
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Implementation of a mortar mixed finite element method
using a Multiscale Flux Basis

Benjamin Ganis *, Ivan Yotov
Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA

a r t i c l e i n f o

Article history:
Received 27 February 2009
Received in revised form 2 September 2009
Accepted 4 September 2009
Available online 11 September 2009

Keywords:
Multiscale
Mortar finite element
Mixed finite element
Porous media flow

a b s t r a c t

This paper provides a new implementation of a multiscale mortar mixed finite element method for sec-
ond order elliptic problems. The algorithm uses non-overlapping domain decomposition to reformulate a
fine scale problem as a coarse scale mortar interface problem, which is then solved using an iterative
method. The original implementation by Arbogast, Pencheva, Wheeler, and Yotov, Multiscale Model.
Simul. 2007, required solving one local Dirichlet problem on each subdomain per interface iteration.
We alter this implementation by forming a Multiscale Flux Basis. This basis consists of mortar functions
representing the individual flux responses for each mortar degree of freedom, on each subdomain inde-
pendently. The computation of these basis functions requires solving a fixed number of Dirichlet subdo-
main problems. Taking linear combinations of the Multiscale Flux Basis functions replaces the need to
solve any Dirichlet subdomain problems during the interface iteration. This new implementation yields
the same solution as the original implementation, and is computationally more efficient in cases where
the number of interface iterations is greater than the number of mortar degrees of freedom per subdo-
main. The gain in computational efficiency increases with the number of subdomains.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper provides a new way of implementing the multiscale
mortar mixed finite element method (MMMFEM) which was pro-
posed by Arbogast, Pencheva, Wheeler, and Yotov in 2007 [7].
We consider a second order elliptic equation (1), which models sin-
gle phase flow in porous media. The permeability tensor K varies
on a fine scale and so do the velocity u and the pressure p. Resolv-
ing the solution on the fine scale is often computationally infeasi-
ble, necessitating multiscale approximations. Our choice of mixed
finite element method for the discretization is motivated by its lo-
cal element-wise conservation of mass and accurate velocity
approximation.

The MMMFEM was proposed in [7] as an alternative to existing
multiscale methods, such as the variational multiscale method
[18,19,4,2,5,3] and multiscale finite elements [16,17,14,11,20,1].
The latter two approaches are closely related [5]. In all three meth-
ods the domain is decomposed into a series of small subdomains
(coarse grid) and the solution is resolved globally on the coarse
grid and locally (on each coarse element) on a fine grid. All three
are based on a divide and conquer approach: solving relatively
small fine scale subdomain problems that are only coupled to-

gether through a reduced number (coarse scale) degrees of
freedom.

The variational multiscale method and multiscale finite ele-
ments both compute a multiscale basis by solving local fine scale
problems with boundary conditions or a source term correspond-
ing to the coarse scale degrees of freedom. This basis is then used
to solve the coarse scale problem. The MMMFEM uses a non-over-
lapping domain decomposition algorithm which introduces a La-
grange multiplier space on the subdomain interfaces to weakly
impose certain continuity conditions. By eliminating the subdo-
main unknowns the global fine scale problem is reduced to an
interface problem, which is solved using an iterative method. The
domain decomposition algorithm was originally developed for
the case of matching grids [15] and then extended to the case of
non-matching grids using mortar finite elements [28,6]. This gen-
eralization allows for extremely flexible finite element partitions,
as both the fine scale elements across subdomain interfaces and
the subdomains themselves (i.e. the coarse grid) may be spatially
non-conforming. Moreover, one has the ability to vary the interface
degrees of freedom [26,23,7]. If only a single mortar grid element is
used per interface, the resulting approximation is comparable to
the one in the variational multiscale method or multiscale finite
elements. In the MMMFEM framework, a posteriori error estima-
tors [27] can be employed to adaptively refine the mortar grids
where necessary to improve the global accuracy. Furthermore,
higher order mortar approximation can be used to compensate

0045-7825/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2009.09.009

* Corresponding author.
E-mail addresses: bag8@pitt.edu (B. Ganis), yotov@math.pitt.edu (I. Yotov).

Comput. Methods Appl. Mech. Engrg. 198 (2009) 3989–3998

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma

Author's personal copy

for the coarseness of the mortar grid and obtain fine scale conver-
gence of the error [7]. Thus, the MMMFEM is more flexible than the
variational multiscale method and multiscale finite elements. An-
other observation is that the MMMFEM resolves the flux through
the coarse interfaces on the fine scale, which is not the case for
the other two approaches.

The original implementation of the MMMFEM in [7] requires
solving one Dirichlet fine scale subdomain problem per interface
iteration. As a result the number of subdomain solves increases
with the dimension of the coarse space, making it difficult to com-
pare the computational efficiency of the method to other existing
multiscale methods. In this paper we alter this implementation
by forming what we call a Multiscale Flux Basis, before the inter-
face iteration begins. This basis consists of mortar functions repre-
senting the individual flux responses from each mortar degree of
freedom, on each subdomain independently. These basis functions
may also be described as traces of the discrete Green’s functions
corresponding to the mortar degrees of freedom along the subdo-
main interfaces. The computation of these basis functions requires
solving a fixed number of Dirichlet subdomain problems. Taking
linear combinations of the Multiscale Flux Basis functions replaces
the need to solve any Dirichlet subdomain problems during the
interface iteration. This new implementation yields the same solu-
tion as the original implementation and makes the MMMFEM com-
parable to the variational multiscale method and multiscale finite
elements in terms of computational efficiency. In our numerical
experiments we compare the computational cost of the new imple-
mentation to the one for the original implementation with and
without preconditioning of the interface problem. If no precondi-
tioning is used, the Multiscale Flux Basis implementation is com-
putationally more efficient in cases where the number of mortar
degrees of freedom per subdomain is less than the number of inter-
face iterations. If balancing preconditioning is used [13,22], the
number of iterations is reduced, but each interface iteration re-
quires three subdomain solves. In this case the Multiscale Flux Ba-
sis implementation is more efficient if the number of mortar
degrees of freedom per subdomain is less than three times the
number of interface iterations.

The format of the paper is as follows. Section 2 introduces the
MMMFEM method and its step-by-step formulation leading to its
original implementation. Section 3 describes our new implementa-
tion. In particular, it introduces the concept of a Multiscale Flux Ba-
sis, explains how it is used in the interface iteration, and discusses
specific implementation details. Section 4 provides several numer-
ical examples which illustrate the computational efficiency of the
Multiscale Flux Basis implementation. Section 5 contains conclud-
ing remarks and directions for further work.

