1. Consider the function
\[f(x) = \begin{cases} 2(x-1)^3, & 0 \leq x \leq 1, \\ 3(x-1)^2, & 1 < x \leq 2. \end{cases} \]
Determine for which \(k \) there holds \(f(x) \in H^k(0,2) \). Find \(D^\alpha f \) for \(|\alpha| \leq k \).

2. Prove that in a Hilbert space, \((\cdot,\cdot)^{1/2}\) defines a norm.

3. Let \(H \) be a Hilbert space. Prove the parallelogram law
\[\|x+y\|^2 + \|x-y\|^2 = 2\|x\|^2 + 2\|y\|^2, \quad \forall x, y \in H. \]

4. Let \(X \) and \(Y \) be normed vector spaces. Prove that a linear operator \(L : X \to Y \) is bounded if and only if it is continuous.

5. Let \(l \) be a continuous linear functional in a Hilbert space \(H \). Prove that the Null space of \(l \), \(N_l \), is a closed subspace of \(H \). Prove that \(N_l^\perp \) is also a closed subspace of \(H \).

6. Let \(H \) be a Hilbert space and let \(G \) be a closed subspace of \(H \). Prove that the orthogonal projection operator \(P_G \) has the following properties.
 a) \(P \) is a linear operator on \(H \)
 b) \(P^2 = P \)
 c) \(\|P\| = 1 \)
 d) \(I - P \) is the orthogonal projection operator onto \(G^\perp \)

7. Modify your code from Homework 1 to solve the problem with mixed boundary conditions
\[u(0) = \alpha, \quad a(1)u'(1) = \beta. \]
Perform the tasks specified in Homework 1.