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Chapter 1

Mean-Variance Portfolio Theory

Typically, when making an investment, the initial outlay of capital is known, but the amount to be
returned is uncertain, and one makes efforts to minimize the uncertainties. Such situation is studied in
this part of text. We shall restrict attention to the case of a single investment period: money is invested
at the initial time and payoff is attained at the end of the period. The uncertainty is treated by mean-
variance analysis, developed by Nobel prize winner Markowitz. This method leads to convenient
mathematical expressions and procedures, and forms the basis for the more important capital asset
pricing model.

1.1 Assets and Portfolios

An asset is an investment instrument that can be bought and sold. Its return is the percentage of value
increased from time bought to time sold. By return rate it means return per unit time.

A portfolio is a collection of shares of assets. The proportions in value of assets in a portfolio are called
the weights. A portfolio’s return is the percentage of value increased from time bought to time sold.

In this chapter, we study one period investment and take the period as unit time, so return and
return rate are interchangeable.

Example 1.1. (1) With $10,000 cash Jesse bought 100 shares Stone Inc. stock at $100 per share at the
beginning of a period. She hold the stock for one period and sold the stock at $105.00 per share, ending
up with $10,500 cash.

Assume that during the period, the stock did not pay any dividend and there was no transaction
cost. Then, she made a profit of $10,500-$10,000=$500 from her $10,000 investment. Thus, the return
is

payment− investment
investment

=
$10, 500− $10, 000

$10, 000
= 5%.

The return rate is 5% per period.
(2) Similarly, suppose John spent $5, 000 bought 100 shares of Rock Inc. stock at $50 per share at

the beginning the same period as Jesse and sold all his stocks at $55 per share at the end of period, with
no dividend received during the period. Then John ended up with $5500 cash, making a profit of $500
with a $5000 capital investment. The return of his investment is $500/$5000=10%.

1



2 CHAPTER 1. MEAN-VARIANCE PORTFOLIO THEORY

(3) Consider a hypothetical investment. Suppose John is a trusted friend of Jesse and promised to
take care of Jesse’s investment. So at the beginning of the period, John received $10,000 cash from Jesse
who instructed John to make investment on her behalf on a one period investment on Stone’s stock. By
this, Jesse means John has to give her the cash price of 100 shares of Stone Inc. stock at the end of the
period.

John has his own cash $5000 at the beginning of the period. With Jesse’s $10,000, he now has
$15,000 cash. Instead of buying 100 share of Stone’ Inc stock on Jesse’s behalf, John bought 300 shares
of Rock Inc. stock at $50 per share. By doing so, John means that he will go to the market buy the
stock for Jesse whenever she wants them.

(a) Suppose at the end of period, the Rock Inc. stock unit share price is $55 and Stone Inc. stock
price is $105. After selling all his Rock Inc. stock holding, John obtains 300 ∗ $55 = $16500 cash.

Now Jesse asks John to pay her the payment of her investment, totalling $100*$105=$10,500. after
the payment, John now has $16500-$10500= $6000 cash left.

In her investment Jesse made a profit of $500 with $10,000, as she would have done herself.

On the other hand, John made a profit of $6000-$5000=$1000 out of $5000 investment. Hence his
return is $1000/$5000=20%.

(b) Suppose at the end of period, Stone Inc’s stock price is $110 and Rock Inc. stock price is $53.

Then after cashing in the 300 shares of Rock Inc stock, John has $15900 cash. But he has the
obligation to pay Jesse 100*$110=$11000 the payment of her investment. Upon doing so, John
ends up with $4900 cash.

In this investment, Jesse made a profit of $1000 with an $10,000 investment, so the return is 10%.

However, John lost $100 with an $5000 investment. Hence, his return is -2%.

In this example, John’s action on Jesse’s request is known as short selling: He takes in the cash and
owes certain shares of the named stock. Typically, one shorts with dealers instead of with friends, and
dealers charge a certain amount of extra fees. In this course, we shall assume that not only there is no
transaction cost, but also there is no extra charge on short selling.

Example 1.2. The following table illustrates a typical example of a portfolio:

assets Number of unit portfolio return total weighted new portfolio
(security) shares price cost weight (rate) return return weight

Rock Inc. 200 $20 $4,000 0.40 10% $4400 0.4*10% 4400/11150

Jazz Inc. 300 $30 $9,000 0.90 10 % $9900 0.90*10% 9900/11150

Stone Inc. -100 $30 -$3,000 -0.30 5% -$3150 -0.30*5% -3150/11150

Portfolio Total $10,000 1.00 $11150 11.5 % 1

In this example, the assets (also called securities) in consideration are stocks of three companies.
Initially, the investor has a total of $10,000 cash available. By short selling, e.g. borrowing 100 shares of
Stone Inc.’s stock, selling it to generate cash for other stocks, and then returning the borrowed stock at
the end of period, the investor is lucky enough to make an 11.5% return. Here, we assume that selling
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and buying are symmetric, no extra charges are accounted. Of course, if the investor made a wrong
judgement by short selling 100 shares of Jazz Inc’s stock to generating cash buying 300 shares of Stone
Inc.’s stock, the final return would be 0.4 ∗ 10%− 0.3 ∗ 10% + 0.9 ∗ 5% = 5.5%; that is, the final wealth
would be $10,550.

Note that the weight changes at the end of period. For a multiple period investment, one may
consider adjusting the weights from time to time.

Example 1.3. Investments have risks. This is the same as gambling. Here we illustrate such an aspect
by using an investment wheel.

You are able to place a bet on any of the three sectors, named A, B and C respectively. In fact,
you may invest different amounts on each of sectors independently. The numbers in sectors denote the
winnings (multiplicative factor to your bet) for that sector after the wheel is spun. For example, if the
wheel stops with the pointer at the top sector A after a spin, you will receive $2 for every $1 you invested
on that sector (which means a net profit of $1); all bets on other sectors are lost.

H

C
7

A

B

2

3

An Investment Wheel

Let’s use A, B, and C to denote the investment plan by place $1.00 bet on sectors A, B and C

respectively.
Denote Ω = {A,B, C} the space all possible events and by Prob(x), the probability that event

x ∈ Ω occurs. We have

Prob(A) =
1
2
, Prob(B) =

1
3
, Prob(C) =

1
6
.

The return R of an investment depends on the actual event that occurs. Mathematically R is a
random variable, i.e. a measurable function from Ω to R. Denote by RA, RB, RC the returns of the
investment plan A, B, and C, respectively. Then they are functions from Ω to R valued as follows:

RA(A) = 100%, RA(B) = −100%, RA(C) = −100%;

RB(A) = −100%, RB(B) = 200%, RB(C) = −100%,

RC(A) = −100%, RC(B) = −100%, RC(C) = 600%;
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For random variables, the most often used quantities are mean (expectation E[·]), variance, and
covariance. For random variables ξ and η on a finite probability space Ω,

mean of ξ = E[ξ] :=
∑

x∈Ω

ξ(x)Prob(x),

variance of ξ = Var[ξ] := E
[
(ξ −E[ξ])2] = E[ξ2]−E[ξ]2,

standard derivation of ξ =
√

Var[ξ]

covariance between ξ and η = Cov[ξ, η] := E[(ξ −E[ξ])(η −E[η])] = E[ξη]−E[ξ]E[η],

corretion between ξ and η = cor[ξ, η] :=
Cov[ξ, η]√
Var[ξ]Var[ξ]

∈ [−1, 1].

Hence, the mean return of investment A is

µA := E[RA] =
∑

x∈Ω

RA(x)Prob(x) = 100% ∗ 1
2 − 100% ∗ 1

3 − 100% ∗ 1
6 = 0%.

The variance of the return RA is

σAA = Var[RA] := E
[
(RA −E[RA])2

]
= E[R2

A]−E[RA]2 = 1.

The standard deviation of RA is

σA =
√

σAA =
√

Var[RA] = 1 = 100%.

The covariance between RA and RB is

σAB = E
[
(RA −E(RA)(RB −E[RB]

]
=

∑

x∈Ω

RA(x)RB(x)Prob(x)−E[RA]E[RB] = −1.

The correlation between R1 and R2 is

ρAB =
σAB
σAσB

= − 1√
2

= −0.707.

Similarly, we can calculate other statistical quantities. The result is summarized in the following
tables.

Investment Return Under Mean Covariance σij Correlation ρij

Plan A B C return A B C A B C

A 100% -100% -100% 0% 1 -1 -1.17 1.00 -0.707 -0.447

B -100% 200% -100% 0 % -1 2 -1.17 -0.707 1 -0.316

C -100% -100% 600% 17% -1.17 -1.177 6.81 -0.447 -0.316 1

Probability 1/2 1/3 1/6

We now consider a market system consisting of m assets, named a1, · · · , am. Denote by Ri the
return of asset ai. Then

1 + Ri =
value of unit asset ai at time sold

initial value of unit asset ai
.
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The basic assumption here is that Ri is a random variable, with mean µi and variance σ2
i :

µi = E[Ri], σi =
√

Var[Ri].

We call µi the expected return and in the current context σi (or σ2
i ) the risk of the asset ai. Also we

denote the covariance and correlation between the returns of the asset ai and aj by

σij := Cov(Ri, Rj) := E((Ri − µi)(Rj − µj)), σii = σ2
i , ρij =

σij

σiσj
.

We now consider a portfolio that consists of a collection of the above assets. Since the sizes of units
of these assets are quite different, we shall not pay any attention on the particular numbers of units,
rather, we are concerned about the percentage of each asset value in the portfolio.

Suppose the total value of the portfolio is V0 and the value in asset ai is Vi, i = 1, · · · ,m. Then the
weight of the asset ai in the portfolio is

wi =
value in asset ai

total value of portfolio
=

Vi

V0
.

We denote the portfolio’s weight by the row vector

w = (w1, w2, · · · , wm).

Then
m∑

i=1

wi =
m∑

i=1

Vi

V0
=

∑m
i=1 Vi

V0
= 1.

In general, the weight is a function of time, since the returns of different assets are different. In this
chapter, we shall consider only two times, the time when the portfolio is bought and the time when it is
sold.

Denote by R the portfolio’s return:

R :=
portfolio value at time sold− initial portfolio value

initial portfolio value
.

A simple arithmetic gives the relation among portfolio return, asserts return and weight:

R =
m∑

i=1

wiRi. (1.1)

The expected return µ and risk σ (σ > 0) of the portfolio can be calculated by

µ = E[R] = E
[ m∑

i=1

wiRi

]
=

m∑

i=1

wiµi, (1.2)

σ2 = Var[R] = Var
[ m∑

i=1

wiRi

]
=

m∑

i=1

m∑

j=1

σijwiwj . (1.3)

We shall assume that u := (µ1, · · · , µm) and C := (σij)m×m are known; that is, they can be calcu-
lated from historical data. Thus, the problem here is to choose appropriate weights w = (w1, · · · , wm)



6 CHAPTER 1. MEAN-VARIANCE PORTFOLIO THEORY

which satisfies the constraint
∑m

i=1 wi = 1. By varying the weight, one obtains different portfolios of dif-
ferent risk-return balances. There are people who are willing to take high risk expecting high returns,
whereas there are also people who want security thus are willing to accept moderate returns with small
risks.

Mathematically, we are going to find optimal weights that minimizes risk with given expected return
or maximizes the expect return with given risk. These two problems are dual to each other.

Since µ is a linear and σ is a quadratic function of the weights, as one shall see, the problem can
be solved explicitly. For the convenience of presentation, we shall assume that the market is fair in the
sense that

any weight w ∈ {(w1, · · · , wm) ∈ Rm | ∑m
i=1 wi = 1} is attainable.

Suppose the total investment is V0. When a weight wi is positive, it means to buy (long) asset ai

certain units worth V0wi. When wi < 0, it mean selling (short) the asset certain units to generate V0|wi|
cash that can be used to buy other assets. By doing that, one owes certain shares of assets ai which has
to be paid back, with the same amount of units, at time the portfolio is sold1

Example 1.4. Consider the three investment plans, A,B, C, in Example 1.3. With a total capital
V0 = $50, consider the following investment:

Put $10 on sector A, $10 on sector B, and $30 on sector C.
Denote by VT (x) the value of the portfolio at the end of investment under event x ∈ Ω = {A,B, C}.

Then

VT (A) = $20, VT (B) = $30, VT (C) = $210.

Hence, denote by R(x) the return under event x ∈ Ω = {A, B,C}. It is easy to see

R(A) =
$20
$50

− 1 = −60%, R(B) =
$30
$50

− 1 = −40%, R(C) =
$210
$50

− 1 = 320%.

The mean return is

µ = E[R] =
∑

x∈Ω

R(x) Prob(x) = −60% ∗ 1
2 − 40% ∗ 1

3 + 320% + 1
6 = 10%.

The risk is

σ =
√

Var[R] =
√∑

x∈Ω

(R(x)− µ)2Prob(x) = 139%.

Portfolios with only a few assets may be subject to a high degree of risk, represented by a relatively
large variance. As a general rule, the variance of the return of a portfolio can be reduced by including
additional assets in the portfolio, a process referred to as diversification. This process reflects the
maxim:

Don’t put all yours eggs in one basket.

1When a stock pays dividend, typically one has the choice of receiving cash or a percentage of share of stock equivalent
to the cash. In such scenario, number of units of to be returned from shorting will be larger than the number that one
initially shorts. Similarly, it is very common that stock splits; namely, one share becomes two share; in such case, one of
course has to pay double number of units.
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Example 1.5. Consider the following simple yet illustrative situation. Suppose there are m assets each
of which has return µ̂ and variance σ̂2. Suppose also that all these assets are mutually uncorrelated.
One then construct a portfolio by investing equally into these assets, namely, taking wi = 1/m for all
i = 1, · · · ,m. The overall expected rate of return is still µ̂. Nevertheless, the overall risk becomes

Var[R] =
m∑

i=1

m∑

j=1

1
m

1
m

σ̂2δij =
σ̂2

m
,

which decays rapidly as m increases. The situation is different when returns of the available assets are
correlated; see exercise 1.4.

Example 1.6. Consider a portfolio of two assets, a1, a2, with the following statistical parameters:

µ1 = 5%, µ2 = 10%, σ1 = 10%, σ2 = 40%, ρ12 = −0.5 .

The weight of an arbitrary portfolio can be denoted as w = (θ, 1 − θ). Denote the return of such
portfolio by R(θ). We have

µ(θ) := E(R(θ) = θµ1 + (1− θ)µ2 = 0.1− 0.05θ.

Hence to have a portfolio of wanted expected return µ, we need only take θ such that µ = 0.1− 0.05θ,
i.e.

θ = (0.1− µ)/0.05 = 2− 20µ.

Also, the variance of this portfolio is

σ(θ)2 := Var(R(θ)) = σ2
1θ2 + 2ρ12σ1σ2θ(1− θ) + σ2

2(1− θ)2 = 0.16− 0.36θ + 0.21θ2.

To see a direct relation between the expected return µ = µ(θ) and the risk σ = σ(θ), we substitute
θ = 2− 20µ in the above expresion, obtaining

σ =
√

0.16− 0.36θ + 0.21θ2
∣∣∣
θ=0.1−20µ

=
√

0.0762 + 84(µ− 5.7%)2.

The relation between µ and σ is depicted in Figure 1.1. Among all the portfolios, the one that has
the minimum risk is

θ = 0.86, µ = 5.7%, σ = 7.6%.

Clear, such a mutual fund, with 86% capital on the first asset a1 and 14% capital on the second
asset a2 is much better than a1 alone, both in the expected return and in the risk.

Also, consider the portfolio w = (−1, 2); i.e. θ = −1. Then on finds that the return and risk are

µ = 15%, σ = 85%.

Here the large expected return µ = 15% is obtained under the large risk σ = 85%.

Exercise 1.1. (a) Derive and illustrate with Examples 1.2 and Example 1.4 the formulas (1.1)–(1.3).
(b) In a portfolio, the number of shares of each asset is assumed to be constant in the time period

of our consideration. As the price of unit share changes, so is the relative proportion of values of each
asset in the portfolio.
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Figure 1.1: The risk-return curve. The two dots correspond to the asset a1 and a2 respectively.