2. The MMMFEM

Our model problem is a second order linear elliptic equation
written as a first order system in mixed form, arising in applica-
tions to single phase incompressible flow in porous media. The
pressure p and the Darcy velocity u satisfy the system

apþr � u ¼ f in X; ð1aÞ
u ¼ �Krp in X; ð1bÞ
p ¼ gD on CD; ð1cÞ
u � n ¼ gN on CN: ð1dÞ

Here X is a bounded domain in Rdðd ¼ 2 or 3Þ with boundary
@X ¼ CD [CN;CD \ CN ¼ ;, and outer unit normal n;aðxÞP 0, and
KðxÞ is a symmetric and uniformly positive definite permeability
tensor with components in L1ðXÞ. We assume that f 2 L2ðXÞ;
gD 2 H1=2ðCDÞ, and gN 2 L2ðCNÞ.

Throughout the paper, C denotes a generic positive constant
independent of the discretization parameters h and H. For a do-
main G � Rd, the L2ðGÞ inner product and norm for scalar and vec-
tor valued functions are denoted ð�; �ÞG and k � kG, respectively. We
omit G in the subscript if G ¼ X. For a section of the domain or ele-
ment boundary S � Rd�1 we write h�; �iS and k � kS for the L2ðSÞ inner
product (or duality pairing) and norm, respectively.

2.1. Domain decomposition

The first step in formulating the MMMFEM is to use the domain
decomposition approach described in [15] to restrict the model
problem into smaller pieces. The domain X is divided into non-
overlapping subdomains Xi; i ¼ 1; . . . ;n, that are allowed to be spa-
tially non-conforming, so we have X ¼

Sn
i¼1Xi and Xi \Xj ¼ ; for

i – j. Denote the single interface between subdomains Xi and Xj

by Ci;j ¼ @Xi \ @Xj, all interfaces that touch subdomain Xi by
Ci ¼ @Xi n @X, and the union of all interfaces by C ¼

S
i–jCi;j. The

domain decomposition can be viewed as a coarse grid on X.
System (1) holds within each subdomain Xi. The pressure and

the normal components of the velocity must be continuous across
the interfaces. Equivalently, we seek ðui; piÞ such that for
i ¼ 1; . . . ;n,

api þr � ui ¼ f in Xi; ð2aÞ
ui ¼ �Krpi in Xi; ð2bÞ
pi ¼ gD on @Xi \ CD; ð2cÞ
ui � n ¼ gN on @Xi \ CN; ð2dÞ
pi ¼ pj on Ci;j; i – j; ð2eÞ
ui � ni þ uj � nj ¼ 0 on Ci;j; i – j; ð2fÞ

where ni is the outer unit normal to @Xi.

2.2. Variational formulation

The weak pressure and velocity spaces for the global problem
(1) arefW ¼ L2ðXÞ; eV ¼ Hðdiv; XÞ; eVc ¼ fv 2 eVjv � n ¼ c on CNg;

where

Hðdiv; XÞ ¼ fv 2 ðL2ðXÞÞdjr � v 2 L2ðXÞg:

The corresponding dual mixed variational formulation is to find
u 2 eVgN and p 2 fW such that

ðK�1u;vÞX � ðp;r � vÞX ¼ �hv � n; gDi@CD
8v 2 eV0; ð3aÞ

ðap;wÞX þ ðr � u;wÞX ¼ ðf ;wÞX 8w 2 fW : ð3bÞ

Note that the Neumann boundary condition is imposed essentially
in the space eVgN , which is different from the weak velocity test
space eV0.

Similarly, define the weak spaces for each subdomain Xi by

Wi ¼ L2ðXiÞ; Vi ¼ Hðdiv; XiÞ;
Vc

i ¼ fv 2 Vijv � n ¼ c on @Xi \ CNg:

The global weak spaces for the domain decomposition problem (2)
are

W ¼ �
n

i¼1
Wi; Vc ¼ �

n

i¼1
Vc

i :

Note that no continuity is imposed across the interfaces for func-
tions in V and W. On the interfaces C we introduce a Lagrange mul-
tiplier space that has a physical meaning of pressure and is used to
weakly impose continuity of the normal velocities:

3990 B. Ganis, I. Yotov / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3989–3998

Author's personal copy

M ¼ fl 2 H1=2ðCÞjljCi
2 ðVi � niÞ�; i ¼ 1; . . . ;ng;

where ð�Þ� denotes the dual space.
The corresponding mixed variational formulation is to find

u 2 VgN ; p 2W , and k 2 M such that for i ¼ 1; . . . ;n,

ðK�1u;vÞXi
� ðp;r � vÞXi

¼ �hv � ni; ki@Xi\C � hv � ni; gDi@Xi\CD

8v 2 V0
i ; ð4aÞ

ðap;wÞXi
þ ðr � u;wÞXi

¼ ðf ;wÞXi
8w 2Wi; ð4bÞXn

i¼1

hui � ni;liCi
¼ 0 8l 2 M ð4cÞ

Since Vc – eVc, the extra condition (4c) is needed to weakly enforce
the flux continuity lost across the interfaces in the domain
decomposition.

The following equivalence result is easy to show.

Lemma 2.1. If the solution ðu; pÞ to (3) satisfies (1) in a distributional
sense, then ðu; p; pjCÞ solves (4). Conversely, if ðu; p; kÞ solves (4), then
ðu; pÞ solves (3).

2.3. Discrete formulation

The multiscale approach to the mortar mixed finite element
method combines a local fine scale discretization within each sub-
domain with a global coarse scale discretization across subdomain
interfaces.

First, independently partition each subdomain Xi into its own
local d-dimensional quasi-uniform affine mesh Th;i. The faces (or
edges) of these meshes are spatially conforming within each sub-
domain, but are allowed to be non-conforming along subdomain
interfaces. Let the maximal element diameter of this fine mesh
be hi, and let the global characteristic fine scale diameter be
h ¼maxn

i¼1hi. Denote the global fine mesh by Th ¼
Sn

i¼1Th;i. Let
Vh;i �Wh;i � Vi �Wi be a mixed finite element space on the mesh
Th;i such that Vh;i contains piecewise polynomials of degree k
and Wh;i contains piecewise polynomials of degree l. Examples of
such spaces are the RT spaces [25,21], the BDM spaces [10], the
BDFM spaces [9], the BDDF spaces [8], or the CD spaces [12]. Glob-
ally, the discrete pressure and velocity spaces for this method are
Wh ¼ �n

i¼1Wh;i and Vh ¼ �n
i¼1Vh;i.

Second, we partition each subdomain interface Ci;j with a
ðd� 1Þ-dimensional quasi-uniform affine mesh denoted TH;i;j. This
mesh will be the mortar space that weakly enforces continuity of
normal fluxes for the discrete velocities across the non-matching
grids. Let the maximal element diameter of this coarse mesh be
Hi;j, and let the global characteristic coarse scale diameter be
H ¼max16i<j6nHi;j. Denote the global coarse mesh by
TH ¼

S
16i<j6nTH;i;j. Let MH;i;j � L2ðCi;jÞ be the mortar space contain-

ing continuous or discontinuous piecewise polynomials of degree
m where m P kþ 1. Globally, the mortar space for this method is
MH ¼ �16i<j6nMH;i;j. Notice that this is a non-conforming approxi-
mation, as MH � M.

