (root): \(r \in \mathcal{N}\)

Problem: Find shortest path from every node in \(\mathcal{N}\) to root.
Network Flow Formulation

- Put

\[b_i = \begin{cases}
1 & i \neq r \\
-(m - 1) & i = r
\end{cases} \]

- Solve min-cost network flow problem.
- Shortest path from \(i \) to \(r \): follow tree arcs.
- Length (of time) of shortest path = \(y_r^* - y_i^* \).

Notation Used in Following Algorithms

- Put \(v_i = \min \text{. time from } i \text{ to } r \)
 - Called label in networks literature.
 - Called value in dynamic programming literature.
Label Correcting Algorithm = Dynamic Programming

- Bellman’s Equation = Principle of Dynamic Programming
 \[v_r = 0 \]
 \[v_i = \min\{c_{ij} + v_j \mid (i, j) \in \mathcal{A}\} \]
 \[T = \{(i, j) \in \mathcal{A} \mid v_i = c_{ij} + v_j\} \quad \text{– not necessarily a tree} \]

- Method of Successive Approximation
 - Initialize: \(v_i^{(0)} = \begin{cases}
 0 & i = r \\
 \infty & i \neq r
 \end{cases} \)
 - Iterate: \(v_i^{(k+1)} = \begin{cases}
 0 & i = r \\
 \min\{c_{ij} + v_j^{(k)} \mid (i, j) \in \mathcal{A}\} & i \neq r
 \end{cases} \)
 - Stop: when a pass leaves \(v_i \)'s unchanged.

- Complexity
 - \(v_i^{(k)} = \) length of shortest path having \(k \) or fewer arcs.
 - Requires at most \(m - 1 \) passes.
 - \(n \) adds/compares per pass.
 - \(mn \) operations in total.
Label Setting Algorithm = Dijkstra’s Algorithm

Notations:

- \(F = \) set of finished nodes (labels are set).
- \(h_i, i \in \mathcal{N} = \) next node to visit after \(i \) (heading).

Dijkstra’s Algorithm:

- Initialize:
 \[
 F = \emptyset \\
 v_j = \begin{cases}
 0 & j = r \\
 \infty & j \neq r
 \end{cases}
 \]

- Iterate:
 - Select unfinished node with smallest \(v_k \). Call it \(j \).
 - Add \(j \) to set of finished nodes \(F \).
 - For each unfinished node \(i \) having an arc connecting it to \(j \):
 * If \(c_{ij} + v_j < v_i \), then set
 \[
 v_i = c_{ij} + v_j \\
 h_i = j
 \]

- Stop: when no unfinished nodes remain.
Dijkstra’s Algorithm—Complexity

- Each iteration finishes one node: m iterations
- Work per iteration:
 - Selecting an unfinished node:
 * Naively, m comparisons.
 * Using appropriate data structures, a heap, $\log m$ comparisons.
 - Update adjacent arcs.
- Overall: $m \log m + n$.