(i) Suppose in Example 1.2, one holds the same number of shares of stock for the second period.
Find the weights at the beginning of the investment for the second period.

(ii) Denote by w(t) = (w1(t), · · · , wm(t)) the weight of portfolio at time t. Show that at the end of
first period, the new weight becomes

wi(1− 0) =
(1 + Ri)wi(0)

1 + R
∀ i = 1, · · · ,m.

Exercise 1.2. Consider the investment opportunities A,B, C in Example 1.3. Consider the following
mutual funds:

(F1) $10 in A, $10 in B, and $10 in C;

(F2) $21 in A, $14 in B, $6 in C;

(F3) x in A, y in B, 1− x− y in C.

Find the mean return µ and risk σ of each mutual funds.

Exercise 1.3. Calculate the statistics as in Example 1.3 for an investment wheel where multiplicative for
A, B, and C are 3, 3, 7 respectively, keeping the same probability of the occurrence of A,B and C.

Exercise 1.4. Suppose Cov(Ri, Rj) = 0.3σ̂2 for all i 6= j and Var(Ri) = σ̂2. Calculate the risk of the
following portfolios:

(i) wi = 1/m for all i = 1, · · · ,m;
(ii) w = 3/m for all i = 1, · · · ,m/2 and wi = −1/m for i = m/2 + 1, · · · ,m. (Assume m is even)

Exercise 1.5. Consider a portfolio of two assets. Write w = (θ, 1− θ), µ = µ(θ), σ = σ(θ).
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(a) For each of the cases when the correlation coefficient ρ12 is 1, 1/2, 0,−1/2,−1, plot the curve
σ(θ). Also plot the curve σ against µ, taking (i) µ1 = 0.1, µ2 = 0.2, σ1 = 0.2, σ2 = 0.3, (ii) µ1 =
0.1, µ2 = 0.2, σ1 = 0.3, σ2 = 0.2.

(b) Find a portfolio that has the minimum risk possible.
(c) Find a portfolio that has the minimum risk possible, where short selling is forbidden.

Exercise 1.6. Suppose short selling is unlimited and consider a system of two assets with µ1 > µ2 and
σ1 = σ2 > 0. Show that one can make money out of nothing if and only if ρ12 = 1.

Exercise 1.7. For a system of two and three assets respectively, find the portfolios that have minimum
risk under condition (i) shorting selling is allowed (ii) short selling is forbidden. Assume the covariance
matrix (σij) is known.

1.2 The Markowitz Portfolio Theory

It is reasonable to assume that not all asset returns are the same. Since if all the returns are the same,
the expected return of the portfolio does not change with the weights. As a consequence, the problem
becomes the study of risks alone; see exercise 1.7.

The covariance matrix C = (σij)m×m is symmetric and semi-positive-definite. For simplicity, we
assume that it is invertible so it is positive definite.

A portfolio is called efficient if its risk is no larger than any other portfolio of the same expected
return. The Markowitz portfolio theory is to find all efficient portfolios. Mathematically, the problem
can be formulated as follows:

Efficient Portfolio Problem: Given µ ∈ R, find a portfolio w = (w1, · · · , wm) ∈ Rm that

minimizes Var[R] =
m∑

i=1

m∑

j=1

wiwjσij subject to
m∑

i=1

wi = 1, E[R] =
m∑

i=1

µiwi = µ.

The solution. This problem can be solved by using the Lagrange multipliers. Thus, we consider the
unconditional critical points of the functional

L(λ1, λ2,w) =
m∑

i=1

m∑

j=1

wiwjσij + λ1

(
1−

m∑

i=1

wi

)
+ λ2

(
µ−

m∑

i=1

wiµi

)
, (λ1, λ2,w) ∈ Rm+2.

The system of equations for critical points of L is

∂L

∂λ1
= 0,

∂L

∂λ2
= 0,

∂L

∂wk
= 0 ∀ k = 1, · · · , m.

The first two equations give the constraint conditions whereas the remaining equations are

0 =
∂L

∂wk
=

m∑

i=1

(σik + σki)wi − λ1 − λ1µk, k = 1, · · · ,m.

These equations can be written in the matrix form as 2wC + λ1 + λ2u = 0 where 0 = 01 and

1 = (1, · · · , 1)1×m, u = (µ1, · · · , µm), C = (σij)m×m.
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Here we identify a row vector with a row matrix. Using (·, ·) for Rm dot product, we then have

w =
λ11C−1

2
+

λ2uC−1

2
= θw1 + (1− θ)w2,

where θ = λ1(1,1C−1)/2 and w1,w2 are weights of two portfolios given by

w1 :=
1C−1

(1,1C−1)
, w2 :=

uC−1

(1,uC−1)
.

Here the proportion (1 − θ) is obtained by using (1,w) = 1. Note that the portfolio w consists of θ

portion of portfolio w1 and (1− θ) portion of portfolio w2.
Hence, substituting the expression for w into the constraint (w,u) = µ we obtain the value of θ.

After substituting it back into the expression for w we then find the solution to the efficient portfolio
problem to be

w = e1 + µe2,

where

e1 :=
(w2,u) w1 − (w1,u) w2

(w2,u)− (w1,u)
, e2 :=

w2 −w1

(w2,u)− (w1,u)
.

The Rigorous Analysis. While the method of Lagrange multiplier is powerful enough to provide
needed solutions, it does not necessarily always provide the correct answer. Verification of the solution
is often needed. Hence, here we provide a rigorous analysis, showing that the solution we obtained
is indeed the unique solution to the conditional minimization problem. We use the same notation
1,u,C,w1,w2, e1, e2 as before.

Let w = (w1, · · · , wm) be any weight satisfying
∑m

i=1 wi = 1 and
∑m

i=1 uiwi = µ, i.e. (1,w) =
1, (u,w) = µ. Consider the vector

w⊥ := w − e1 − µe2.

We find that (w⊥,1) = (w,1)−(e1,1)−(e2,1) = 1−1−0 = 0 and (w⊥,u) = (w,u)−(e1,u)−µ(e2,u) =
µ− 0−µ = 0. That is w⊥ ⊥ 1,w⊥ ⊥ u. Write w = e1 +µe2 +w⊥. Note that C is symmetric and both
e1C and e2C are linear combinations of 1 and u, we have (e1C,w⊥) = 0 and (e2C,w⊥) = 0. Hence,

σ2 = (wC,w)

= (w⊥C,w⊥) + (e1C, e1) + 2µ(e1C, e2) + µ2(e2C, e2)

= (w⊥C,w⊥) + (e2C, e2)
(
µ +

(e1C, e2)
(e2C, e2)

)2

+ (e1C, e1)− (e1C, e2)2

(e2C, e2)
= (w⊥C,w⊥) + σ2

∗ + κ2(µ− µ∗)2

where, by the definition of e1, e2,

κ2 = (e2C, e2) =
(1C−1,1)

(1C−1,1)(uC−1,u)− (1C−1,u)2
,

σ2
∗ = (e1C, e1)− (e1C, e2)2

(e2C, e2)
=

1
(1C−1,1)

,

µ∗ = − (e1C, e2)
(e2C, e2)

=
(uC−1,1)
(1C−1,1)

.
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We remark that κ > 0 and σ∗ > 0 since C positive definite implies C−1 is also positive definite. Hence
we have the following

Theorem 1.1 Assume that not all asset’s expected returns are equal and C = (σij) is positive

definite.

(i) For every weight w with expected return µ, its risk σ2 satisfies

σ >
√

σ2∗ + κ2(µ− µ∗)2.

(ii) The equality in the above inequality is attained at and only at minimum risk weight line

w = e1 + µe2, i.e. w = θw1 + (1− θ)w2. (1.4)

We note that on the σ-µ plane, the curve

σ2 = σ2
∗ + κ2(µ− µ∗)2, σ > 0, (1.5)

or µ = µ∗ ± 1
κ

√
σ2 − σ2∗, σ > 0, (1.6)

is a hyperbola with tip at (σ∗, µ∗); see Figure 1.2. The hyperbola is called the Markowitz curve.
A portfolio is efficient if and only if its expected return and standard deviation is on the Markowitz
curve. The unbounded region on the right-hand side of the hyperbola is called the Markowitz bullet
or attainable region; the top half of the hyperbola is called the Markowitz efficient frontier.

(a) For any expected return µ, the attainable risk is an interval [σ2,∞) where (µ, σ) is on the
Markowitz curve. That is, fixing any expected return, the minimum risk is given by (1.5) with weight
given by (1.4).

(b) The positive number σ2
∗ is the absolute minimum risk among all weights, i.e. there is no weight

that can provide a risk smaller than σ∗. For any chosen risk σ > σ∗, the attainable expected return µ

is an interval centered at µ∗ with maximum on the Markowitz efficient frontier.

(c) Any attainable point is dominated by an attainable point on the Markowitz efficient frontier.
Investors who seek to minimize risk for any expected return need only look on the Markowitz efficient
frontier, that is, for efficient portfolios, whose weight are given by the minimum risk weight line, being
a linear combinations of two special weights.

Theorem 1.2 (Two-Fund Theorem) Two efficient funds (portfolios) can be established so that

any efficient portfolio can be duplicated, in terms of mean and variance, as a combination of these

two. That is, all investors seeking efficient portfolio need only invest in combinations of these funds.

This result has dramatic implications. According to the two-fund theorem, two mutual funds (for
example, portfolios with weights w1 and w2 respectively) could provide a complete investment service
for everyone. There would be no need for everyone to purchase individual stocks separately; they could
just purchase shares in the two mutual funds.
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Risk

expected return

Figure 1.2: Thick hyperbola is the Markowitz frontier, where dashed thick curve is the remaining part
of the Markowitz curve. The thick tangent line is the capital market line when risk-free rate µ0 is less
that µ∗. The thin tangent line is an analogous of the capital market line when µ0 > µ∗.

Example 1.7. Consider portfolios of three assets with the following statistics:

Cov(Ri, Rj)

Assets Mean Return a1 a2 a3

a1 0.08 0.02 -0.01 -0.02
a2 0.08 -0.01 0.04 0.01
a3 0.12 -0.02 0.01 0.09

Then we have

u = (0.08 0.08 0.12), C =




0.08 0.02 −0.01
−0.01 0.04 0.01
−0.02 0.01 0.09


 , C−1 =




71.4 14.3 14.3
14.3 28.6 0
14.3 0 14.3


 .

Consequently, denoting by ∗ the matrix transpose, we obtain

w1 =
1C−1

1C−11∗
= (0.583 0.250 0.167), w2 =

uC−1

uC−11∗
= (0.577 0.231 0.192).

This is the weights of a particular pair of two funds in the two fund theorem.
If one takes θ portion of mutual fund of weight w1 and 1 − θ portion of mutual fund with weight

w2, then its return is

µ = θw1u∗ + (1− θ)w2u∗ = 0.0877− 0.00106θ,

σ2 = θ2w1Cw∗
1 + 2θ(1− θ)w1Cw∗

2 + (1− θ)2w2Cw∗
2

= 0.00590252− 0.000138θ + 0.0000690θ2 = 0.49875− 11.375µ + 65.625µ2

= 0.0762 + 65.62(µ− 0.087)2.
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Figure 1.3: The risk-return curve and the risk-return of original assets.

Hence, the Markowitz curve is given by

σ =
√

0.0762 + 65.62(µ− 0.087)2.

In Figure 1.3, we plot the Markowitz curve, the location of the (risk, expected return) of the three
assets, and the location of the minimum risk asset. Note that none of the assets are efficient, since their
return and risk are not on the efficient curve.

Thus, the minimum risk of all portfolio is σ∗ = 0.076, attained at µ∗ = 0.083. The weight is θ∗ = 1,
i.e. w∗ = w1. Hence,

w∗ = w1 = (0.583, 0.250, 0.167).

In the above example, the first asset a1 has expect return 8% with risk σ1 =
√

0.2, whereas the
second asset a1 has expect return 8% with risk σ1 =

√
0.04. Just comparing these two assets, one can

say that a1 is more preferable than a2. However, asset a2 is not excluded from efficient portfolios.

Exercise 1.8. When all µ are the same. Find all the attainable region on the return-risk plane.

Exercise 1.9. Suppose C = (σij)m×m is degenerate, i.e. there exists a non-zero vector w = (w1, · · · , wm)
such that wC = 0. Show that the random variable R :=

∑m
i=1 wiRi is risk-free, i.e., Var[R] = 0 so R is

a constant function. Find necessary (and sufficient) conditions for the exclusion of possibility of making
money without risk and without any initial vestment.

Exercise 1.10. Assume that C is positive definite. Show that there is a unique portfolio that has the
minimum risk. In addition, the weight of this portfolio is given by w1.

Exercise 1.11. Analyze in detail when only two assets are considered. Assume the expected return satisfies
µ1 < µ2 and σ1 > 0, σ2 > 0. Consider first the case (σij)2×2 is positive definite and then the case when
it degenerate.
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Mark on the Markowitz curve the segments where short selling is not needed.

Exercise 1.12. Consider a system of three assets, with parameters given as follows:

Mean Return Cov(Ri, Rj)

Assets a1 a2 a3

a1 0.1 0.04 -0.006 0.016
a2 0.2 -0.006 0.09 0.024
a3 0.3 0.016 0.024 0.14

1. Find two examples of two funds that satisfy the two fund theorem.

2. Plot the Markowitz curve. Also Mark the risk-return of the three assets.

3. Suppose the maximum risk is set at 0.10, find the maximum expected return and the corresponding
weight.

4. Suppose one wants an expect return of 100%. How to achieve that?

5. Suppose the market is not complete in the sense that one cannot short assets valued more than the
portfolio’s total worth; (i.e. the sum of all negative wi is no smaller than −1.) Find the maximum
expected return, regardless how high the risk may be, but still want the risk as small as possible.

6. Is it true that in a incomplete market as in (5), the minimum risk-maximum expect return curve
always lies on the Markowitz efficient frontier? Either prove of disprove your conclusion.

Exercise 1.13. Using the Lagrange multiplier method solving the following problem: Given σ > 0,

maximize E[R] =
m∑

i=1

wiRi subject to
m∑

i=1

wi = 1, Var[R] =
m∑

i=1

m∑

j=1

wiwjσij = σ2.

Exercise 1.14. For the three investment plans A,B, C in Example 1.3, find one example of two mutual
fund that provide all needed efficient portfolios. Also plot the Markowitz curve, as well as the locations
of risk-return of the investment plan A,B, C.

1.3 Capital Asset Pricing Model

Now we take a look at the Capital Asset Pricing Model, developed by the Nobel Prize winner William
Sharpe and also independently by John Lintner and J. Mossin, thus called SLM CAPM model. The
major factor that turns the Markowitz portfolio theory into a capital market theory is the inclusion of
a risk–free asset in the model.

A risk-free asset is an asset that gives a fixed return without variability.

Example 1.8. Suppose today Mellon bank offers the following annul interest rates:

1. Checking account: 2%

2. One year deposit: 4 1
2%;
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3. 5 year deposit: 6%

4. 10 year deposit: 5 3
4 %.

Assume that each of the investment is guaranteed by federal insurance. Then each of the investment
can be regarded as a risk-free investment.

Different from investing on stock for which the return are uncertain at time of investment, the
investment on riskless asset has a known return.

As we shall see, the inclusion of a risk-free asset can improve the risk-return balance by investing
in a portfolio partially in risky assets and partially in a risk-free asset.

Let us denote by µ0 = R0 (almost sure) the return of the underlying risk-free asset, denoted by a0.
Here almost sure means

Var(R0) =
∫

Ω

(
R0(x)− µ0

)2

Prob(dx) = 0.

Altogether we have m + 1 assets a0, a1, · · · , am to choose. We use weight ŵ = (ŵ0, ŵ1, · · · , ŵm),
where

∑m
i=0 ŵi = 1, for a generic portfolio. In order to use the Markowitz theory, we can decompose the

weight as

ŵ = (1− θ, θw1, θw2, · · · , θwm),
m∑

i=1

wi = 1, θ ∈ R.