With these finite dimensional subspaces, the multiscale mortar
mixed finite element approximation of (4) is to find uh 2 VgN

h ,
ph 2Wh, and kH 2 MH such that for i ¼ 1; . . . ;n,

ðK�1uh;vÞXi
� ðph;r � vÞXi

¼ �hv � ni; kHi@Xi\C � hv � ni; gDi@Xi\CD

8v 2 V0
h;i; ð5aÞ

ðaph;wÞXi
þ ðr � uh;wÞXi

¼ ðf ;wÞXi
8w 2Wh;i; ð5bÞXn

i¼1

huh;i � ni;liCi
¼ 0 8l 2 MH: ð5cÞ

In this formulation the pressure continuity (2e) is modeled via
the mortar pressure function kH , while the flux continuity (2f) is

imposed weakly on the coarse scale via (5c). For the above method
to be well posed, the two scales must be chosen such that the mor-
tar space is not too rich compared to the normal traces of the sub-
domain velocity spaces.

Assumption 2.1. Assume there exists a constant C independent of
h and H such that

klkCi ;j
6 CðkQh;ilkCi ;j

þ kQh;jlkCi ;j
Þ; 8l 2 MH; 1 6 i < j 6 n;

ð6Þ
where Qh;i : L2ðCiÞ ! Vh;i � nijCi

is the L2-projection operator from the
mortar space onto the normal trace of the velocity space on subdo-
main (i), i.e. for any / 2 L2ðCiÞ,

h/� Qh;i/;v � niiCi
¼ 0; 8v 2 Vh;i: ð7Þ

This condition can be easily satisfied in practice by restricting
the size of H from below (see e.g. [28,6,22]). Under the above
assumption, method (5) is solvable, stable, and accurate [7]. The
following result has been shown in [7].

Theorem 2.1. If Assumption 2.1 holds, then method (5) has a unique
solution and there exists a positive constant C, independent of h and H,
such that

kr � ðu� uhÞk 6 C
Xn

i¼1

kr � ukr;Xi
hr
; 0 6 r 6 lþ 1; ð8Þ

ku� uhk 6 C
Xn

i¼1

kpksþ1=2;Xi
Hs�1=2 þ kukr;Xi

hr þ kukrþ1=2;Xi
hrH1=2

� �
;

1 6 r 6 kþ 1; 0 < s 6 mþ 1: ð9Þ

Furthermore, if the problem on X is H2-regular, then

kp̂� phk 6 C
Xn

i¼1

kpksþ1=2;Xi
Hsþ1=2 þ kr � ukt;Xi

htH
�

þkukr;Xi
hrH þ kukrþ1=2;Xi

hrH3=2
�
; ð10Þ

kp� phk 6 C
Xn

i¼1

kpkt;Xi
ht þ kp̂� phk; ð11Þ

where 1 6 r 6 kþ 1;0 < s 6 mþ 1, and 0 6 t 6 lþ 1 and p̂ is the L2-
projection of p onto Wh.

2.4. Interface formulation

Following [15], we formulate (5) as an interface problem for the
mortar pressure. We decompose the solution to (5) into two parts:
uh ¼ u�hðkHÞ þ uh and ph ¼ p�hðkHÞ þ ph. The first component
ðu�h; p�hÞ 2 V0

h �Wh solves subdomain problems with zero source
and boundary conditions, and has kH as a Dirichlet boundary con-
dition along C, i.e. for i ¼ 1; . . . ;n

K�1u�h;v
� �

Xi

� p�h;r � v
� �

Xi
¼ � v � ni; kHh i@Xi\C 8v 2 V0

h;i; ð12aÞ

ap�h;w
� �

Xi
þ r � u�h;w
� �

Xi
¼ 0 8w 2Wh;i: ð12bÞ

The second component ðuh;phÞ 2 VgN
h �Wh solves subdomain prob-

lems with source f, boundary conditions gD and gN on @X, and zero
Dirichlet boundary conditions along C, i.e. for i ¼ 1; . . . ;n

ðK�1uh;vÞXi
� ðph;r � vÞXi

¼ �hv � ni; gDi@Xi\CD
8v 2 V0

h;i; ð13aÞ
ðaph;wÞXi

þ ðr � uh;wÞXi
¼ ðf ;wÞXi

8w 2Wh;i: ð13bÞ
Since the sum of (12a) and (12b) and (13a) and (13b) gives (5a) and
(5b), all that remains to do is enforce equation (5c). Thus, the vari-
ational interface problem is to find kH 2 MH such thatXn

i¼1

h�u�h;iðkHÞ � ni;liCi
¼
Xn

i¼1

huh;i � ni;liCi
; 8l 2 MH: ð14Þ

B. Ganis, I. Yotov / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3989–3998 3991

Author's personal copy

Equivalently, we define bilinear forms bH;i : L2ðCiÞ � L2ðCiÞ ! R and
bH : L2ðCÞ � L2ðCÞ ! R and a linear functional gH : L2ðCÞ ! R by

bH;iðkH;i;lÞ ¼ h�u�h;iðkH;iÞ � ni;liCi
; ð15aÞ

bHðkH;lÞ ¼
Xn

i¼1

bH;iðkH;i;lÞ; ð15bÞ

gHðlÞ ¼
Xn

i¼1

huh;i � ni;liCi
: ð15cÞ

With these definitions, (14) is equivalent to finding kH 2 MH such
that bHðkH;lÞ ¼ gHðlÞ, for all l 2 MH . The distinction is made be-
tween bilinear forms (15a) and (15b) because the former measures
the total flux across interface Ci and requires no interprocessor
communication, while the latter measures the total jump in flux
across the set of all interfaces C and hence does require interproces-
sor communication.

2.5. Interface iteration

It is easy to check that bH is symmetric and positive semi-defi-
nite on L2ðCÞ. Moreover, it is positive definite on MH if Assumption
2.1 holds and either CD–; or a > 0 [6,7]. Therefore we solve the
resulting discrete system with a Conjugate Gradient (CG) algo-
rithm. Define linear operators BH;i : MH;i ! MH;i and BH : MH ! MH

and a vector gH 2 MH corresponding to equations (15) by

hBH;ikH;i;liCi
¼ �hu�h;iðkH;iÞ � ni;liCi

8l 2 MH;i; ð16aÞ

BHkH ¼
Xn

i¼1

BH;ikH;i; ð16bÞ

hgH;liC ¼
Xn

i¼1

huh;i � ni;liCi
8l 2 MH: ð16cÞ

Let QT
h;i : Vh;i � nijCi

! MH;i be the L2-orthogonal projection from the
normal trace of the velocity space onto the mortar space. Note that
(16a) and (16c) imply, respectively,

BH;i ¼ �QT
h;iu

�
h;iðkH;iÞ � ni; gH ¼

Xn

i¼1

QT
h;iuh;i � ni: ð17Þ

Using this notation, the interface formulation is to find kH 2 MH

such that BHkH ¼ gH . The operator BH is known as the Steklov–Poin-
caré operator [24].