Here θ is the portion of risky assets and 1− θ the portion of the risk-free asset; among risky assets, the
relative weight is w = (w1, · · · , wm). The portfolio return is the random variable

R̂ = (1− θ)R0 +
m∑

i=1

θwiRi = (1− θ)µ0 + θR, R =
m∑

i=1

wiRi.

Here R0 = µ0 (a.s) is a constant, so that Cov(R0, Ri) = 0 for all i = 0, · · · ,m.

With the inclusion of a risk-free asset, the portfolio with weight ŵ = (1− θ, θw) has the expected
return µ̂ and risk σ̂2 given by

µ̂ = E(R̂) = (1− θ)µ0 + θµ, µ = E(R) = (w,u),

σ̂2 = Var(R̂) = θ2σ2, σ2 := Var(R) = (wC,w).

Here µ and σ are expected return and risk for the portfolio without risk-free asset. It then follows that
the risk-return relation can be expressed in the parametric form, with θ as a free parameter,

{
µ̂ = µ0 + θ(µ− µ0),

σ̂ = |θσ|
θ ∈ R. (1.7)

Eliminating θ and keeping in mind that only µ̂ > µ0 are of our interest, we then obtain the relation

µ̂− µ0 =
|µ− µ0|

σ
σ̂.

Here σ and µ, being functions of the relative weight w on risky assets, can be regarded as parameters
which have to be in the attainable region, also called the Markowitz bullet.

Now we see that to obtain the maximum expected return, we need only find the maximum of the
slope |µ − µ0|/σ. As (σ, µ) is in the Markowitz bullet, we see that the maximum can only be attained
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at the Markowitz curve, i.e., when σ =
√

σ2∗ + κ2(µ− µ∗)2. Therefor, the maximum expected return is
obtained on the line

µ̂− µ0 = λM σ̂, λM := max
µ∈R

|µ− µ0|√
σ2∗ + κ2(µ− µ∗)2

. (1.8)

This line is called the Capital Market Line. It is easy to see that the line is tangent to the Markowitz
curve; see Figure 1.2. There are two cases.

(i) µ0 < µ∗. In this case, the capital market line is tangent to the Markowitz efficient frontier; see
the thick line in Figure 1.2. One can show that the maximum of λM is obtained at

µ = µM := µ∗ +
σ2
∗

κ2(µ∗ − µ0)
. (1.9)

Substituting this µ into the minimum-risk weight formula wM = e1 + µe2 in the previous section, we
then obtain the market portfolio

wM :=
(u− µ01)C−1

((u− µ0)C−1,1)
. (1.10)

(ii) µ0 > µ∗. 2 In this case, the capital market line is the extension of the line passing (0, µ0) and
tangent to the reflection of Markowitz curve about the µ axis; see the thin line in Figure 1.2. One can
show that λM is obtained at µ given by (1.9), which gives the same relative weight (1.10).

We can now summarize our calculation as follows:

Theorem 1.3 Consider a market system consisting of a risk-free asset a0 of return rate µ0 and

risky asserts a1, · · · , am of expect return µ1, · · · , µm and covariance matrix C.

For any given risk σ̂, the maximum expected return µ̂ among all possible portfolios is given by the

capital market line equation (1.8). In addition, the relative weight on risky assets are given by (1.10).

In a complete market, any expected return of minimum risk can be attained at a unique portfolio.

Note that the relative weight wM in (1.10) on risky assets does not depend on any particular choice
of efficient portfolio. This observation is indeed the key to the CAPM.

Theorem 1.4 (The One-Fund Theorem) There is a single fund F of risky assets such that any

efficient portfolio can be constructed as a combination of the fund F and the risk-free asset.

We now explain in more detail on what we have.

(i) If µ0 < µ∗, the capital market line (the thick half line in Figure 1.2) is the unique line that passes
(0, µ0) and is tangent to the Markowitz efficient frontier. By adjusting the portion between the risk-free
asset and the risky assets in the portfolio, that is by adjusting the parameter θ which is the total portion
of all risk asserts, any risk-return balance on the capital market line can be achieved. To get a point

2This case does not have much meaning in finance and therefore its discussion is omitted in most textbooks. Since by
investing in risky-asset, one expects larger expected return, and hence, it is meaningful only when µ0 > µ∗.
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to the right of the market portfolio (the intersection of the line and the frontier curve) requires selling
the risk free asset short (since θ > 1 and 1 − θ < 0) and using the money to buy more of the market
portfolio.

(ii) If µ0 > µ∗, the capital market line is above the Markowitz efficient frontier. Nevertheless, to
achieve this, one needs (since θ < 0 and 1 − θ > 1) to sell the risky assets short and use the money to
buy more of the risk-free asset. In reality, the situation µ0 > µ∗ does not happen.

(iii) In any situation, to achieve an optimal risk-return balance (i.e. the capital market line), the
relative weight of the risky asset has to be the unique weight wM given by (1.10).

(iv) The equation µ̂ = µ0 + λM σ̂ for the capital market line proclaims that the quantity SM σ̂,
called the risk premium, is the additional return beyond the risk-free return µ0 that one may expect
for assuming the risk σ̂. Of course, it is the presence of risk that the investor may not actually see this
additional return. Hence, λM is also called the market price of risk.

We now state the suggestion provided by the CAPM model to any investor, no matter which kind
of risk he/she is willing to take to maximize the return:

In order to maximize the expect return for a given level of risk, what should invest is an efficient
portfolio consisting of the risk-free asset and the risky assets with relative weight given by (1.10), where
the relative proportion between risk-free asset and risky assets is determined by the level of acceptable
risk.

Example 1.9. Consider the three assets in Example 1.7. Assume the risk-free return is 7%. Then the
Market Portfolio has weight

wM :=
(u− 0.071)C−1

(u− 0.071)C−11∗
= (0.55, 0.15, 0.30).

The return µM and risk σM of this market portfolio are respectively

µM = wMu∗ = 0.092, σM =
√

wMCw∗
M = 0.0877.

Also, the market price of risk is

λM =
|µM − µ0|

σM
= 0.25.

The Capital Market line is the line with the equation

µ̂ = 0.07 + 0.25σ̂.

See Figure 1.4
Finally, we can calculate, for a generic risk-free rate µ0 ∈ (0, µ∗), the weight of the market portfolio

wM =
(u− µ01)C−1

(u− µ01)C−11∗
= (w1(µ0), w2(µ0), w2(µ0))

=
(0.05− 0.583µ0

0.0867− µ0
,

0.02− 0.25µ0

0.0867− µ0
,

0.0167− 0.0167µ0

0.0867− µ0

)
.

The three functions are plotted in Figure 1.5, in the unit of percentage.
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Figure 1.4: The Markowitz Curve and Capital Market Line.
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Figure 1.5: Percentage of Market Shares wM = (w1(µ0), w2(µ0), w3(µ0)) as function of risk-free rate µ0.
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1.3.1 Derivation of the Market Portfolio

Here we derive the formula for the market portfolio. The mathematical problem is following minimization
problem: Given µ0, µ ∈ R,u ∈ Rm, C ∈ Rm×m, find (θ,w) ∈ R1+m that

minimize θ2wCw∗ subject to (1− θ)θµ0 + θwu∗ = µ, w1∗ = 1. (1.11)

We consider the Lagrangian

L(θ,w, λ1, λ2) := 1
2θ2wCw∗ − λ1{(1− θ)µ0 + θwu∗} − λ2{w1∗ − 1}.

If we have a minimizer (θ,w), then for some Lagrange multiplier λ1, λ2, (θ,w, λ1, λ2) is a critical point
of L, i.e.

∂L

∂θ
= 0,

∂L

∂wi
= 0 (i = 1, · · · ,m),

∂L

∂λ1
= 0,

∂L

∂λ2
= 0.

This leads to the following system of equations





θwCw∗ = λ1(wu∗ − µ0),

θ2wC = λ1θu + λ21,

µ = (1− θ)µ0 + θwu∗

w1∗ = 1

(1.12)

Multiply on right the second equation by w∗ and subtract the resulting equation from the first equation
multiplied by θ we obtain

0 = λ1(wu∗ − µ0)θ − λ1θuw∗ − λ21w∗ = λ1θµ0 − λ2

since wu∗ = uw∗ and 1w∗ = w1∗ = 1. Hence, λ2 = −λ1θµ0. Consequently, multiplying the second
equation by (θ2C)−1 from the right we obtain

w = (λ1θu + λ21)C−1θ−2 = λ1θ
−1(u− µ01)C−1 =

(u− µ01)C−1

(u− µ01)C−11∗

where the last equation os obtained by using w1∗ = 1 which implies θ/λ1 = (u− µ01)C−11∗.

Exercise 1.15. Assume that u 6= µ01 and that C is positive definite. Show that for each µ ∈ R, the
minimization problem (1.11) admits at least one solution. Consequently, the calculation using the method
of Lagrange multiplies shows that the solution is unique.

Also show that λM in (1.8) is attained at µ in (1.9). Also, from (1.9), derive (1.10). Finally, derive
a formula for λM .

Exercise 1.16. Explain what would happen if µ0 > µ∗. Also explain that in reality it is unlikely that
µ0 > µ∗.

Exercise 1.17. Consider a betting wheel divided into 3 sectors with payoffs $1,$4 and $12 and chances
0.7, 0.20 and 0.10 respectively. The game is to place a chip on one of the segment and win the designated
amount if the segment appears after a spin and win nothing otherwise.
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$1

$12

$4

A Betting Wheel

Suppose you have 1000 chips, each chip cost $0.80.
(1) How can one place the chips so that the amount to win is independent of the outcome? What is

the risk-free rate of the return for the wheel?
(2) Consider the investment plans: (A) put chip on $1 awards segment, (B) put chip on $4 awards

segment, and (C) put chip on $12 awards segment. Find the expect return and risk of each investment.
Also calculate the correlation matrix.

(3) Find the efficient frontier. [Assume that there is no shorting.]

Exercise 1.18. Consider a market system consists of three assets with parameters given in Exercise 1.12.
(a) Assume the risk-free rate is 0.2. Plot the Markowitz curve and the Capital Market line.
(b) Assume the risk-free rate is 0.1. Plot the Markowitz curve and the Capital Market line.
(c) Let µ0 be a free parameter. Write the weight of the market portfolio as wM = (w1(µ0), w2(µ0), w3(µ0)).

Plot the three curves w1(µ0), w2(µ0), w3(µ0).

1.4 The Market Portfolio and Risk Analysis

According the CAPM, any rational investor will invest in the market according to efficient portfolios
that consist of a 1 − θ portion of risk-free asset and the remaining θ portion of risky assets, where θ

is a parameter chosen according to the individuals willingness to take the risk to enhance the expected
return according to µ̂ = µ0 + λM σ̂. The most amazing conclusion is that in the portion of the risky
assets, the relative weight of the distribution of investment among a1, · · · , am is given by (1.10). This
weight is universal in the sense that it is independent of any individual investor.

That everybody invest according to the CAPM theory has profound consequences.

(a) The market has to contain all assets. Since if an asset ai is not in the portfolio (e.g. the
associated component wi

M in the weight in wM = (w1
M , · · · , wm

M ) is zero), then no one will want to
purchase (suggested by the CAMP model) so the asset will wither and die, thus out of market.

(b) If everyone purchases the same mutual fund of risky assets, then the total of this fund must
match the capitalization weights, being the proportions of each individual asset’s total capital value
to the total market capital value.
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How could capitalization weight equal to the relative weight of risky assets in the efficient portfolio?
The answer is based on an equilibrium argument. If, based on (1.10), there is a large demand of
one particular asset thereby causing short supply, its price will arise, thereby decreasing its rate of
return. Similarly, assets under light demand has to decrease its price thereby increase the return. The
price change affect the estimates of the assets return directly and also the weights (1.10) in the efficient
portfolio. This process continues until demand, base on the market portfolio calculated from the CAPM,
exactly matches supply; that is, it continues until there is equilibrium. Under equilibrium, the percentage
of market share of each asset is exactly the weight of the asset in the market portfolio.

Though this argument has a degree of plausibility and weakness, for the time we shall be content
with it. Thus, we assume that the capitalization weight equals the minimum risk weight given in (1.10)
and call the corresponding portfolio on risky assets the market portfolio. More precisely,

the market portfolio is the portfolio on risky assert with weight given by (1.10).

(c) Under a market equilibrium, the market portfolio has no unsystematic risk—this risk has
been completely diversified out. Here unsystematic risk refers to those risks that affects only individual
or localized group of assets. Thus, all risk associated with the market portfolio is systematic risk, i.e.,
the risk that affects all assets, such as a risk-free rate change, war, terrorism, etc.

To see why we have (c), we shall play around the equations derived from the CAPM.

In the previous sections, we calculated the market portfolio according to risk-free return rate, the
risky assets’ expect return and their covariance matrix. Now we want to see how the market portfolio
affects individual risky asset’s system risk.

For convenience, we use a row vector

R = (R1, · · · , Rm)

to denote all the random variables representing the returns of all risky assets (at end time). As the
market portfolio has weight wM , its return is the random variable

RM =
m∑

i=1

wMiRi = (R,wM ).

Hence, the market portfolio’s expected return µM and risk σ2
M can be calculated by

µM = E(RM ) = (u,wM ), σ2
M =

m∑

i=1

m∑

j=1

wMiCov(Ri, Rj)wMj = (wMC,wM ).

Now here comes the key to our calculation. The CAPM says that wM has to be that in (1.10), regardless
of the risk that each investor is willing to take. The expression in (1.10) can be written as

wM =
1
d

{
uC−1 − µ01C−1

}
, d := (u− µ01)C−11∗.

This implies that u = µ01+dwMC. This has two consequences, writing C = Cov(Rt,R) for simplicity,

(i) µM = (u,wM ) = (µ01 + dwMC,wM ) = µ0(1,wM ) + d (wMC,wM ) = µ0 + d σ2
M ,

(ii) u = µ01 + dwMCov(Rt,R)) = µ01 + dCov(RM ,R),

i.e. µk = µ0 + dCov(RM , Rk) ∀ k = 1, · · · ,m.
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Now consider the important constant

βk :=
Cov(Rk, RM )

σ2
M

.

(1) From the formulas we just derived, βk = (µk−µ0)/d
(µM−µ0)/d . Thus,

βk =
µk − µ0

µM − µ0
, µk − µ0 = βk(µM − µ0), µk = µ0 + βk(µM − µ0). (1.13)

This line µ = µ0 +β(µM −µ0) on the β-µ plane is called security market line (SML for short). Thus,
βk is the ratio of the risk premium µk − µ0 of the asset ak and the risk premium µM − µ0 of the
marker portfolio; that is, the risk premium of the asset ak magnifies the risk premium µM − µ0 of the
market portfolio by βk times. The last equation shows that the expected return of an asset is equal to
the return of the risk-free asset plus the risk premium βk(µM − µ0) of the asset.

It is worthy to point that there is a β book [19] that gives estimates on company’s β values. Of
course, the book has to be updated from time to time.

(2) Let’s see what βk really is. Decompose Rk as

Rk = βkRM + εk

Then

Cov(εk, RM ) = Cov(Rk − βkRM , RM ) = Cov(Rk, RM )− βkσ2
M = 0.

Thus, βk is the slope of the best linear predicator for the linear regression of Rk with respect to RM :

Var(Rk − βkRM ) = min
β∈R

Var(Rk − βRM ). (1.14)

(3) Now it is easy to calculate

σ2
k = Cov(Rk, Rk) = β2

kCov(RM , RM ) + Cov(εk, εk) = β2
kσ2

M + Var(εk).

This equation indicates that the risk σ2
k of the asset ak can be decomposed into two parts: β2

kσ2
M , called

the systematic risk, and Var(εk), called the unique risk or unsystematic risk of the particular
asset; the former depends only on the whole market system whereas the latter depends only on the
individual asset (recall Cov(RM , εk) = 0).

(4) Once we know the meaning of βk, we can understand better the security market line (1.13).

An asset’s expect return µk = βk(µM − µ0) + µ0 depends only on the asset’s system risk β2
kσ2

M and
does not depend on its unique risk Var(εk).

(5) That Cov(RM , εk) = 0 for all k = 1, · · · , n states the following:

The market portfolio has no unsystematic risk, i.e., its expected return does not depend on each
individual’s unique risk Var(εk). All risk associated with the market portfolio is systematic risk.

Finally, if an efficient portfolio consists of β portion of market portfolio and 1−β portion of risk-free
asset, then its expected return µ and risk σ are given by µ = µ0 + β(µM − µ0) and σ2 = β2σ2

M . From
here, we see that any efficient portfolio does not contain any non-system risk.

We can also explain the consistency of our conclusion with a market equilibrium theory.
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(1) The market portfolio has risk σ2
M and expected return µM . The portion µM − µ0 > 0 is the

“bonus” expected from taking the risk σ2
M . The expected return µM is considered by public as reasonable

under risk σ2
M .

(2) For a particular asset ak with βk < 1, its systematic risk β2
kσ2

M is smaller than the risk of the
market portfolio, so its expected return µk is smaller than the expect market portfolio return µM since
µk−µ0
µM−µ0

= βk < 1. This is reasonable under the following principal in market equilibrium:
(a) if an asset has risk smaller and expected return larger than that of the market portfolio, then

more people will buy it and hence raising its price and lowing its expect return.
(3) For a particular asset with βk > 1, its systematic risk β2

kσ2
M is larger than the risk σ2

M of the
market portfolio, so its expect return µk is large than that of the marker portfolio since µk−µ0

µM−µ0
= βk > 1.

This make sense—the more the systematic risk in an asset the higher should be its expected return under
another principal of the market equilibrium:

(b) if an asset is return less than the market feels is reasonable with respect to the asset’s perceived
risk, then no one will buy that asset and its price will decline thus increasing the asset’s return.

We formalize the discussion in to the following:

Theorem 1.5 Let RM be the market portfolio’s return with expected return µM = E(RM )

and risk σM =
√

Var(RM ), under risk-free rate µ0. Then for each individual asset ak in the system

with return Rk, expected return µk = E(Rk) and risk σk =
√

Var(Rk), there is a constant, denoted

by βk (that is attained by the driving force of the market equilibrium dynamics) such that

µk − µ0 = βk(µM − µ0), σ2
k = β2

kσ2
M + Var(εk),

Cov(εk, RM ) = 0, Rk = βkRM + εk.

In particular, any efficient portfolio consists of a certain β portion of market portfolio and 1 − β

portion of risk-free asset and has expected return µ and risk σ given by

µ = µ0 + β(µM − µ0), σ = |β| σM .

Any efficient portfolio does not contain any non-system risk.

Finally, we introduce two important indexes used in finance community:

Jensen Index Jk = µk − µ0 − βk(µM − µ0),

Sharp index λk =
µk − µ0

σk

Theoretically, Jk = 0. The real data Jk thus measures approximately how much the performance
of an asset has deviated from the theoretical value of zero. A positive value of Jk presumably implies
that the fund did better than the CAPM prediction (but of course we recognize that approximations are
quite often introduced by insufficient amount of data to estimate the important quantities).

The Shape index measures the efficiency of risk premium of an asset. A lower value of the index
implies that the fund is probably insufficient. We note that for the market portfolio and any efficient
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portfolio, their sharp index is λM = (µM − µ0)/σM , which is the slope of the capital market like, or the
market price of risk; cf. (1.9).

Example 1.10. Consider the system of three risky assets as in Example 1.7. Assume that the riskless
return is µ0 = 7%. Then the weight wM , return µM , and risk σM of the market portfolio is

wM =
(u− µ01)C−1

(u− µ01)C−11∗
= (0.55, 0.15, 0.3), µM = wMu∗ = 0.092, σM =

√
wMCw∗

M = 0.0877.

The beta values of the three assets are given by

(β1, β2, β3) =
wMC
σ2

M

= (0.4545, 0.454545, 2.27).

One can check that

u− µ01 = (0.01, 0.01, 0.05), (µM − µ0)(β1, β2, β2) = (0.01, 0.01, 0.05).

Hence, µi − µ0 = βi(µM − µ0) for i = 1, 2, 3. That is, the Jensen index of each asset is zero.
The Sharp indexes of all assets are

(λ1, λ2, λ3, λM ) =
(µ1 − µ0

σ1
,
µ2 − µ0

σ2
,
µ3 − µ0

σ3
,
µM − µ0

σM

)

= (0.07, 0.05, 0.167, 0.25).

Clearly, the market portfolio has the largest Sharp index, or market price of risk.

The Pricing Formula

The CAPM is a pricing model. We now see why.

First of all, the market is driven by demand according to which asset’s share price changes. Take an
extreme example. Suppose the weight of a stock is negative in the market portfolio; then, according to
the CAPM theory, everybody will short sell it. This will drive its price down and consequently increases
its return. When price is down to certain level (equivalently the return is increased high enough), the
new calculated market portfolio’s weight will be positive.

Thus, under the assumption that the market is at equilibrium, we can use certain index fund as a
reasonably accurate approximation of the market portfolio to calculate the “true” value of each individual
asset in the system thereby determining if it is over priced (due to large demand) or underpriced (due
to low demand).

Suppose an asset is purchased at price P and later sold at price Q. The return is R = (Q− P )/P .
Here P is known and Q is a random variable. Under certain assumption, we may reasonably believe
that Q is independent of the price P . The price is in certain way artificial (driven by demand). The
fair price of an asset should be judged by its revelation value Q at end of the period. The CAPM uses
exactly the information on Q to find its fair price P , at least theoretically.

This is in certain way analogous to an auction process during which a property to be auctioned does
not change any bit whereas its price may change significantly.

Putting R = (Q− P )/P in the CAPM formula, we have

µ = E(R) =
E(Q)

P
− 1 = µ0 + β(µM − µ0).
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Solving P gives price formula of the CAPM

P =
E(Q)

1 + µ0 + β(µM − µ0)

where β is the beta of the asset.
The pricing formula is indeed a linear formula: It depends linearly on Q. To see why, we notice

that

β =
Cov(R, RM )

σ2
M

=
Cov(Q/P − 1, RM )

σ2
M

=
Cov(Q,RM )

Pσ2
M

.

Substitute this in the pricing formula we then obtain the following certainty equivalent pricing
formula:

P =
1

1 + µ0

{
E(Q)− (µM − µ0)Cov(Q,RM )

σ2
M

}
.

Exercise 1.19. Suppose the risk-free rate is 3% and the market portfolio’s expected return rate is 12%.
Consider the following assets

Asset a1 a2 a3 a4 a5

β 0.65 1.00 1.20 −0.20 −0.60
Find for each asset, the expected return that the asset will be arriving under market equilibrium.
Suppose we find that the (historical) expected returns of these assets are 9%, 11%, 13.8%, 2%,−2%

respectively. Find their Jensen Indexes.

Exercise 1.20. Given two random variables Y and X. The linear regression line of Y with respect to X

is the line y = βx + α such that

E
(
(Y − α− βX)2

)
= min

a,b∈R
E

(
(Y − a− bX)2

)
.

Show that the linear regression line has slope β = Cov(Y, X)/Var(X) and y-intercept α = E(Y − βX).
Show that βk satisfied (1.14).

Exercise 1.21. Suppose our market system consists of a risk-free asset with return rate 3%, and three
risky assets with the following parameters:

Mean Return Cov(Ri, Rj)

Asset a1 a2 a3

a1 0.1 0.04 -0.006 0.016
a2 0.2 -0.006 0.09 0.024
a3 0.3 0.016 0.024 0.14

(a) Calculate the weight of the market portfolio. Also, find the minimum risk for a 5% return.
(b) Fine β for the market portfolio, as well for each individual assets.
(c) Find the Sharp index for each asset and for the market portfolio. Verify that the Jensen index

is zero for each asset.
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1.5 Arbitrage Pricing Theory

The information required by the mean-variance theory grows substantially as the number m of assets
increases. It requires m means and a total of m(m + 1)/2 variances and covariances. If m = 1000, then
we need 501, 500 parameters. It is a formidable task to obtain this amount of information directly. We
need a simplified approach.

It is believed that one can sort out a few factors so that the returns of all assets can be traced back
to these factors. A factor model that represents this connection between factors and individual returns
leads to simplified structure and provides important insight into the relationship among assets.

The factor model framework leads to an alternative theory of asset pricing, termed arbitrage
pricing theory (APT), originally devised by Ross [25]; for a practical application, see [2]. This theory
does not require the assumption that investors evaluate portfolio on the basis of mean and variance; only
that, when return are certain, investors prefer greater return to lesser return. In this sense the theory is
much more satisfying than CAPM theory which relies on both the mean-variance framework and strong
version of equilibrium—assuming everyone used the mean-variance framework.

1. Single–Factor model

Single-factor model assumes that there is a single factor that affects all assets’s performance and
all assets are correlated to each other through this single factor. Though simple, it illustrate the concept
quite well.

Suppose there are m assets a1, · · · , am, whose returns are related by

Ri = bif + ei, i = 1, · · · ,m (1.15)

where bi’s are fixed constants, f is a random variable describes the system’s overall behavior, and ei are
individual factors. It is assumed that all e1, · · · , em, f are uncorrelated:

Cov(ei, ej) = 0, Cov(ei, f) = 0 ∀ i, j = 1, · · · , n, j 6= i. (1.16)

From these relations, one obtains

bi = Cov(ri, f)/σ2
f , σ2

f := Var(f),

µi = ai + biµf , µi = E(Ri), µf := E(f), ai := E(ei),

σ2
i = b2

i σ
2
f + σ2

ei
, σ2

i := Var(Ri), σ2
ei

= Var(ei),

σij = bibjσ
2
f , σij := Cov(Ri, Rj), i 6= j,

These equations reveal the primary advantage of a factor model: In the usual representation of asset
returns, there are only a total of 3n + 2 parameters, those of ai’s bi’s, σ2

ei
’s, and µf and µ2

f .

Now suppose a portfolio has weight w = (w1, · · · , wm) where
∑

wi = 1. Then its return can be
calculated by

R =
∑

wiRi =
∑

wibif +
∑

wiei = bf + e

where b =
∑

wibi =: (w,b) and e =
∑

wiei = (w, e). Consequently,

µ := E(R) = a + bµf , a =
∑

wiE(ei), b =
∑

wibi,

σ2 := Var(R) = b2σ2
f + σ2

e ,

σ2
e2 := Var(

∑

i

wiwi) =
m∑

i=1

w2
i σ2

ei
.
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It is worthy noting that σ2
e should be quite small. For example, it we take wi = 1/m and assume

that σ2
ei

= s2 for all i. Then

σ2
e = s2/m.

That is to say, by diversification, the non-system risk is more or less eliminated. Of course, the system
risk b2σ2

f cannot be eliminated since the factor f influences every asset. The risk due to the ei’s are
independent and hence can be reduced by diversification.

We leave the corresponding Markowitz theory and CAPM theory as an exercise.
We have already seen that the CAMP model ends up

Ri = βiRM + ei

where RM is the return of the market portfolio. Thus, CAMP model can be regarded as a factor model.

2. Arbitrage Pricing Theory

Now assume that there are exactly n factors f1, · · · , fn that influence the return of each asset; that
is we assume that the return Ri of asset ai is given by

Ri = bi1f1 + · · · , +binfn + ei (1.17)

where same as before, all ei’s and fj ’s are uncorrelated:

Cov(ei, ej) = 0, Cov(ei, fk) = 0, Cov(fk, fl) = 0 ∀ i, j, k, l, i 6= j, k 6= l. (1.18)

Here we remark that in application, the number of assets could be couple of thousands, whereas factors
could be only a handful.

Theorem 1.6 (Simple APT Theorem) Suppose there are m assets whose returns are governed

by n < m factors according to (1.17) where ei are constants. Then there are m + 1 constants

µ0, λ1, · · · , λn such that

µi = µ0 + bi1λ1 + · · ·+ binλn ∀i = 1, · · · , n.

This result is highly non-trivial since all constants e1, · · · , em reduce to a single constant µ0.

Proof. Set 1 = (1, · · · , 1), u = (µ1, · · · , µm) and bk = (b1k, · · · , bmk), k = 1, · · · , n

Suppose (w,1) = 0 and (w,bk) = 0 for all k = 0, · · · , n. Consider the portfolio with weight w. Its
initial value if (w,1)V0 = 0 and is risk-free. Hence its return is also zero. This implies that (w,u) = 0.
That u is perpendicular to every vector w that is perpendicular 1,b1, · · · ,bn. This implies that u is a
linear combination of 1,b1, · · · ,bn. This concludes the proof.

The existence of µ0 is the beauty of the theory. Imaging there are thousands of different well-
diversified portfolios (e.g. mutual funds), each being essentially no unsystematic risks. These portfolio
form a collection of assets, the return on each satisfying a factor model with error. We therefore can
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apply APT to conclude that there are constants µ0, λ1, · · · , λn such that the well-diversified portfolio
having a rate

R = bifi + · · ·+ bnfn + e

with the expected return

µ = µ0 + b1λ1 + · · ·+ bnλn.

Here the simple APT theorem applies since the mutual fund is so diversified that it is basically free of
unsystematic risks, i.e. Var(e) ≈ 0.

Since various well-diversified portfolios can be formed with weights that differ on only a small
number of assets, it follows that these individual assets must also satisfies

µi = µ0 + bi1λ1 + · · ·+ binλn.

(This argument is not completely rigorous, but can be articulated to make more convincing.)

Finally, if we embed the CAPM model into this multi-factor frame work, we have

Ri = bi1f1 + · · ·+ binfn + ei

and

Cov(RM , Ri) = bi1Cov(RM , f1) + · · ·+ binCov(RM , fn).

Here the term Cov(RM , ei) is dropped since if the market portfolio represents a well-diversified portfolio,
it will essentially uncorrelated with non-system error ei. Hence,

βi = bi1βf1 + · · ·+ binβfn , βfi := Cov(RM , fi)/σ2
M .

That is to say, the overall beta of the asset can be considered to be made up from underlying factor
betas that do not depend on the particular asset. The weight of these factor betas in the overall asset
is equal to the factor loading. Hence in this framework, the reason that different assets have different
betas is that they have different loadings.

Example 1.11. Assume a single factor model and that the market portfolio consists of w1 = 20%, w2 =
30% and w3 = 50% of three assets a1, a2, a3 respectively. Suppose µ0 = 0.05, µM = 0.12 and β1 =
2.0, β2 = 0.5 and β3 = 1.0. Find the expected return µi of the asset ai.

Solution. Assume the single factor is f . By scaling, we can assume that βf = 1 so that βi = bi.
By the Simple APT theorem, there exists λ such that

µi = 0.05 + βiλ, i = 1, 2, 3.

Also, we know that

0.12 = µM = w1µ1 + w2µ2 + w3µ3 = 0.05 + λ
∑

wiβi = 0.05 + 1.05λ.

Hence, λ = 0.07/1.05 = 0.0667 and

(µ1, µ2, µ3) = 0.05(1, 1, 1) + (β2, β2, β3)λ = (18.3%, 8.3%, 11.67%).
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Exercise 1.22. Assume the single factor model (i.e. (1.15) and (1.16) hold).
(1) Calculate the Markowitz efficient frontier, as well the two funds in the Two Fund Theorem.
(2) Using the CAPM theory, calculate the market portfolio. Also, calculate the βk for each asset ak.
(3) Suppose σ2

i < s2 for all i. Let RM be the return of the market portfolio. Find the limit of RM

as m →∞. What is the relation between the market portfolio and the single factor?

Exercise 1.23. Suppose risk-free rate is µ0 = 10% and two stocks are believed to satisfy the two-factor
model

R1 = 0.01 + 2f1 + f2, R2 = 0.02 + 3f1 + 4f2.

Find λ1, λ2 in the simple APT theorem.

Exercise 1.24. Someone believes that the collection of all stocks satisfy a sing-factor model whose single
factor is the market portfolio that gives information needed for three stocks A,B, C. Assume that risk-
free rate is 5%, market portfolio’s expected return is 12% with standard deviation 18%. Information on
the portfolio is as follows:

Stock Beta σei weight
A 1.10 7.0% 20%
B 0.80 2.3% 50%
C 1.00 1.0% 30%

Find the portfolio’s expected return and its standard deviation.