Starting from an initial guess, we iterate on the value of kH using
the CG algorithm. On each CG iteration, we must evaluate the ac-
tion of BH on kH . This is done with the following steps:

1. Project mortar data onto subdomain boundaries:

kH;i!
Qh;i ci:

2. Solve the set of subdomain problems (12) with Dirichlet bound-
ary data ci.

3. Project the resulting fluxes from Step 2 back onto the mortar
space:

�u�hðciÞ � ni!
QT

h;i�QT
h;iu

�
hðciÞ � ni:

4. Compute flux jumps across all subdomain interfaces Ci;j:

BHkH ¼ �
Xn

i¼1

QT
h;iu

�
hðciÞ � ni:

Steps 1–3 evaluate the action of the flux operator BH;i as in (17)
and are done by every subdomain in parallel. Step 4 evaluates the
action of the jump operator BH as in (16b) and requires interproces-
sor communication across every subdomain interface.

3. Multiscale Flux Basis implementation

Observe that the dominant computational cost in each CG iter-
ation is in the evaluation of the flux operator BH;i, which requires
solving one Dirichlet subdomain problem per subdomain. One
way to potentially reduce this computational cost is with the fol-
lowing approach.

Before the CG algorithm begins, compute and store the flux
responses associated with each mortar degree of freedom, on
each subdomain independently.

This is what we call the Multiscale Flux Basis. Its assembly re-
quires solving only a fixed number of Dirichlet subdomain prob-
lems (12), see Fig. 1. After these solves are completed, the action
of BH;i is reduced to taking a linear combination of Multiscale Flux
Basis functions. Therefore, if the number of CG iterations exceeds
the maximum number of mortar degrees of freedom on any subdo-
main, then the computational cost will be reduced in terms of few-
er required subdomain solves, and should yield faster runtime.

3.1. Assembly of the Multiscale Flux Basis

To compute each function in the Multiscale Flux Basis, we shall
apply Steps 1–3 from the interface iteration in order to evaluate
the action of the operator BH;i on each mortar basis function, on
each subdomain independently. Let there be exactly NH;i mortar

degrees of freedom on subdomain (i) and define /ðkÞH;i

n oNH;i

k¼1
to be

the mortar basis functions for MH;i. Then for kH;i 2 MH;i we may
express

kH;i ¼
XNH;i

k¼1

kðkÞH;i/
ðkÞ
H;i:

Consider the kth mortar basis function /ðkÞH;i. Computing the Multi-
scale Flux Basis function corresponding to /ðkÞH;i involves the follow-
ing steps.

1. Project this mortar basis function onto the subdomain
boundary:

Qh;i/
ðkÞ
H;i ¼ cðkÞi :

2. Solve problem (12) on each subdomain Xi with Dirichlet inter-
face condition cðkÞi , i.e. find u�h ¼ u�hðc

ðkÞ
i Þ and p�h ¼ p�hðc

ðkÞ
i Þ such

that

ðK�1u�h;vÞXi
� ðp�h;r � vÞXi

¼ � v � ni; c
ðkÞ
i

D E
@Xi\C

8v 2 V0
h;i;

ðap�h;wÞXi
þ ðr � u�h;wÞXi

¼ 0 8w 2Wh;i:

3. Project the resulting boundary flux back onto the mortar space:

wðkÞH;i ¼ �Q
T
h;iu

�
h cðkÞi

� �
� ni:

Fig. 1. Illustration of the Multiscale Flux Basis approach.

3992 B. Ganis, I. Yotov / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3989–3998

Author's personal copy

Repeating this procedure for k ¼ 1; . . . ;NH;i forms the Multiscale
Flux Basis for subdomain Xi:

wð1ÞH;i ;w
ð2Þ
H;i ; . . . ;w

ðNH;iÞ
H;i

n o
� MH;i:

Remark 3.1. Note that each mortar basis function /ðkÞH;i on interface
Ci;j corresponds to exactly two different Multiscale Flux Basis
functions, one for Xi and one for Xj.

Remark 3.2. Whereas the original MMMFEM implementation
requires each processor to perform the exact same number of sub-
domain solves during the interface iteration process, our imple-
mentation may have each processor perform a different number
of subdomain solves in assembling its Multiscale Flux Basis. This
is because there may be a varying number of degrees of freedom
in each mortar MH;i;j and subdomains may share portions of their
boundaries with CD and CN .

Remark 3.3. The Multiscale Flux Basis in this method consists of
coarse interface fluxes, as opposed to fine scale subdomain data.
The extra storage cost associated with saving this basis is equal
to the square of the size of the mortar space on each subdomain,
N2

H;i. More specifically, each Multiscale Flux Basis function belongs
to the mortar space MH;i of dimension NH;i, and there are exactly
NH;i basis functions to be computed. Therefore the storage cost
for the Multiscale Flux Basis is significantly lower than the storage
cost in the variational multiscale method and multiscale finite ele-
ments, where the basis functions are defined on the entire local
fine grid.

3.2. Using the Multiscale Flux Basis in the interface iteration

To use the Multiscale Flux Basis to replace Steps 1–3 in the
interface iteration, we need only observe that the flux operator
BH;i is linear. Therefore,

BH;i kH;i
� �

¼ BH;i

XNH;i

k¼1

kðkÞH;i/
ðkÞ
H;i

 !
¼
XNH;i

k¼1

kðkÞH;iBH;i /ðkÞH;i

� �

¼
XNH;i

k¼1

kðkÞH;iw
ðkÞ
H;i: ð18Þ

In other words, to compute the resulting flux on subdomain Xi from
Dirichlet data kH;i, we simply take a linear combination of the Mul-
tiscale Flux Basis functions wðkÞH;i using the same scalars which ex-
press kH;i in terms of its mortar basis functions /ðkÞH;i. This
demonstrates the equivalence of the original MMMFEM implemen-
tation to our new Multiscale Flux Basis implementation.

Remark 3.4. In the original MMMFEM implementation, fine scale
pressure and velocity variables may also be updated iteratively in
the interface iteration. In the new Multiscale Flux Basis imple-
mentation, this convention should be dropped, because storing
arrays of these fine scale variables for each mortar degree of
freedom would be an unnecessary burden on memory. Instead, we
perform one additional Dirichlet subdomain solve after the CG
iteration has converged in order to recover the fine scale pressure
and velocity.

4. Numerical examples

The algorithm described in the previous section was imple-
mented in the parallel flow simulator PARCEL, which is pro-

grammed in FORTRAN. The domain decomposition uses spatially
conforming rectangular subdomains (in 2-D) or brick subdomains
(in 3-D). Within each of these subdomains, the fine grid is com-
prised of the lowest order Raviart–Thomas–Nedelec mixed finite
element spaces on rectangles (in 2-D) or bricks (in 3-D) [25,21],
which are allowed to be spatially non-conforming across subdo-
main interfaces. On these subdomain interfaces, a coarse grid is
comprised of continuous or discontinuous, linear or quadratic mor-
tar spaces.

One of the goals of the numerical examples in this section is to
compare the computational efficiency of the new Multiscale Flux
Basis implementation to the original implementation. Since in
the original implementation the number of interface iterations is
directly related to the number of subdomain solves, we compare
to both non-preconditioned and preconditioned methods. On the
other hand, the Multiscale Flux Basis implementation shifts the
workload from the number of interface iterations to the number
of interface degrees of freedom per subdomain; hence we do not
employ a preconditioner in this method. More precisely, the fol-
lowing three numerical methods are compared:

Method 1. Original MMMFEM implementation, no interface
preconditioner.

Method 2. Original MMMFEM implementation, balancing
preconditioner.

Method 3. New Multiscale Flux Basis implementation, no
preconditioner.

Unless otherwise noted, the tolerance for the relative residual in
the CG algorithm is taken to be 1e�06.

Remark 4.1. The balancing preconditioner used in the tests has
been described in [13,22,7]. It involves solving Neumann subdo-
main problems and a course problem which provides global
exchange of information across subdomains. This causes the
condition number of the interface problem to grow more modestly
versus non-preconditioned CG as the grids are refined or the
number of subdomains increases. The cost for one preconditioned
iteration is three subdomain solves and two coarse solves.

Four example problems are considered: a 2-D problem with
smooth permeability, a 2-D problem with a rough permeability,
a 3-D problem with smooth permeability, and a 2-D problem with
adaptive mesh refinement. In the first three examples we solve
each problem using a fixed fine grid several times. Each time
we increase the number of subdomains, i.e. refine the coarse grid.
This causes the interface problem to become larger and more ill-
conditioned, hence increasing the number of CG iterations. Tables
are provided which compare both the number of CG iterations
and maximum number of subdomain solves required by the three
methods.1 In this way, the new Multiscale Flux Basis implementa-
tion can be directly compared to the original MMMFEM imple-
mentation. No error norms are reported in these tests, because
all three methods produce the same solution within roundoff
error.

For the first two examples we also provide tests comparing the
accuracy and the cost of the MMMFEM solution to a fine scale
solution.

The fourth example involves adaptive mesh refinement and
illustrates the greater flexibility of the MMMFEM compared to
existing multiscale methods. It also shows that the gain in effi-
ciency from the new implementation is increased when grid adap-
tivity is employed.

Remark 4.2. It should be noted that under a fixed fine grid, as the
number of subdomains is increased, the size of the local subdo-
main problems becomes smaller.

1 Recall Remark 3.2.

B. Ganis, I. Yotov / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3989–3998 3993

Author's personal copy

4.1. Example 1: 2-D problem with a smooth solution

This example is a 2-D problem on the domain X ¼ ð0;1Þ2 with a
fixed global fine grid of 120 � 120 elements. The solution is given
by pðx; yÞ ¼ x3y4 þ x2 þ sinðxyÞ cosðyÞ, and the coefficient K is a
smooth, full tensor defined by

K ¼ ðxþ 1Þ2 þ y2 sinðxyÞ
sinðxyÞ ðxþ 1Þ2

 !
:

Boundaries fy ¼ 0g and fy ¼ 1g are Dirichlet type and boundaries
fx ¼ 0g and fx ¼ 1g are Neumann type.

Table 1 shows results for Example 1 using continuous linear
mortars with 3 elements per edge. Observe that the number of
CG iterations increases with the number of subdomains, since
the dimension of the interface problem grows. Recall that for all
methods the dominant computational cost is measured by the
number of subdomain solves. In Method 3 the number of subdo-
main solves does not depend on the number of interface iterations,
only on the number of coarse scale mortar degrees of freedom per
subdomain. As a result the number of subdomain solves does not
change with increasing the number of subdomains (except for
the 2 � 2 case where only two out of four edges of each subdomain
have mortars). This is in contrast to the original implementation,
Methods 1 and 2, where the number of subdomain solves is di-
rectly related to the number of CG interface iterations. Method 1
requires one subdomain solve per iteration plus three additional
subdomain solves. Method 2 requires three subdomain solves per
iteration plus ten additional subdomain solves. The balancing pre-
conditioner used in Method 2 causes the number of CG iterations
to grow more modestly with the number of subdomains, but this
method is still more costly in terms of subdomain solves. Method
1 performs the best of all three methods until we reach the 4 � 4
subdomain case. After this point Method 3 becomes the most effi-
cient in terms of subdomain solves. This table demonstrates that as
the number of subdomains is increased, there is a point after which
Method 3 performs best. We found this to be the case for most
tests we ran.

Remark 4.3. Recall that the Balancing preconditioner involves two
additional coarse grid solves per CG iteration. Thus even in cases
where Method 2 required fewer subdomain solves, Method 3 was
more efficient in terms of CPU time, as the time for the coarse
solves was not negligible. We do not report CPU times in this
paper, since they depend on the particular implementation of the
coarse solve in the Balancing preconditioner.

Remark 4.4. There is also a cost in runtime associated with the
interprocessor communication for each interface iteration. The
Multiscale Flux Basis implementation does not reduce the number
of interface iterations necessary for flux matching, hence it does
not have an effect on the communication overhead. This cost can
be reduced by using the Multiscale Flux Basis implementation in
conjunction with an efficient preconditioner.

In Table 2 we report results for Example 1 with continuous qua-
dratic mortars with 2 elements per edge. This slightly increases the
required work for Method 1 and slightly decreases the work for
Method 2. However, for Method 3 this change nearly doubles the
amount of subdomain solves required due to the increase in mortar
degrees of freedom per subdomain. This means that initially our
method solves more subdomain problems than the other two,
and the computational efficiency of Method 3 is not observed until
the 5 � 5 case. This difference versus the previous table shows that
the number of mortar degrees of freedom per subdomain is an
important parameter which determines the relative computation-
ally efficiency of the Multiscale Flux Basis implementation.

To illustrate the accuracy of the MMMFEM and the efficiency of
the proposed new implementation, we compare the quality and
cost of the multiscale solution to these of the fine scale solution.
The latter is computed using the same domain decomposition algo-
rithm with Method 3, but with fine scale Lagrange multipliers. In
Table 3 we report the relative errors in pressure and velocity,
and the cost of the interface iteration. This type of test is compara-
ble to a standard mixed finite element algorithm without domain
decomposition. Indeed, the recorded error norms remain nearly
constant as the number of subdomains is increased.