1.6 Models and Data

Mean-variance portfolio theory and the related models of the CAPM and APT are frequently applied to
equity securities (i.e. publicly traded stocks). Typically when using mean-variance theory to construct
a portfolio, a nominal investment period, or planning horizon, is chosen, say one year or one month, and
the portfolio is optimized with respect to the mean and the variance for the period. However, to carry
out this procedure, it is necessary to assign specific numerical values to the parameters of the model: the
expected and the variance of those returns, and covariance between the returns of different securities.
Where do we obtain these parameter values?

One obvious source is historical data of security returns. This method of extracting the basic
parameters from historical return data is commonly used to structure mean-variance models. It is a
convenient method since suitable sources are readily available. Are they reliable?

Here we shall investigate the statistical limitation in extracting parameters, which we call blur
of history. It is important to understand the basic statistics of data processing and this fundamental
limitation.

1.6.1 Basic Statistics

Suppose R is a random variable, with mean µ and variance σ2. The purpose here is to use observations
to estimate µ and σ. For this, we make n observations and record the values of R by {ri}n

i=1. It is a
quite standard procedure that one uses the following as approximations of µ and σ2:

µ̄ :=
1
n

n∑

i=1

ri, σ̄2 =
1

n− 1

n∑

i=1

(ri − µ̄)2.
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Now our question is how accurate is the estimation

µ ≈ µ̄, σ ≈ σ̄?

To answer such a question, let’s suppose that the n observations are independent; more precisely,
assume that {ri}n

i=1 are i.i.d. (independently identically distributed) random variables, with the same
distribution as that R.

Given an interval [a, b], we intend to calculate the probability

p := Prob(µ− µ̄ ∈ [a, b]) = Prob(µ ∈ [µ̄ + a, µ̄ + b]).

The interval [µ̄ + a, µ̄ + b] is called a confidence interval of µ with confidence level p.
Similarly, the confidence level of the interval [σ̄ + a, σ̄ + b] for σ is

p := Prob(σ − σ̄ ∈ [a, b]) = Prob(σ ∈ [σ̄ + a, σ̄ + b]).

Quite often, one first chooses a confidence level p and then find an ε such that the p-confidence
interval has length b− a = 2ε.

Now suppose R is normally distributed with mean µ and variance σ2. Then µ̄ is normally distributed
with mean µ and variance σ2/n; that is,

√
n(µ−µ̄)/σ is N(0, 1) (normal with mean zero and unit variance)

distributed. Hence,

P (z) :=
∫ z

−z

e−s2/2ds√
2π

= Prob
(√n(µ− µ̄)

σ
∈ [−z, z]

)
= Prob

(
µ ∈ [µ̄− zσ/

√
n, µ̄ + zσ/

√
n]

)
.

That is to say, the P (z)-confidence interval for µ is [µ̄− ε, µ̄ + ε] where

ε =
σ z√

n
.

We list the relation between z and P (z). Quite often, the value z is expressed as a function of q

where q = (1− p)/2 is the area of the region under the curve y = e−x2/2/
√

2π for x in [z,∞).

zq 1 2 3 1.28 1.64 1.96 2.57 3.29 3.89 4.42

P (z) 68.3% 95.5% 99.7% 80% 90% 95 % 99% % 99.9 % 99.99% 99.999%

q 0.1 0.05 0.025 0.005 0.0005 0.00005 0.000005

Example 1.12. (1) Suppose σ = 25 and the mean of 20 samples is 112. Taking p = 90%, the z-value
is z = z0.05 = 1.64. Hence,

With 90% confidence, the mean is in the interval 112± 1.64 ∗ 25/
√

20, i.e. [103, 121].

(2) Suppose in a poll the 95 % confidence interval of percentage of population supporting a candidate
is 39%± 3%. We report as follows,

“the pool indicates that 39% population supports the candidate, where sample error is ±3%.”
(3) Consider a poll investigating the percentage of population supporting a bill. Suppose σ = 0.2 =

20% and ε = 0.03 = 3%. To achieve a 95% confidence interval of width 2ε = 6%, the sample size needs
to be, since z = 1.96, n ≥ N := (zσ/ε)2 = (1.96 ∗ 0.2/0.03)2 = 171. Namely, at least 171 people need to
be asked to obtain the percentage of population supporting the bill, with sample error ±3%.
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Remark 1.1. 1. Here the z-test is based on the central limit theorem. The distribution for z =
(µ̄−µ)/(σ

√
n) is exactly N(0, 1) if ξ1, · · · , ξn are normally distributed i.i.d random variables. If they are

not normally distributed, we need to make sure n is not too small, so the deviation of the distribution
of z from N(0, 1) is not a significant factor to our conclusions.

2. In most cases σ is not known. To find confidence interval, one uses the estimator σ̄ to replace σ.
It is shown by William Sealy Gosset in 1908 under the name of Student that the statistics

t :=
µ̄− µ

σ̄/
√

n

has the distribution now called student t-distribution, with n − 1 degree of freedom. Hence, the p-
confidence interval for µ is [µ̄− ε, µ̄ + ε] (or µ̄± ε) where

ε =
σ̄t√
n

.

Here t is to be found from the Student-t distribution table. When n ≥ 10, one can use the approximation
t ≈ z.

To find the confidence interval for the variance, we can use the Cochran’s theorem which says that if
{ri}n

i=1 are i.i.d N(µ, σ2) distributed, then (n−1)σ̄2/σ2 is Chi square distributed with degree of freedom
n− 1:

(n− 1)
σ̄2

σ2
∼ χ2

n−1.

The Chi square distribution with k freedom has density function

(1/2)k/2

Γ(k/2)
xk/2−1e−x/2, x > 0.

Fisher showed that if X ∼ χ2
k, then

√
2X − √

2k − 1 is approximately N(0, 1) distributed when
k À 1. Thus, when n is larger,

√
2(n− 1)

{ σ̄

σ
−

√
2n− 3
2n− 2

}
∼ N(0, 1). (1.19)

Hence, when n À 1, the p-confidence interval is approximately
[ σ̄

1 + z/
√

2n
,

σ̄

1− z/
√

2n

]

where z = zq with q = (1− p)/2.

Example 1.13. If we use the approximation (1.19), we find that the p-confidence interval for σ is
[σ̄/(1 + z/

√
2n), σ̄/(1 + z/

√
2n].

Suppose the sample variance is calculated as σ̄ = 0.20. When p = 95%, z = z0.025 = 1.95996.
Hence, the 95% confidence interval for σ is

[0.1566, 0.2767] if n = 25, [0.1839, 0.2192] if n = 250, [0.1946, 0.2057] if n = 2500.

Similarly, if p = 90% so z = z0.05 = 1.64449, the confidence interval is

[0.162, 0.261] if n = 26, [0.186, 0.216] if n = 251, [0.195, 0.205] if n = 2500.
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Using Mathematica’s ”Statistics ConfidenceIntervals” pacakege, we find the following:

Sqrt[ ChiSquareCI[0.04, 25, ConfidenceLevel → 0.95] ]={0.1569, 0.2761]},
Sqrt[ ChiSquareCI[0.04, 250, ConfidenceLevel → 0.95] ]={0.1839, 0.2192]},
Sqrt[ ChiSquareCI[0.04, 2500, ConfidenceLevel → 0.95] ]={0.1946, 0.2057]}.

This result is the same as above Fishes’ approximation. Similar accuracy works also for confidence level
= 90%.

It is convenient to write an interval [a − ε, a + ε] as a ± ε. Hence, when n = 2500 and confidence
level 95%, we can say

σ = 0.200± 0.006.

Finally, we consider the correlation coefficient ρ̄12 of two sample data {x1k}n
k=1 and {x2k}n

k=1

ρ̄12 :=
S12√
S11S22

, Sij :=
1

n− 1

n∑

i=1

(xik − x̄i)(xjk − x̄j), x̄i =
1
n

n∑

k=1

xik.

Then ρ̄12 has the density

f(x; ρ) =
Γ(n− 1)Γ(n− 2)√

2πΓ(n− 1/2)
(1− ρ2)(n−1)/2(1− ρx)1/2−n(1− x2)n/2−2

2F1

(
1
2 , 1

2 ; n− 1
2 ; 1

2 (1 + xρ)
)

where 2F1 is hypergeometric function.
It is rather complicated to obtain the confidence interval from the above density function. Quite

often, we use approximations. First let define

ξ̄ = tanh−1(ρ12 = 1
2 log

1 + ρ̄12

1− ρ̄12
, ξ := tanh−1(ρ).

Then

√
n− 1(ξ̄ − ξ) −→ N(0, 1) as n →∞.

Thus, the p-confidence interval for ξ is approximately [ξ̄ − z√
n−1

, ξ̄ + z√
z−1

]. Further results shows that
a reasonably good asymptotic confidence interval for ρ12 = Cor[x1, x2] is

[
tanh

(
tanh−1(ρ̄12)− z√

n− 3

)
, tanh

(
tanh−1(ρ̄12) +

z√
n− 3

)]

where z is the z value for N(0, 1) distribution mentioned earlier.

Example 1.14. Suppose ρ̄12 = 0.9 with n = 3000, we have 95% confidence interval

ρ12 ∈
[
tanh

(
tanh−1(0.9)− 1.95996√

2997

)
, tanh

(
tanh−1(ρ12) +

1.95996√
2997

)]
= [0.8930, 0.9066].

1.6.2 Stock Returns

We investigate how we can extracting the expected return rate and variance of a security from historical
data. For simplicity, we use continuously compounded rate.
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Suppose the security under investigation time period [0, T ], with unit time being one year, has
time invariant expected return rate ν and variance σ2; that is, denote by St the unit share price of the
security, we have

St = St−1e
r(t), E(r(t) ) = ν, Var(r(t)) = σ2 ∀ t ∈ [1, T ].

Now suppose each year is divided into p periods of equal length and we have T years of historical
data on the beginning and ending points of these periods. For convenience, we use t0, t1, · · · , tpT for
these dates. Then we can write

tj = t0 + j∆t, j = 0, 1, 2, · · · , pT, ∆t =
1
p
.

We denote the corresponding period return rate by ri, i = 1, · · · , n. Then

Sti
= Sti−1e

ri

(
i.e. ri = ln

Sti

Sti−1

)
, i = 1, 2, · · · , pT

It is not unreasonable to assume that all ri are i.i.d random variables. Hence, we use µ∆t and σ2
∆t

to denote the expected value and variance of each ri. That is

ν∆t = E(ri), σ2
∆t = Var(ri) ∀ i = 1, 2, · · · , pT.

We investigate the relation between ν, σ and ν∆t, σ∆t. Pick any integer j such that 0 6 p ≤ j < pT .
We know

r(tj+p) :=
j+p∑

i=j+1

ri =
j+p∑

i=j+1

ln
Sti

Sti−1

= ln
Stj+p

Stj

= ln
S1+tj

Stj

.

represents the annual return rate. Hence,

µ = E(r(tj+p)) = E
( j+p∑

i=j+1

ri

)
=

j+p∑

i=j+1

E(ri) = pν∆t =
ν∆t

∆t
,

σ2 = Var(Rj+p) = Var
( j+n∑

i=j+1

ri

)
=

j+p∑

j=i+1

Var(ri) = pσ2
∆t =

σ2
∆t

∆t
.

Thus we have the following scaling law:

Lemma 1.1. Suppose r1, r2, · · · , rpT are i.i.d. random variables representing the return in ∆t = 1/p

period in T units time. Let r be the corresponding return in unit time. Then the mean and variance
obeys

ν∆t = ν∆t, µ := E(r), µ∆t := E(ri) ∀ i = 1, · · · , pT,

σ2
∆t = σ2∆t, σ2 := Var(r), σ2

∆t := Var(ri) ∀i = 1, · · · , pT.

Now we see the error in using the following estimators for ν and ν∆:

ν̄ :=
1
T

pT∑

i=1

ri, ν̄∆t =
1

pT

pT∑

i=1

ri = ν̄∆t.

We calculate,

E(ν̄) =
1
T

pT∑

i=1

E(ri) = ν,

Var(ν̄) =
1

T 2

pT∑

i=1

Var(ri) =
pTσ2

∆t

T 2
=

σ2

T
,

SD(ν̄) =
√

Var(ν̄) =
σ√
T

.
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Similarly,

ν̄∆t = ν̄ ∆t, Var(ν̄∆t) = Var(ν̄)(∆t)2 =
σ2

p2T
, SD(ν̄∆t) =

σ

p
√

T
=

σ∆t√
T

.

Now lets put a few numbers into these formulas.

Example 1.15. We take a quite typical annul return rate ν = 12% and standard deviation σ = 15%.
(1) Take p = 12 so ∆t = 1 month. Hence, the monthly rate is ν∆t = 1% with deviation σ∆t =

σ/
√

12 = 4.33%. Thus, in a typically month, the monthly return rate is 1% subject to a 4.33% deviation,
which is large than the expected rate itself.

(2) Suppose we take p = 250, the average number of trading days in a year, then the average
daily return is 12%/250 = 0.048%, whereas the standard deviation is 15%/

√
250 = .95%. This result is

consistent with with out ordinary experience. On any given day, a stock value may easily move 0.5%
or 2%, whereas the expected change is only about 0.05%. The daily mean is low compared to the daily
fluctuation.

(3) Suppose we use one year of monthly data, i.e. T = 1 and p = 12. Then we have SD(ν̄∆t) =
σ/
√

12 = 1.25%. We are only able to say the mean is 1% plus or minus 1.25%. The following is a sample
list of 8 year’s of average monthly return rate, with true mean being 1%:

3.02, .52, 1.67, 0.01, 1.76, 2.06, 1.37, .17 Average : 1.37%

(4) In order to obtain a reasonably good estimation, we need a standard derivation of about one-
tenth of the mean value itself. This would require T = (4.33 ∗ 10)2 = 1875 month or 156 years of data,
which is impossible since there is no way the expected monthly rate being a constant for such a long
time!

(5) If we use 9 years of data to estimate ν by ν̄, the standard deviation is SD(ν̄) = σ/
√

T =
15%/

√
9 = 5%. Thus, even with 9 years of data, we still can only say (with very lower confidence), that

the expected annul return rate is 12%±5%.

From the example, we see that there is a statistical limitation on the measurement of data. The lack
of reliability is not due to the faulty data or difficult computation, it is due to a fundamental limitation
on the process of extracting estimates.

This is the historical blur problem for the measurement of ν. It is basically impossible to measure ν

by ν̄ to within workable accuracy using historical data. Furthermore, the problem cannot be improved
much by changing the period of length. If longer period are used, each sample is more reliable, but fewer
independent samples are obtained in any year. Conversely, if smaller periods are used, more samples
are available, but each is worse in terms of ratio of standard deviation to mean value. This problem of
mean blur is a fundamental difficulty.

We remark that the variance σ∆t or σ2 = σ2
∆t/∆t can be reasonably well approximated by the

estimator

σ̄2
∆t =

1
pT − 1

pT∑

i=1

(ri − ν̄∆t)2, σ̄2 =
σ̄2

∆t

∆t
=

p

pT − 1

pT∑

i=1

(ri − ν̄∆t)2.

For example, suppose the return rate is a Brownian motion, then each ri is normally distributed. We
found that

SD(σ̄2
∆t) =

√
2σ2

∆t√
pT − 1

=
√

2σ2

p
√

pT − 1
, SD(σ̄2) =

√
2σ2

√
pT − 1

.
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For example, if we take one year data, then the standard deviation of σ̄2
∆t is

√
2∗(15%)2/(12∗√11) =

0.0008. Thus, we know that σ2
∆t is approximately 0.001875±0.0008. This renders to the estimate monthly

variance being or 4.33%± 1%. If 9 years of data are used, we can say σ∆t = 4.33%± 0.3%. In terms of
σ = σ∆t

√
12, we can say that σ = 15%± 1%. If daily returns are used, the estimate is even better.

Example 1.16. Tables 1.1–1.3 illustrate the mean and volatility and their confidence intervals, with
various methods of sampling, for IBM. The unit for mean is 1/year and unit for volatility is 1/

√
year.

Here for simplicity, we assume that there are 5 trading days per week, 21 trading days per month,
and 252 trading days per year. Main codes, written in mathematica, are illustrated as follows:

〈〈 Statistics ‘ConfidenceIntervals‘

date={“12/29/2006”,“12/28/2006”,“12/26/2006”,“12/21/2006”, · · · , “1/4/1962”,“1/2/1962”};
stockprice={96.68, 96.91, 95.37, 94.96, · · · , 2.82, 2.8};
timeintervalname={“2001–2006”, “1997–2006”, “1987–2006”, “1967–2006”};

timeinterval=252*{5, 10, 20, 40}; numberoftimeinterval=4;

methodname={“daily”, “weekly”, “monthly”, “annuly”}; numuerofmethod=4;

jump={1, 5, 21, 252};
Do[ d=jump[[j]]; n=timeinterval[[i]]/d;

return =Table[ Log[stockprice[[1+ k*d]]/stockprice[[1+(k+1)d]] ], {k, 0, n-1}];
dt=d/252; returnrate=return/dt;

meanreturnrate[i,j]=Mean[returnrate];

meanconfidenceinterval[i,j]=MeanCI[returnrate, ConfidenceLevel → 68%];

standarddeviation = StandardDeviation[returnrate];

varianceconfidenceinterval= VarianceCI[returnrate, ConfidenceLevel → 95%];

volatility[i,j]=standardderivation * Sqrt[dt];

volatilityconfidenceinterval[i,j]= Sqrt[varianceconfidenceinterval*dt],

{i,1,numberofmethod},{j,1,numberoftimeinterval}]

One concludes from the table that the confidence interval for the volatility shrinks as the time
interval of sampling shrinks. Nevertheless, the width of confidence interval for mean does not shrink as
time interval shrinks.

Exercise 1.25. Suppose ri = ν∆t + σ
√

∆t zi where z1, z2, · · · , are i.i.d. normally distributed random
variables with mean zero and variance one. Take ν = 10% and σ = 15% and ∆t = 1/250 (e.g. one day).

(i) Use a random number generator generating 10 years of daily rate of return: r1, r2, · · · , r2500.
(ii) Do statistics on the data, estimating annul rate ν of return and standard deviation σ. Also find

estimation intervals for ν and σ with a 70% confidence.

Exercise 1.26. Go through internet, find daily return rate of a particular stock or index, find its expected
annul rate of return and variance. Present your result in terms of confidence intervals.
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Table 1.1: IBM volatility (1/
√

year) and Its 95% Confidence Interval

Samples 2001-2006 1997-2006 1987-2006 1067--2006

daily
0.249

8 0.240, 0.260<
0.327

8 0.320, 0.340<
0.302

8 0.300, 0.310<
0.263

8 0.260, 0.270<

weekly
0.268

8 0.250, 0.290<
0.319

8 0.300, 0.340<
0.291

8 0.280, 0.300<
0.254

8 0.250, 0.260<

monthly
0.288

8 0.240, 0.350<
0.328

8 0.290, 0.380<
0.308

8 0.280, 0.340<
0.267

8 0.250, 0.290<

anully
0.282

8 0.170, 0.810<
0.328

8 0.230, 0.600<
0.304

8 0.230, 0.440<
0.278

8 0.230, 0.360<

Table 1.2: IMB mean return rate (1/year) and its 95% Confidence Interval

Samples 2001-2006 1997-2006 1987-2006 1067--2006

daily
-0.038

8-0.256, 0.180<
0.099

8-0.104, 0.302<
0.078

8-0.055, 0.210<
0.083

8 0.001, 0.164<

weekly
-0.038

8-0.274, 0.198<
0.099

8-0.099, 0.297<
0.078

8-0.050, 0.205<
0.083

8 0.004, 0.162<

monthly
-0.038

8-0.296, 0.220<
0.099

8-0.107, 0.304<
0.078

8-0.058, 0.213<
0.083

8-0.000, 0.166<

anully
-0.038

8-0.388, 0.313<
0.099

8-0.136, 0.334<
0.078

8-0.064, 0.220<
0.083

8-0.006, 0.172<

Table 1.3: IMB mean return rate (1/year) and its 68% Confidence Interval

Samples 2001-2006 1997-2006 1987-2006 1067--2006

daily
-0.038

8-0.149, 0.073<
0.099

8-0.005, 0.202<
0.078

8 0.010, 0.145<
0.083

8 0.041, 0.124<

weekly
-0.038

8-0.158, 0.082<
0.099

8-0.002, 0.200<
0.078

8 0.013, 0.143<
0.083

8 0.043, 0.123<

monthly
-0.038

8-0.168, 0.092<
0.099

8-0.006, 0.203<
0.078

8 0.009, 0.147<
0.083

8 0.041, 0.125<

anully
-0.038

8-0.182, 0.106<
0.099

8-0.011, 0.209<
0.078

8 0.008, 0.148<
0.083

8 0.038, 0.127<
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Summary

If everybody uses the mean-variance approach to invest and if everybody has the same estimates of
the asset’s expected returns, variances, and covariances, then everybody must invest in the same fund
F of risky assets and in the risky-free asset. Because F is the same for everybody, it follows that, in
equilibrium, F must correspond to the market portfolio M—the portfolio in which each asset is weighted
by its proportion of total market capitalization. This observation is the basis for the capital asset pricing
model.

If the market portfolio is the efficient portfolio of risky assets, it follows that the efficient frontier in
the µ− σ diagram is a straight line that emanates from the risk-free point and passes through the point
representing M . This line is the capital market line. Its slope is called the market price of risk, known
as the Sharp index of market portfolio. Any efficient portfolio must lie on this line, i.e. has the Sharp
index of market portfolio.

The CAPM can be represented graphically as a security market line:

µ− µ0 = β(µM − µ0)

where β = Cov(R,RM )/σ2
M is called the beta of the asset. Greater beta implies greater expected return.

Also, the system risk of an asset is fully characterized by its beta.
The beta of risk-free asset is zero; the beta of the market portfolio is one. The betas of other stocks

take other values, but the betas of most U.S stocks takes rang between 0.5 and 2.5. The beta of a
portfolio of stocks is equal to the weighted average of the betas of the individual assets that make up
the portfolio.

The CAPM can be converted to an explicit formula for the price of an asset. It is important to
recognize that the pricing formula is linear.

One way to use mean-variance theory is to rely on the insight of the CAPM that if everyone followed
the mean-variance approach and everyone agreed on the parameters, then the efficient fund of risky assets
would be the market portfolio.

Using this idea, you need not compute anything; just purchase a mixture of the market portfolio and
the risk-free asset. Many investors are not completely satisfied with this approach and believe that a
superior solution can be computed by solving the Markowitz mean-variance portfolio problem directly,
using appropriate parameters. We have seen, however, that it is fundamentally impossible to obtain
accurate estimate of expected returns of common stocks using historical data. The standard deviation
(or volatility) is just too great. Furthermore, the Markowitz mean-variance portfolio tends to be sensitive
to these values. This, unfortunately, makes it essentially meaningless to computer the solution.

However, better estimates on a particular firm can be obtained in a variety of ways: (i) from detailed
fundamental analyses of the firm, including an analysis of its future projects, its management, its financial
condition, its competition, and projected market for its products or services, (2) as a composite of fellow
analyst’ conclusions and (3) from intuition and hunches based on news reports and personal experience.
Such information can be systematically combined with the estimates derived from historical data to
develop superior estimates.

After all, the single-period framework of Markowitz and CAPM are beautiful theories that ushered
in an era of quantitative analysis and have provided an elegant foundation to support future work.
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1.7 Project: Take Home Midterm

1. From internet find the adjusted stock prices for the following companies and indexes:
IMB, MicroSoft, Dell; Merck, Pfizer, Johnson & Johnson; SP500, DJ Ind., 13 Week US T. B.

Obtain data from Jan 1st 1992 to Dec 31 2006 in the following categories

Method: daily, weekly, monthly, annually.

History Period: 5 year (02-06), 10 year (97-06), 15 year (92-06).

2. For each combination of period and method (total 12), find the mean return vector and the
covariance matrix.

3. For each stock, each method, and each period (total 108), find confidence interval for the mean
return and standard deviation. Write your answer in the form a± ε. Take confidence Level to be
68% for mean, and 90% for variance.

From the 12 data for each company, provide your best guess to the mean return and variance that
you think is reasonable. Using annual units.

4. Perform Markowitz mean-variance analysis, especially find two special funds: (i) the fund with
minimum variance. (ii) the market portfolio with 5% risk-free interest rate.

Compare the two funds from different historical data (12 of them.)

5. Assume that the annual risk free interest rate is 5%, perform the CAPM analysis. In particular,
find the market portfolio and the beta value of each company.

6. Find, if possible, the total asset (stock price times total share) of each company. Compare the
relative weight of the total asset (market share) and the weight of the market portfolio.

7. Provide your observations and conclusions towards the theory and the method of obtaining pa-
rameters in the model.



Chapter 2

Finite State Models

A financial security is a legal contract that conveys ownership, credit, or right to ownership.
For example, a financial security can be the ownership of a stock, the credit from a bond, or the

right to ownership from an option. An option is the right, but not the obligation, to buy (or sell) an
asset under specified terms.

A derivative security, or contingent claim, is a security whose value depends on the values of other
more basic securities, which in this case is called underlying security for the derivative.

Derivative securities can be contingent on almost any variable, from the price of hogs to amount of
snow falling at a certain ski resort. Perhaps this is why it has become common to refer to the underlying
entity simply as the underlying.

In recent years, derivative securities have become increasingly important in the field of finance.
Futures and options are now actively traded on many different exchanges. Forward contracts, swaps,
and many different types of options are regularly traded outside of exchanges by financial institutions
and their corporate clients in what are termed as the over-the-counter markets. Other more specialized
derivative securities often form part of a bond or stock issue.

In this chapter, we shall study a derivative pricing problem which is to determine a fair initial
value of any derivative. The difficulty is that the final value of the derivative is not known at time t = 0,
since it generally depends on the final value of underlying asset. However, we shall assume that the final
value of the underlying is a known random variable and so the set of possible final value of the asset is
known. Consequently, the set of possible final values of the derivative is also known. Knowledge of this
set along with the no-arbitrage principle is the key to derivative pricing.

The primary purpose of this chapter is to introduce a mathematical framework, the finite state
model. The model is elegant and versatile, and applies to many kinds of important mathematical
finance problems. In certain sense, finite state model to finance is like linear algebra to mathematics.

2.1 Examples

A stock option is a contract between one party, called seller or writer, and another party, called
buyer, that allows the buyer to buy from or sell to the writer in certain time limit a stock at a fixed
price; an option is called a call option if the secured right is for the buyer to buy, and it is called a put
option if the right is to sell. The fixed price in an option is called the exercise price or strike price.

39
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The last date of option time period is called the expiration data. An option is called a European
option if the secured right can be exercised only on the expiration of the option; it is called an American
option if the right can be exercised at any time on or before the expiration date.

Notice that the values of options depend mostly on prices of the underlying stocks.

Example 2.1. Consider the a European call option on a stock with strike price E and expiration T .
Let St be the stock price at t. Then the option has a cash value X at time T where

X = max{ST − E, 0}.

Indeed, if ST > E, then one uses the option and cash E to buy one share of stock and sold it immediately
at price ST , gain a net profit of cash ST −E, at time T . On the other hand, if ST 6 E, then the option
is voided automatically since there is no profit in exercising the option.

Similarly, for a European put option with strike price E and expiration T , the option has a cash
value X at time T where

X = max{E − ST , 0}.

This is a typical example of derivative security, also called contingent claim, since the value of the
option depends on the underlying stock. Here the stock option is a derivative security, with stock as
its underlying. The central problem here is to find the current value of option; namely, determine the
present value of a future payment, that depend on the stock price.

Example 2.2. Consider an American call option on a stock with strike price E and expiration T . Let
St be the stock price at t ∈ [0, T ]. Let τ ∈ [0, T ] be the time that the option is exercise. Then the option
provides at time τ the following cash value:

Yτ = max{Sτ − E, 0}.

Suppose the risk-free (continuously compounded) interest rate is a constant r. Then the present value
X0 and the future value XT of the call option, if it is exercised at time τ , are respectively

X0[τ ] = e−rτYτ = e−rτ max{Sτ − E, 0}, XT [τ ] = er(T−τ) max{Sτ − E, 0}.

Similarly, if an American put is exercised at time τ ∈ [0, T ], it provides a time T cash value

XT [τ ] = er(T−τ) max{E − Sτ , 0}.

The problem here is to find an optimal time τ to exercise the option. Since a priori one does not
exactly know the future behavior of stock price, finding optimal strategy is one of the key here.

Example 2.3. Consider the problem to price a European call option of duration T = 1 (month) with
strike price E = 180($) for a particular stock currently priced at 160. The implication of the option is
that the option buyer can collect max{ST − 180, 0} ($) from the option writer at the expiration date
t = T .

In the following analysis, we assume, for simplicity, that the risk-free interest rate r is zero; namely,
there is no interest charge on lending and borrowing money.
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1. Suppose we are certain that ST = 190. Then the option is risk-free and the value of the option at
time T is ST − E = 190− 180 = 10. Since the discount factor e−rT is 1, its current value is also 10, so
the initial value of the option is (ST −E)e−rT = 10. Of course, in general ST is unknown and the state
of matter is far complicated than this.

2. Suppose either ST = 140 or ST = 200, both with 50% chance. Then statistically, we would calculate
the expected value to be

0.5 ∗max{140− 180, 0}+ 0.5 ∗max{200− 180, 0} = 10.

Thus, the expected value is $10. This is the value in the eyes of a gambler. Can really this option be
sold at $10 a piece?

3. Let’s reconsider the above situation: either ST = 200 or ST = 140. Suppose on the market, such an
option is sold for P ($) per unit. Let’s see if we can make money out of this. We consider the following
portfolio:

n0 : (i) x shares of stock, (ii) y units of the option, (iii) −160x− yP ($) of risk-free asset.

The initial value of this portfolio is zero. Now we calculate the value of this option at time T . There
are two possible outcomes, so we consider the profit for each of these possibilities.

(a) If ST = 140, the portfolio worths

V1 = 140x + 0 ∗ y − 160x− yP = −20x− yP.

(b) If ST = 200, the worth of the portfolio is

V2 = 200x + (200− 180)y − 160x− yP = 40x + (20− P )y.

Suppose, out of nothing, we want to get a profit V1 in event ST = 140 and profit V2 in event
ST = 200. Can we do this? The answer depends on the solvability of x and y from the system

( −20 −P
40 20− P

)(
x
y

)
=

(
V1

V2

)

We know that this system has a unique solution if and only the determinant of the matrix is non-zero,
i.e. if and only if P 6= 20

3 . We now can conclude: The price of the option should be P = 20
3 = $6.67.

Indeed, suppose P 6= 20
3 . Then we can set V1 = V2 = 1 and solve for x, y. This means that no

matter what the market behaviors, we can make $1 out of nothing. For example, suppose P = 7 ($).
Then setting x = 1 and y = −3 we see that no matter which outcome occurs, we are guaranteed to make
V1 = V2 = 1 out of nothing.

In a financial market, an arbitrage opportunity is a chance that a positive gain can be made out
of nothing. An arbitrage-free market is a market in which there are no arbitrage opportunities.

From this example, one sees that if the outcome of stock price ST is narrowed down to two possible
choices (i.e. either ST = 140 or ST = 200) then the price of the option is uniquely determined, under
the no arbitrage assumption. The natural probability that each event occurs plays no role and the
uncertainty is reduced to zero.