In comparison, Table 4 shows results for the MMMFEM using
Method 3 with linear mortars and a single element per interface.
This subdomain configuration is very much akin to the variational
multiscale methods and multiscale finite element methods men-
tioned in the introduction. We note that the MMMFEM requires
significantly smaller number of subdomain solves, while at the
same time resolves the flow very well, as seen in Fig. 2 where a

Table 1
Example 1 using continuous linear mortars with 3 elements per interface.

Subdomains Method 1 Method 2 Method 3

CGIter Solves CGIter Solves CGIter Solves

2 � 2 = 4 14 17a 11 41 14 19
3 � 3 = 9 29 32a 19 67 29 35
4 � 4 = 16 42 45 24 82 42 35a

5 � 5 = 25 54 57 26 88 54 35a

6 � 6 = 36 65 68 27 91 64 35a

7 � 7 = 49 75 78 26 88 77 35a

8 � 8 = 64 86 89 26 88 86 35a

a Denotes fewest number of solves.

Table 2
Example 1 using continuous quadratic mortars with 2 elements per interface.

Subdomains Method 1 Method 2 Method 3

CGIter Solves CGIter Solves CGIter Solves

2 � 2 = 4 16 19a 12 44 16 53
3 � 3 = 9 35 38a 17 61 34 63
4 � 4 = 16 51 54a 20 70 51 63
5 � 5 = 25 65 68 21 73 65 63a

6 � 6 = 36 78 81 22 76 78 63a

7 � 7 = 49 91 94 21 73 91 63a

8 � 8 = 64 103 107 21 73 103 63a

a Denotes fewest number of solves.

Table 3
Relative errors and computational cost for the fine scale solution in Example 1.

Subdomains pres-L2-err vel-L2-err CGIter Solves

2 � 2 = 4 7.1657E�05 7.1848E�05 58 123
3 � 3 = 9 7.1955E�05 7.9269E�05 72 163
4 � 4 = 16 7.1968E�05 8.7311E�05 85 123
5 � 5 = 25 7.2211E�05 9.5265E�05 96 99
6 � 6 = 36 7.2260E�05 1.0281E�04 107 83

Table 4
Relative error and computational cost for the multiscale solution using Method 3 with
a single linear mortar per interface in Example 1.

Subdomains pres-L2-err vel-L2-err CGIter Solves

2 � 2 = 4 1.2966E�02 4.4386E�02 8 11
3 � 3 = 9 7.1036E�03 3.6534E�02 22 19
4 � 4 = 16 4.2496E�03 3.0038E�02 33 19
5 � 5 = 25 2.7673E�03 2.5191E�02 42 19
6 � 6 = 36 1.9159E�03 2.1527E�02 51 19

3994 B. Ganis, I. Yotov / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3989–3998

Author's personal copy

Fig. 2. Computed pressure (color) and velocity (arrows) in Example 1: fine scale solution (left) and multiscale solution with a single linear mortar per interface (right).

Fig. 3. Pressure error (left) and magnitude of velocity error (right) for the multiscale solution with a single linear mortar per interface in Example 1.

Fig. 4. Example 2: permeability field (left), fine scale solution (middle), and multiscale solution with 3 � 5 subdomains and a single linear mortar per interface (right).

B. Ganis, I. Yotov / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3989–3998 3995

Author's personal copy

comparison of the plots of the computed fine scale and multiscale
solutions with 5 � 5 subdomains is shown. The relative error
norms reported in Table 4 indicate that the error is larger for the
multiscale solution, but does decrease as the number of subdomain
is increased. Fig. 3 shows that the locations with greatest error in
the multiscale solution are along the subdomain interfaces.

4.2. Example 2: 2-D problem with rough heterogeneous permeability

This problem uses a 2-D heterogeneous permeability field, ob-
tained from the Society of Petroleum Engineers (SPE) Comparative
Solution Project.2 The domain is X ¼ ð0;60Þ � ð0;220Þ with a fixed
global fine grid of 60 � 220 elements. Pressure values of one and
zero are specified on the left and right boundaries, respectively.
No flow is specified on the top and bottom boundaries. A plot of
the permeability field is shown on the left in Fig. 4.

Table 5 shows the results for Example 2 using continuous linear
mortars with 2 elements per edge. Method 3 requires at most 26
solves per subdomain and is computationally more efficient than
Methods 1 and 2 for all subdomain configurations. As the number
of subdomains is increased, the improvement of Method 3 over
Methods 1 and 2 becomes greater.

A comparison between the fine scale solution and the multi-
scale solution with 3 � 5 subdomains is presented in Fig. 4. We ob-
serve a very good match between the two solutions. We note that
the number of subdomain solves required by Method 3 for the
multiscale solution, 26, is significantly less than Methods 1, 2, 3
used for computing the fine scale solution, which require 388,
84, and 130 subdomain solves, respectively.

Table 6 shows the results for Example 2 using continuous qua-
dratic mortars with 2 elements per interface. Compared to the pre-
vious table, the increased number of mortar degrees of freedom per
interface leads to more subdomain solves for Method 3, the maxi-
mum number being 62. Nevertheless, Method 3 is still more com-
putationally efficient than Methods 1 and 2 for 10 and more
subdomains.

4.3. Example 3: 3-D problem with a smooth solution

This example is a 3-D problem on the domain X ¼ ð0;1Þ3 with a
fixed global fine grid of 48 � 48 � 48 elements. The solution is gi-
ven by pðx; y; zÞ ¼ xþ yþ z� 1:5, and the coefficient K is a smooth
full tensor defined by

K ¼
x2 þ y2 þ 1 0 0

0 z2 þ 1 sinðxyÞ
0 sinðxyÞ x2y2 þ 1

0B@
1CA:

Boundaries fy ¼ 0g and fy ¼ 1g are Dirichlet type and the rest of the
boundary is Neumann type.

Fig. 5 shows the computed multiscale solution and its error for
Example 3 with 4 � 4 � 4 subdomains and a single linear mortar
per interface. Table 7 shows the computational cost for Methods
1, 2, 3 with various coarse grids. Method 3 requires at most 27
solves per subdomain and outperforms Methods 1 and 2 for all
subdomain configurations.

Table 8 shows the results for Example 3 using quadratic mortars
with one element per interface with the usual relative residual CG
tolerance of 1e�06. Method 3 requires at most 57 solves per sub-
domain. It is the fastest method on coarser domain decomposi-
tions, but Method 2 outperforms it slightly on 27 or more
subdomains.

Table 5
Example 2 using continuous linear mortars with 2 elements per interface.

Subdomains Method 1 Method 2 Method 3

CGIter Solves CGIter Solves CGIter Solves

2 � 2 = 4 13 15 8 31 13 14a

3 � 2 = 6 19 21 15 53 19 20a

2 � 4 = 8 25 27 18 62 23 20a

2 � 5 = 10 37 39 29 95 35 20a

3 � 4 = 12 37 39 28 93 36 26a

3 � 5 = 15 51 53 37 120 51 26a

a Denotes fewest number of solves.