In view of the two analyses, we see the following phenomena. Suppose the option is sold at $8.00.
For a gambler, he or she would think it a good deal since the expectation value is $10, namely, the
$8.00 option price is undervalued. On the other hand, for an economic scientist, an §8.00 option price is
over-priced since its true value is $6.67.
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Example 2.4. Consider the same European call option as above: strike price E = 180 and expiration
T . Suppose it is a common knowledge that there are only the following possible outcomes:

t = 0 t = T/2 t = T

(ω0) 160 −→





(ω1) 190 −→




(ω11) 200

(ω12) 180

(ω2) 150 −→




(ω21) 170

(ω22) 140

That is, at current t = 0, we have the only event ω0 : S0 = 160. At t = T/2, either event ω1 : ST/2 = 190
or event ω2 : ST/2 = 150. Similarly, at t = T , for each outcome ωi occurred at time T = T/2, we have
two sub-outcomes, denoted by ωij , j = 1, 2 respectively. We emphasize that ωij occurs only if ωi occurs
first. Also, we do not postulate any probability associated with each event.

We claim that the price of the option should be set at P = 2.5.

Consider, for easy explanation, the case that P = 2. We shall see how arbitrage exists. At time
t = 0, out of nothing we create the following portfolio,

n0: (i) −1 share stock, (ii) 4 unit option, (iii) 152 ($) on risk-free asset — total value = 0.

We shall manage it appropriately to make money. Namely, at time t = T/2, we monitor the market to
make the following adjustment to the portfolio:

(ω1) If ω1 happens, the value of the portfolio n0 is V1 = −38($) + 4 option. We adjust the portfolio n0

to a new portfolio n1 as follows

n1:(i) −4 share stock, (ii) 4 option (iii) 722 ($) on risk-free asset — total: −38 ($)+ 4 option.

At the time t = T , we have the following:

(ω11) If ω11 happens, the value of the portfolio is V12 = −4 ∗ 200 + 722 + 4 ∗ (200− 180) = 2 ($).

(ω22) If ω22 happens, the value of the portfolio is V22 = −4 ∗ 180 + 722 + 5 ∗ 0 = 2 ($).

Hence, if ω1 happens, one can adjusting the portfolio to make money ($), regardless of the outcomes.

(ω2) If ω2 happens, the value of the portfolio n0 is 2 ($) plus 4 options. Cashing the stock, investing
the money in to the risk-free asset, and waiting to time T , we obtain 2 ($) gain. Here the 4 options
are automatically voided.

Thus, if the price of the option is 2 ($) per unit, one can make money out of nothing; i.e. there is
an arbitrage opportunity.

In a similar manner, if the price of option is bigger than 2.5, one can construct portfolios that make
money out of nothing.

Example 2.5. Consider a Bermuda call option: The option can be exercised only at t = T/2 or t = T ,
with strike price E = 180. Assume the same dynamic behavior of stock as in Example 2.4, but half
period (simple) interest rate is R = 5%. Find its price.

Solution.
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(1) Suppose time t = T/2 and we are at ω1. Form a portfolio of x share of stock and y cash. Its
current t = T/2 value is 190x + y. We want this portfolio to match exactly the payment of the call
option (if it is exercised at time T ): ST x + 1.05y = max{ST − 180, 0}. This renders to

200x + 1.05y = 20, 180x + 1.05y = 0

Thus, x = 1, y = −171.43. Consequently, the option, if it is exercised at time T , has a cash value
xST/2 + y = 190 − 171.43 = 18.57 If one exercise it at t = T/2, it is also 190 − 180 = 10. Hence, one
should not exercise the option. Its value is VT/2(ω1) = max{10, 18.57} = 18.57.

(2) Similarly, if t = T/2 and we are at ω2. It is easy to see that the option has value zero:
VT/1(ω2) = 0.

(3) Now one prepares a portfolio at time t = 0: x share of stock and y cash. The portfolio is made
to match exactly the out come of the option at t = T/2: xST/3(ωi)+ 1.05y = VT/2(ωi). Thus renders to

190x + 1.05y = 18.57, 150x + 1.05y = 0.

This gives x = 0.46, y = −66.32. Hence, the portfolio worth V0 = 160x + y = 7.96.

In conclusion, the option should be sold at §7.96.

Example 2.6. Consider the Bermuda put option with same assumption as in the previous example.
Find it price.

Solution. (1) Suppose t = T/2 and ω1 happens. Then it is easy to see that the value VT/2(ω1) of
the option is zero.

(2) Suppose t = T/2 and ω2 happens. Form a portfolio of x share stock and y cash. We want to
make it match the payment of the put option if it is exercised at T . For this, we need xST + 1.05y =
max{180− ST , 0}, i.e.

170x + 1.05y = 10, 140x + 1.05y = 40.

This gives x = −1 and y = 171.38. The value of the portfolio at t = T/2 is 150x + y = 21.42. However,
if one exercise the option, the option worth 180− 150 = 30. Hence, one should exercise the option and
the value of the option is VT/2(ω2) = max{21.42, 30) = 30.

Finally, at time t = 0, one makes a portfolio xS0 + y to match the payment VT/2 of the option at
t = T/2: xST/2 + 1.05y = VT/2. This renders to

190x + 1.05y = 0, 150x + 1.05y = 30.

We obtain x = −0.75, y = 135.71. Hence V0 = xS0 + y = $15.71.
Answer. The price of the put option is $15.71.

In summary, if we know certain combinations of the outcomes, certain derivative securities can be
priced. The basic strategy is to find an appropriate portfolio and manage it optimally according to
dynamics of the financial market so that at the end of day the values of the portfolio equals exactly
that of the derivative security, regardless of the outcomes of the financial market. If we can find such
a portfolio, the price of the derivative security is then the value of the portfolio at t = 0, under the
mathematical finance law of no-arbitrage.
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Exercise 2.1. Consider a European call option with strike price E = 180 and expiration T . Suppose
S0 = 160 and either ST = 190 or ST = 140. Also assume that cash can be borrowed or lent at the
risk-free interest rate R = 0.1 per T unit of time; that is, a 1 ($) investment at t = 0 on the risk-free
asset becomes 1.1 ($) at time T . Find a portfolio that consists x share of stock and y ($) cash that
produces the exact payment as the option. From the portfolio, find the price of the option.

Exercise 2.2. Given the call option in Exercise 2.3, construct a portfolio such that one obtains a sure
payment of $6.67 at time T .

Exercise 2.3. Given the call option in Exercise 2.4, construct a portfolio such that one can make a sure
payment of P = 2.5 at time T .

Exercise 2.4. Given the put option in Exercise 2.6, construct a portfolio such that one can make a sure
payment of 15.71 ∗ 1.052 = $17.32 at time T .

Exercise 2.5. Suppose one has the call option in in example 2.5. Construct portfolio such that one can
make a sure cash value of (1.5)2 ∗ 7.96 = 8.77 at time T .

Exercise 2.6. Consider a European call option with strike price $180 and expiration T . Calculate its
price, assuming the following outcomes:

t = 0 t = T/3 t = 2T/3 t = T

(ω0) 180 −→





(ω1) 190 −→





(ω11) 200 −→
{

(ω111) 205
(ω112) 195

(ω12) 185 −→
{

(ω121) 190
(ω122) 180

(ω2) 175 −→





(ω21) 180 −→
{

(ω211) 185
(ω212) 175

(ω22) 170 −→
{

(ω221) 180
(ω222) 160

2.2 A Single Period Finite State Model

1. States.

Suppose that there are a finite number of possible states that describe the possible outcomes of a
specific investment situation. At the initial time it is known that only one of these will occur. At the
end of the period, one specific state will be revealed. States describe certain physical phenomena and
are constructed according to the needs. For example, we might define two weather states for tomorrow:
sunny or rainy. We don’t know today which of these will occur, but tomorrow this uncertainty will be
resolved. Or as another example, the states may correspond to three economic events: high success,
moderate success, and failure.

We use
Ω = {ω1, · · · , ωn}

to denote these states. States define uncertainty in a very basic manner. It is not even necessary to
introduce probabilities of the states, although this will be done later. In an ideal case, we hope that
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we can find prices for derivative securities in a manner that real probabilities that each state occurs
are irrelevant. Namely, by hedging, uncertainty is completely neutralized. As we shall see, artificial
probabilities can be introduced on the occurrence of the states so that the price of a derivatives security
is the expectation, under the artificial probability measure, of the payoff.

2. Security

A security is defined within the context of states as a set of payoffs–one payoff for each possible state.

Here again the payoffs of a security are not associated with probabilities. We denote a security by

s = (s1, · · · , sn) ∈ Rn

where si is the payoff if state ωi occurs.
In our earlier example, a security’s payoff could be as follows: gain $30 if it rains tomorrow and lost

$10 if it is sunny. It is not necessary to specify probabilities. This security is represented as (30,−10).
The central issue here to price securities. For this, we assume that prices of a few basic securities

are known and we shall derive formulas for other securities derived from these securities.

3. No-arbitrage assumption

An arbitrage opportunity is a chance of earning money without investing anything.

There are two types of arbitrages:

Type a arbitrage: An investment produces an immediate positive reward with no future payoff.

Type b arbitrage: An investment has non-positive cost but has a positive probability of yielding a
positive payoff and no probability of yielding a negative payoff.

An example of type a arbitrage would be to buy two tickets for $20 and immediately sell them at
$12 for each. An example of type b arbitrage would be a free lottery ticket–you pay nothing for the
ticket, but have a chance of winning a prize.

In economic science, we shall assume that there is no arbitrage. As we shall see, no-arbitrage has
profound consequences. Here is one of them.

Linear Pricing: If there is no type a arbitrage, security prices are linear .

Indeed, if s1 and s2 are securities with prices P (s1) and P (s2), the price of the security s1 + s2

must be P (s1) + P (s2). For if P (s1 + s2) < P (s1) + P (s2), we could purchase the combined security
for P (s1 + s2) and break it into s1 and s2 and sell them for P (s1) and P (s2), respectively. As a result
we would obtain a profit P (s1) + P (s2) − P (s1 + s2) > 0 initially and no future payoff. Similarly, if
P (s1 + s2) > P (s1) + P (s2), we could buy s1 and s2 separately and then sell them together. Thus we
must have P (s1 + s2) = P (s1)+P (s2). We leave to the reader for the proof that P (αs) = αP (s) for any
α ∈ R.

The above argument assumes an ideal functioning of the market:

securities can be arbitrarily divided into two pieces and that there are no transaction cost.

In practice these requirements are not met perfectly, but when dealing with large numbers of shares of
traded securities in highly liquid markets, they are closely met.

4. State Prices
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A special form of security is one that has a payoff only in one state. Thus, we define the elementary
state security by ei = (0, · · · , 0, 1, 0, · · · , 0) where the 1 at the ith position. This security pays 1 ($) if
enent ωi occurs, and pay nothing otherwise.

Suppose we know the price for each state security. Denote qi = P (ei). Then for any security
s = (s1, · · · , sn), using linearity we have

P (s) = P (
n∑

i=1

siei) =
n∑

i=1

siP (ei) =
n∑

i=1

siqi = (s,q)

where q = (q1, · · · , qn) and (·, ·) is the dot product.
Can we always derive the price of elementary state securities? The following result is fundamental.

Theorem 2.1 (positive state prices theorem) A set of positive state prices exists if and only

if there are no arbitrage opportunities.

In mathematical language, the theorem states the following:

Suppose {s1, · · · , sm} is a set of underlying securities with known prices P1, · · · , Pm. Then there is
no arbitrage if and only if there exists a vector q = (q1, · · · , qn) where qi > 0 for each i such that

Pj = (sj ,q) ∀ j = 1, · · · ,m. (2.1)

Before the proof, we state the following whose proof is left as an exercise.

Corollary 2.1. (i) The state prices are unique if and only if the dimension of the vector space spanned
by s1, · · · , sm has dimension n.

(ii) If a security s is derived from s1, · · · , sn, e.g. a linear combination of them, then P (s) = (s,q).

Proof of Theorem 2.4. We prove it in two steps.
(a) Suppose there are positive state prices qi > 0 for ei for each i = 1, · · · , n. We show that

there is no-arbitrage. To see this, suppose a security s = (s1, · · · , sn) can be constructed such that
si > 0 for all i. That q = (q1, · · · , qn) is called the state price vector means the price of the security is
P (s) = (s,q) =

∑n
i=1 siqi. Since each qi is positive, we see that P (s) > 0 if s 6= 0. Hence, there is no

arbitrage possibility.

(b) Now suppose there is no-arbitrage. We show that there is at least one set of positive state
prices. We shall provide two proofs. The one given here needs the following lemma and is a purely linear
algebraic argument. The other, to be given later, is based on an important concept of utility function
which has important applications.

Lemma 2.1. Suppose S is a subspace of Rn and for each s ∈ S \ {0}, at least one component of s
is negative. Then there exists a vector y = (y1, · · · , yn) ∈ Rn such that yi > 0 for each i and y is
perpendicular to every vector in S.

We now use this lemma to complete our proof. Consider the set of all securities that have initial
price zero and are derived from s1, · · · , sm. This set can be written as

S =
{ m∑

j=1

xjsj ∈ Rn |
m∑

j=1

xjPj = 0
}

.
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This is a subspace of Rm. Since there is no-arbitrage, for every s ∈ S \ {0}, at least one component of s
is negative. Hence, there exists a positive vector y ∈ Rn such that y is perpendicular to every vector in
S. If Pj = 0 for all j = 1, · · · ,m, setting q = y we have for each j, sj ∈ S so that (sj ,y) = 0 = Pj and
we are done.

Now suppose there is at least one of P1, · · · , Pm is non-zero. Without loss of generality, we assume
that P1 6= 0. We consider two cases: (a) (s1,y) 6= 0; (b) (s1,y) = 0.

(a) Suppose (s1,y) 6= 0. For each j = 1, · · · ,m, the security sj − Pj

P1
s1 has price zero so that as a

vector, it is perpendicular to y. It then follows that

0 =
(
sj − Pj

P1
s1,y

)
= (sj ,y)− Pj

P1
(s1,y) i.e. (sj ,y) =

Pj

P1
(s1,y) ∀ j = 1, · · · ,m.

Setting q = P1y/(s1,y) we then obtain (sj ,q) = P1
(s1,y) (sj ,y) = Pj for all j = 1, · · · ,m. We are done.

(b) Suppose (s1,y) = 0. We can decompose s1 = ŝ1 + ŝ⊥1 where ŝ1 ∈ S and ŝ⊥1 ⊥ S. Since s1 6∈ S
(as P1 6= 0), we have ŝ⊥1 6= 0. Take a small positive ε and consider the vector ŷ = y + εs⊥1 . Since each
component of y is positive, so is ŷ if we take ε sufficiently small, but not zero. As s⊥1 ⊥ S, we also have
ŷ ⊥ S. In addition, (s1, ŷ) = (s1,y + εs⊥1 ) = ε‖s⊥1 ‖2 > 0. Use this new ŷ and follow the same proof as
in part (a) we then complete the proof.

4. Risk-Neutral Probability

Now we introduce one of the most important idea in mathematical finance—the risk-neutral prob-
ability.

Let q = (q1, · · · , qn) be a set of positive state prices. Set

p =
q∑n

i=1 qi
, µ0 =

1∑n
i=1 qi

− 1.

Then we have the following price formula

P (s) =
(s,p)
1 + µ0

. (2.2)

Since p is a strongly positive vector and the sum of all its components is one, we can regard p as a
probability measure on Ω, which we call the risk-neutral probability. Denote by E the expectation
operator. Then the price of a security with final payoff s is

P (s) =
1

1 + µ0
E(s).

We remark that if there is a risk-free asset, then µ0 is exactly the risk-free return rate.

The risk-neutral probability has nothing to do with the actually probability that each state event
occurs. It is introduced to neutralize risks. The artifice is deceptive in its simplicity; however, it has
profound consequences. Indeed, the introduction of risk-neutral probability is the key to the success
of Nobel prize winners Black and Scholes and Morton’s theories on option pricing. The idea of using
risk-neutral lays a foundation for modern economics.

6. Examples.
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Example 2.7. Suppose Jazz Company needs to invest $5,000 to host a show on August 15, 2006. If it
rains, the company will lost all of its investment, otherwise get $9,000 payoff. To ensure a guaranteed
profit, the company seek for rain insurance. The insurance company, on the other hand, based on reliable
information, found that the probability of rain on the day is 1/6. Hence, the insurance company set the
price of ensuring $3 payoff if it rains on Aug 15, 2006, for every dollar purchased. How much insurance
should the company buy to maximize a sure return?