Table 6
Example 2 using continuous quadratic mortars with 2 elements per interface.

Subdomains Method 1 Method 2 Method 3

CGIter Solves CGIter Solves CGIter Solves

2 � 2 = 4 17 19a 15 52 16 32
3 � 2 = 6 30 32a 23 77 31 47
2 � 4 = 8 39 41a 25 83 38 47
2 � 5 = 10 56 58 39 125 56 47a

3 � 4 = 12 53 55 33 108 52 62a

3 � 5 = 15 92 94 46 147 92 62a

a Denotes fewest number of solves.

Fig. 5. Example 3: computed multiscale solution (left) and its error (right) on 4 � 4 � 4 subdomains with a single linear mortar per interface.

2 For more information, see http://www.spe.org/csp.

3996 B. Ganis, I. Yotov / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3989–3998

Author's personal copy

When a tighter tolerance is imposed on the CG on the interface,
all three methods perform more CG iterations. Under Methods 1
and 2, this also requires performing more subdomain solves. For

Method 3, however, the maximum number of solves per subdo-
main is unaffected by this change in tolerance. This is illustrated
in Table 9, which shows the results for relative residual CG toler-
ance of 1e�09. In this case Method 3 is the most computationally
efficient for all subdomain configurations.

4.4. Example 4: mesh adaptivity

The final example illustrates an increased computational bene-
fit from the MMMFEM when adaptive mesh refinement is utilized.
By using the Multiscale Flux Basis implementation on each refine-
ment level, the overall computational savings are compounded. In
this example, residual based a posteriori error indicators are used to
refine only those subdomains where the error is highest. Mortars
that touch refined subdomains are also refined in order to maintain
accuracy. This approach has been shown to be both efficient and
reliable, see [27,7] for details.

The permeability K is a single realization of a stochastic perme-
ability field on the domain ð0;1Þ2. A Karhunen–Loève (KL) expan-
sion for the log permeability Y ¼ lnðKÞ (a scalar quantity) is
computed from the specified covariance function

CYðx; �xÞ ¼ r2
Y exp

�jx1 � �x1j
g1

� jx2 � �x2j
g2

� �
:

The parameters used for this test are correlation lengths
g1 ¼ 0:25;g2 ¼ 0:125, and variance rY ¼ 2:1. The series was trun-
cated after 400 terms.

We specifically chose to generate the permeability in this exam-
ple as a realization of a KL expansion, so that no upscaling or
homogenization would be needed. On each level of mesh refine-
ment, we are able to analytically evaluate a very heterogeneous
permeability on an arbitrarily fine grid. For the procedure for com-
puting the eigenfunctions and eigenvalues of this series, the inter-
ested reader can consult Appendix A in [29].

This test was performed on 5 � 5 = 25 subdomains, initially
starting with 2 � 2 subdomain grids and continuous linear mortars
with one element per edge. The permeability field and its corre-
sponding solution on the fourth level of mesh refinement are
shown in Fig. 6. Note that this adaptive procedure leads to different
scales being resolved on different subdomains, providing a truly
multiscale approximation. One can see the subdomains now have
4 � 4, 8 � 8, and 16 � 16 grids.

Using Method 1, each subdomain performed 283 subdomain
solves, roughly one for each CG iteration on each of the 4 grid lev-
els. Using Method 3, the number of subdomain solves after 4 levels
of mesh refinement is shown in the figure on top of the permeabil-
ity plot. The maximum number of subdomain solves is 160 and the
minimum number is 56.

Table 7
Example 3 using linear mortars with one element per interface.

Subdomains Method 1 Method 2 Method 3

CGIter Solves CGIter Solves CGIter Solves

2 � 2 � 2 = 8 28 31 11 42 28 15a

2 � 2 � 3 = 12 33 36 12 46 33 19a

2 � 3 � 3 = 18 37 40 13 50 37 23a

3 � 3 � 3 = 27 46 49 13 51 46 27a

3 � 3 � 4 = 36 50 53 13 51 50 27a

3 � 4 � 4 = 48 55 58 13 51 55 27a

4 � 4 � 4 = 64 60 63 13 51 60 27a

a Denotes fewest number of solves.

Table 8
Example 3 using quadratic mortars with one element per interface. Relative residual
CG tolerance = 1e�06.

Subdomains Method 1 Method 2 Method 3

CGIter Solves CGIter Solves CGIter Solves

2 � 2 � 2 = 8 36 39 13 48 36 30a

2 � 2 � 3 = 12 41 44 13 49 41 39a

2 � 3 � 3 = 18 47 50 14 53 47 48a

3 � 3 � 3 = 27 56 59 14 54a 56 57
3 � 3 � 4 = 36 60 63 14 54a 60 57
3 � 4 � 4 = 48 64 67 14 54a 64 57
4 � 4 � 4 = 64 69 72 14 54a 69 57

a Denotes fewest number of solves.

Table 9
Example 3 using quadratic mortars with one element per interface. Relative residual
CG tolerance = 1e�09.

Subdomains Method 1 Method 2 Method 3

CGIter Solves CGIter Solves CGIter Solves

2 � 2 � 2 = 8 48 51 19 66 48 30a

2 � 2 � 3 = 12 56 59 19 67 56 39a

2 � 3 � 3 = 18 62 65 21 74 62 48a

3 � 3 � 3 = 27 74 77 20 72 74 57a

3 � 3 � 4 = 36 79 82 21 75 79 57a

3 � 4 � 4 = 48 84 87 21 75 85 57a

4 � 4 � 4 = 64 92 95 21 75 92 57a

a Denotes fewest number of solves.

Fig. 6. Permeability field for Example 4 on mesh refinement level 4 (left) and its corresponding solution (right). Numbers indicate the total number of subdomain solves using
the Multiscale Flux Basis implementation.

B. Ganis, I. Yotov / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3989–3998 3997

Author's personal copy

We can draw two conclusions from this example. First, since the
computational savings of the Multiscale Flux Basis implementation
happen on each level of adaptive mesh refinement, the overall sav-
ings after all levels are complete is amplified by the number of
refinement levels. Second, the workload for each processor may
become increasingly unbalanced due to a large variation in the
number of mortar degrees of freedom per subdomain. Neverthe-
less, even if the algorithm is only as fast as its slowest processor,
the Multiscale Flux Basis implementation is still faster than the ori-
ginal implementation. One can take full advantage of the computa-
tional efficiency of the new method in adaptive mesh refinement
setting by implementing load balancing.

5. Conclusions

In this paper we present a new implementation of the MMM-
FEM, which makes it comparable in computational cost to existing
multiscale methods. The MMMFEM provides extra flexibility in the
ability to vary locally and adaptively both the coarse scale and the
fine scale grids. Moreover, the fine scale grids can be completely
non-matching across coarse interfaces. The proposed implementa-
tion is based on precomputing a Multiscale Flux Basis and using it
to compute solutions to subdomain solves during the global coarse
scale iteration.

The numerical examples demonstrate that the new implemen-
tation is more computationally efficient than the original imple-
mentation in many cases. The number of subdomain solves
required for the construction of the Multiscale Flux Basis depends
only on the number of mortar degrees of freedom per subdomain
and not on the size of the global problem. Therefore the new
implementation outperforms the original one for large problems.
Moreover, if the Multiscale Flux Basis implementation is used
repeatedly, as in the case of adaptive mesh refinement, then the
computational savings are amplified. Even greater computational
gain is observed when this approach is combined with stochastic
collocation for uncertainty quantification, which requires a large
number of deterministic simulations. This extension will be dis-
cussed in a forthcoming paper.

Acknowledgments

This work was partially supported by the NSF Grants DMS
0620402 and DMS 0813901 and the DOE Grant DE-FG02-
04ER25618. We would also like to thank the Institute for Compu-
tational Engineering and Sciences at the University of Texas at Aus-
tin for the use of their computing resources.

References

[1] J.E. Aarnes, Y. Efendiev, L. Jiang, Mixed multiscale finite element methods using
limited global information, Multiscale Model. Simul. 7 (2) (2008) 655–676.

[2] Jørg E. Aarnes, On the use of a mixed multiscale finite element method for
greater flexibility and increased speed or improved accuracy in reservoir
simulation, Multiscale Model. Simul. 2 (3) (2004) 421–439.

[3] Jørg Aarnes, Stein Krogstad, Knut-Andreas Lie, A hierarchical multiscale
method for two-phase flow based upon mixed finite elements and
nonuniform coarse grids. Multiscale Model. Simul. 5 (2) (2007) 337–363.

[4] T. Arbogast, Analysis of a two-scale, locally conservative subgrid upscaling for
elliptic problems, SIAM J. Numer. Anal. 42 (2004) 576–598.

[5] T. Arbogast, K.J. Boyd, Subgrid upscaling and mixed multiscale finite elements,
SIAM J. Numer. Anal. 44 (3) (2007) 1150–1171.

[6] T. Arbogast, L.C. Cowsar, M.F. Wheeler, I. Yotov, Mixed finite element
methods on nonmatching multiblock grids, SIAM J. Numer. Anal. 37 (2000)
1295–1315.

[7] T. Arbogast, G. Pencheva, M.F. Wheeler, I. Yotov, A multiscale mortar mixed
finite element method, Multiscale Model. Simul. 6 (1) (2007) 319.

[8] F. Brezzi, J. Douglas Jr., R. Duràn, M. Fortin, Mixed finite elements for
second order elliptic problems in three variables, Numer. Math. 51 (1987)
237–250.

[9] F. Brezzi, J. Douglas Jr., M. Fortin, L.D. Marini, Efficient rectangular mixed finite
elements in two and three space variables, RAIRO Modèl. Math. Anal. Numèr.
21 (1987) 581–604.

[10] F. Brezzi, J. Douglas Jr., L.D. Marini, Two families of mixed elements for second
order elliptic problems, Numer. Math. 88 (1985) 217–235.

[11] Z. Chen, T.Y. Hou, A mixed multiscale finite element method for elliptic
problems with oscillating coefficients, Math. Comp. 72 (2003) 541–576.

[12] Zhangxin Chen, J. Douglas Jr., Prismatic mixed finite elements for second order
elliptic problems, Calcolo 26 (1989) 35–148.

[13] L.C. Cowsar, J. Mandel, M.F. Wheeler, Balancing domain decomposition for
mixed finite elements, Math. Comp. 64 (1995) 989–1015.

[14] Yalchin R. Efendiev, Thomas Y. Hou, Xiao-Hui Wu, Convergence of a
nonconforming multiscale finite element method, SIAM J. Numer. Anal. 37
(3) (2000) 888–910 (electronic).

[15] R. Glowinski, M.F. Wheeler, Domain decomposition and mixed finite element
methods for elliptic problems, in: First International Symposium on Domain
Decomposition Methods for Partial Differential Equations, Philadelphia, PA,
1988.

[16] T.Y. Hou, X.H. Wu, A multiscale finite element method for elliptic problems
in composite materials and porous media, J. Comput. Phys. 134 (1997) 169–
189.

[17] T.Y. Hou, X.-H. Wu, Z. Cai, Convergence of a multiscale finite element method
for elliptic problems with rapidly oscillating coefficients, Math. Comp. 68
(1999) 913–943.

[18] T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-
Neumann formulation, subgrid scale models, bubbles and the origins of
stabilized methods, Comput. Methods Appl. Mech. Engrg. 127 (1995) 387–401.

[19] T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.-B. Quincy, The variational multiscale
method – a paradigm for computational mechanics, Comput. Methods Appl.
Mech. Engrg. 166 (1998) 3–24.

[20] P. Jenny, S.H. Lee, H.A. Tchelepi, Multi-scale finite-volume method for elliptic
problems in subsurface flow simulation, J. Comp. Phys. 187 (2003) 47–67.

[21] J.C. Nedelec, Mixed finite elements in R3, Numer. Math. 35 (1980) 315–341.
[22] G. Pencheva, I. Yotov, Balancing domain decomposition for mortar mixed finite

element methods, Numer. Linear Algebra Appl. 10 (2003) 159–180.
[23] Małgorzata Peszyńska, Mary F. Wheeler, Ivan Yotov, Mortar upscaling for

multiphase flow in porous media, Comput. Geosci. 6 (1) (2002) 73–100.
[24] A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential

Equations, Springer, 1994.
[25] R.A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order

elliptic problems, in: Mathematical Aspects of the Finite Element Method,
Lecture Notes in Mathematics, vol. 606, Springer-Verlag, New York, 1977, pp.
292–315.

[26] M.F. Wheeler, I. Yotov, Physical and computational domain decompositions for
modeling subsurface flows, in: Jan Mandel et al. (Eds.), Tenth International
Conference on Domain Decomposition Methods, Contemporary Mathematics,
vol. 218, American Mathematical Society, 1998, pp. 217–228.

[27] Mary F. Wheeler, Ivan Yotov, A posteriori error estimates for the mortar mixed
finite element method, SIAM J. Numer. Anal. 43 (3) (2005) 1021–1042.

[28] I. Yotov, Mixed Finite Element Methods for Flow in Porous Media, Ph.D. Thesis,
Rice University, 1996.

[29] D. Zhang, Z. Lu, An efficient, high-order perturbation approach for flow in
random porous media via Karhunen–Loève and polynomial expansions, J.
Comput. Phys. 194 (2) (2004) 773–794.

3998 B. Ganis, I. Yotov / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3989–3998