Suppose the company pays x dollar for insurance. Then we have the following calculation:
Initial Investment: 5000 + x.
Payoff: (i) If it rains, the payoff is 3x from insurance, (ii) If sunny, the payoff is $9,000 from the show.

Hence, we set x = 3000 to make a sure return of 9000. The initial cost will then be 8000. In this
investment, the company get a sure return rate of 9000/8000− 1 = 12.5%, risk-free.

It is worthy of noting the following:

(1) The company’s risk of loss is totally neutralized. It has a guaranteed profit, regardless of the
outcome. No probability is needed here. The 12.5% return rate is risk-free!.

(2) Suppose the company does not buy insurance. Then we have to use the probability of rain to
analyze it expected return and variance. The return rate R is a random variable: R = 9000/5000− 1 =
80% with probability 5/6 and R = 0/5000−1 = −100% with probability 1/6. Thus, the expected return
rate is µ = 0.8 ∗ 5/6 − 1/6 = 50%. The variance is σ2 = (0.8 − 0.5)2 ∗ 5/6 + (−1 − 0.5)2/6 = 0.45,
standard-deviation σ =

√
0.45 = 66%. The expected return 50% is high, but the risk 66% is even higher.

(3) Now let’s analyze the return of the insurance company. It is important to note that the insurance
company’s risk is not neutralized. It has a potential to lose $6000 so we can assume that it needs $6000
initial investment. The payoff is either 0 with probability 1/6 or 9000 with probability 5/6. That is, it
has two possible return rates: if it rains: R = 0/6000−1 = −1; otherwise, R = 9000/6000−1 = 0.5. The
expected return is µ = −1/6+0.5∗5/6 = 25%, variance is σ2 = (−1−0.25)2/6+(0.5−0.25)2∗5/6 = 0.3125
so σ = 56%. Consider as an investment, a 25% return rate with a 56% risk is sometimes not too bad.

Example 2.8. Let’s put the previous example into the theory of a single-period state model.
We use Ω = {ω1, ω2} to denote the two possible states where ω1 represents rain and ω2 represents

sunny, on Aug. 15, 2006. We have two securities:
(i) Investment on the show: P (s1) = 5, s1 = (0, 9),
(ii) Rain insurance: P (s2) = 1, s2 = (3, 0).
We wish to calculate the state price q = (q1, q2). Based on the two securities, we have the following

system of equations

5 = 0 ∗ q1 + 9 ∗ q2, 1 = 3 ∗ q1 + 0 ∗ q2 .

This gives state prices: q1 = 1/3 and q2 = 5/9. As q1 + q2 = 1/3 + 5/9 = 8/9, we see that the price
formula is

P (s) =
3
8s1 + 5

8s2

1 + 12.5%
∀ s = (s1, s2) ∈ R2.

From here we see the following:
(i) The equivalent risk-free rate is 12.5%.
(ii) The risk-neutral probability is 3/8 for ω1 and 5/8 for ω2. It has nothing to do with the natural

probability 1/6 for ω1 (rain) and 5/6 for ω2 (sunny).
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(iii) The company bought the security s = 1000s1 + 3000s2 = (9000, 9000) with initial cost

P (s) =
3
8 ∗ 9000 + 5

8 ∗ 9000
1 + 25%

= 8000.

(iv) The insurance sold (shorted) the security s = −3000s2 = (−9000, 0) so its initial price is

P (s) =
3
8 ∗ (−9000) + 5

8 ∗ 0
1 + 25%

= −3000;

namely, it has an initial income $3000. This is not free, it bears future obligations: If if rains, pay 9000,
otherwise, nothing.

(v) There is no arbitrage in the system.

A T -bond is a payment of unit cash at time T , nothing before that. The price of a T -bond at time
t < T is denoted by ZT

t .

Example 2.9. Consider a single period of one year. There are two securities: a one (year) bond s1

and a two (year) bond s2, both having zero-coupon. Their prices are respectively P (s1) = Z1
0 = 0.95

and P (s2) = Z2
0 = 0.90 respectively. Suppose there are only two outcomes: ω1 under which the price

of one year bond (bought at the end of one year) is Z2
1 (ω1) = 0.94, and ω2 under which Z2

1 (ω2) = 0.96.
Calculate the risk neutral probability and the one year risk-free return rate.

Solution. At the end of one year period, the payment of 1-bond is

s1(ω1) = 1, s1(ω2) = 1.

For the 2-bond, at the end of one year period, its value is Z2
1 , since its payment is exactly the same

as a new one-year bond. Hence, its payment is

s2(ω1) = Z2
1 (ω1), s2(ω2) = Z2

1 (ω2).

Now consider a generic security s whose payment is s(ω1) = v1 and s(ω2) = v2 where v1, v2 are
arbitrary fixed constants. We look for x and y such that s = xs1 + ys2, i.e. xs1(ωi) + ys2(ωi) = vi for
i = 1, 2. This renders to the system

x + yZ2
1 (ω1) = v1, x + yZ2

1 (ω2) = v2.

Solving the system we obtain

x =
Z2

1 (ω2)v1 − Z2
1 (ω1)v2

Z2
1 (ω2)− Z2

1 (ω1)
, y =

v2 − v1

Z2
1 (ω2)− Z2

1 (ω1)
.

Consequently, the price of the security s is

P (s) = xP (s1) + yP (s2) = xZ1
0 + yZ2

0

= Z1
0

{ Z2
1 (ω2)− Z2

0/Z1
0

Z2
1 (ω2)− Z2

1 (ω1)
v1 +

Z2
0/Z1

0 − Z2
1 (ω1)

Z2
1 (ω2)− Z2

1 (ω1)
v2.

}

=
1

1 + µ0

{
pv1 + (1− p)v2

}
.

Thus, the risk-neutral probability is given by

Prob(ω1) =
Z2

1 (ω2)− Z2
0/Z2

0

Z2
1 (ω2)− Z2

1 (ω1)
= 0.63, Prob(ω2) =

Z2
0/Z1

0 − Z2
1 (ω1)

Z2
1 (ω2)− Z2

1 (ω1)
= 0.37

The risk-free interest rate for the first period is

µ0 =
1

Z1
0

− 1 =
1

0.95
− 1 = 0.05263.
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Exercise 2.7. Show that if one of the security is risk-free asset, then µ0 in (2.2) is the risk-free return.

Exercise 2.8. Show that under no type a arbitrage assumption, security prices are linear.

Exercise 2.9. Prove Lemma 2.1. You may proceed as follows:

1. Denote D = {(r1, · · · , rn) | ∑n
i=1 ri = 1, r1 > 0 ∀ i = 1, · · · , n}. Show that there exists r∗ =

(r1
∗, · · · , rn

∗ ) ∈ D and s∗ = (s1
∗, · · · , sn

∗ ) ∈ S such that ‖r∗ − s∗‖ is the distance between D and S.

2. Set y = r∗ − s∗. Show that y ⊥ S.

3. Using (r∗ − s∗, s∗) = 0 show that K := max{ri
∗ − si

∗ | r∗i > 0} > 0.

4. By considering the distance from s∗ to r∗ − tei + tej show that rj
∗ − sj

∗ > K for all i = 1, · · · , n.

Exercise 2.10. Prove Corollary 2.1.

Exercise 2.11. (Treasure Venture) A company is seeking finance for a treasure adventure. It is esti-
mated that there is a 0.3 probability of high success (ω1), 0.4 probability of moderate success (ω2) and 0.3
probability of failure (ω3). The company hence issues the following two securities: each cost one dollar
with the following pay-off:

(i) $3.00 if the adventure is a high success, $1.00 if moderate success, and $0.00 if failure.
(ii) $6.00 if high success, $0.00 otherwise.
Also, on the market there is a third security: (iii) a 20% risk-free return.
(a) Based on these three securities, find the state prices, the pricing formula, and risk–neutral

probability.
(b) Suppose the company offer a new investment: (iv) If it is a high success, then the investment has

a payoff of $1000, otherwise refund all the money originally received (no interest). Can this investment
be priced? If it can, how much it should be? How to achieve this from the existing securities?

(c) Consider the market system that just consists of these four securities. Using the CAPM model,
find the market portfolio. Also, find the beta for each security.

Exercise 2.12. Consider a system of only three stocks: S1, S2, S3. Currently their unit prices are $10,
§30 and, §60, respectively. Suppose after one month, there are only the following three outcomes:

ω1 : (S1, S2.S3) = (11, 33, 56);
ω2 : (S1, S2.S3) = (11, 30, 60);
ω3 : (S1, S2.S3) = (11, 27, 63).
(1) Find the state prices and neutral probabilities.
(2) Price the options with the following payoffs:
S4 : A guaranteed right to by one share of stock S2 for $30;
S5: A guaranteed right to sell one share of stock S3 at $60;
S6: A guaranteed right to trade two shares of stock S2 with one share of S3;
S7: A guaranteed right to either purchase one share of stock S2 for $30 or one share of stock S3 for

§60.
Also, for each option, by using only securities S1, S2, S3, construct portfolios that achieve the same

payoffs as the option.
(3) Suppose the natural probabilities associated with ω1, ω2 and ω3 are all equal, being 1/3. Use

CAPM model calculate the market portfolio for the system consisting of assets S1, S2, S3 and their deriva-
tives S4, S5, S6, S7.
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t0 t1 t2 t3
ω1

ω2

ω3

ω4

ω5

ω6

ω7

ω8

ω9

ω10

Figure 2.1: A Three period Tree Structure

2.3 Multi-Period Finite State Models

From the example presented in the previous section, we see that to price appropriately a derivative, we
can try to find a portfolio and manage it optimally to yield an outcome equal to that of the derivative.
We shall elaborate this idea into a mathematical framework, aiming at two aspects (i) the optimal
management of a portfolio and (2) finding appropriate portfolios to price a derivative.

1. Trading Time

We begin with building a framework to represent securities in a multi-period setting in a finite
number of states. For this we consider a financial market system in a time interval [0, T ]. Assume that
there are a finite number of time moments at which exchanges (trades) of assets can be made so that
portfolios can be adjusted. We denote these dates by

T = {t0, t1, · · · , tK}, 0 = t0 < t1 < · · · < tK = T.

For convenience, we use t + ∆t and t−∆t to represent ti+1 and ti+1 respectively, when t = ti.

2. State Space

The basic component of this multi-period framework is a tree structure defining a random process
of state transitions. Figure 2.1 shows a three period tree structure.
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The leftmost node, which we call root, represents the initial point of the process at time t0 = 0.
The process can then move to any of its successor nodes at time t = t1. A probability can be assigned
to each of the arrows. Each of the probability is non-negative and the sum of the probabilities for all
arrows emanating from any particular node must be one.

The nodes of the tree can be thought of as representing various “states of the financial universe”.
They might be various sets of possible stock prices, or conditions of unemployment, or weather conditions
that would affect agriculture and hence price of agricultural products. The graph must have enough
branches to fully represent the financial problems of interest. Particular security processes are defined
by assigning numerical values to the nodes.

It is always safest to make a full true, with no combined nodes, so that for any node, there is a
unique path from the root to the node by following the arrows. If there are transition probabilities
associated with each arrow, then the probability from any one node to any one of its successor is simply
the multiples of the probabilities associated with the arrows on the path. In this way we never need
to worry about possible path dependencies. For computation, on the other hand, we aggressively seek
opportunities to combine nodes, so that we can devise a computationally efficient methods of solution.
Here in this section we are developing theoretical tools, so for simplicity, we always assume that the tree
is full, i.e., every node, except the root, has exactly one predecessor and every node before level T has
at least one successor.

There are two ways to model states. One is to use a tree structure (or graph) as we described above.
Another one is to first introduce a filtration defined as a sequence of σ-algebra {F i}K

i=0 on a fixed set
Ω begin the all possible outcomes, the subsequent one always contains its previous one, i.e. Fτ ⊂ F t

for all τ < t, and then use martingales. For the convenience of explanation, we use true structure. For
mathematical rigorous, we use a simplified version of filtration notation.

At each time t ∈ T, the underlying economy can have various kinds of outcomes. As the example
of sequential tossing of a die, the further we go, the more possible outcomes be there. Since subsequent
events are based on the previous event, all these events form a tree structure. Mathematically, we can
use an information structure. We collect all possible outcomes at t = T by

Ω = {ω1, ω2, · · · , ωn(T )}

We can imagine each ωi can be written as a word of T letters. At each time t = ti, we can only read
the first i letters, hence we can divide Ω into blocks according the first i letters. All these blocks form a
partition of Ω.

A partition P of a set Ω is a collection of disjoint subsets whose union is Ω:

P = {B1, · · · , Bn}, ∅ 6= Bi ⊂ Ω, Bi ∩Bj = ∅∀ i 6= j,

n⋃

i=1

Bi = Ω

Refinement: Let P and Q be any two partition of Ω. We say Q is a refinement of P, written as
P ≺ Q if every element in Q is a subset of certain element in P.

We now define state space as follows:

A state space (associated with a set Ω and trading time T = {ti}K
i=1) is collection {Pt}t∈T of partitions

of Ω that form a true structure:

{{Ω}} = Pt0 ≺ Pt1 ≺ · · · ≺ PtK = {{ω} | ω ∈ Ω}.
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We remark that each block in Pt can be regarded as a node in the tree structure.

Example 2.10. The true structure in Figure 2.1 can be written as follows:

Ω = {ωi ; i = 1, · · · , 10},
Pt0 = {Ω};
Pt1 = {B1

t1 , B
2
t1}, B1

t1 = {ω1, ω2, ω3, ω4, ω5}, B2
t1 = {ω6, ω7, ω8, ω9, ω10},

Pt2 = {B1
t2 := {ω1, ω2, ω3}, B2

t2 := {ω4, ω5}, B3
t2 := {ω6}, B4

t2 := {ω7, ω8}, B5
t2 := {ω9, ω10}},

Pt3 = {Bi
t3 ; i = 1, · · · , 10}, Bi

t3 = {ωi}.

3. State Economy

We now consider a system with (m + 1) assets (such as stocks, bounds, forward contracts, etc),
denoted by a0, · · · , am, where a0 is short-term risk-free (to be explained later). Typically these assets
are called the underlying securities. From these underlying securities, new securities such as options,
swaps, futures, etc. can be constructed. The new securities are then called derivative securities. Our
purpose is to set-up a framework, e.g. an enormously large information tree structure, that is able to
accommodate financial needs of pricing derivative securities.

The state space is constructed in a way that allows one to project (precisely) values of our interest,
which in the current case, are the unit prices of each asset. Hence we assume that the unit price of each
individual asset is known at each of the nodes. For each t ∈ T and B ∈ Pt, we use Si

t(B) to denote the
unit price of one share of asset ai. For convenience, we shall also regard Si

t as a function on Ω so by
default, we use the following notation:

Si
t(ω) = Si

t(B) ω ∈ B ∈ Pt, t ∈ T.

One shall see such a convention makes difficult mathematical languages (such as martingales) easier to
be understood. Also, we use vector St = (S0

t , · · · , Sm
t ) to put all these prices in a compact form. Based

on this, we define the following:

A state economy is a collection {St}t∈T where St is a Rm+1 valued random variable on (Ω, σ(Pt)).

That St is measurable on (Ω, σ(Pt)) means that St is a constant vector (in Rm+1) on each block in
Pt. This justifies our convention St(B) = St(ω) for every ω ∈ B ∈ Pt. Thus, at each node and for each
asset, the price is known and unambiguous.

Thus regarding each block in Pt as a node in the tree structure, if B is a node of Pt and {B1, · · · , Bl}
are all those nodes in Pt+1 that are emanated from B, then our tree structure is introduced to mean
that if at time t the outcome B is revealed, then the asset’s unit prices are given by St(B) and the next
time, one and only one of the event B1, · · · , Bl will occur, and if Bj occurs, then unit asset prices are
given by St+1(Bj). This will become clear later whence we introduced the evaluation function.

In finance, a future value (say $1000 cash to be received one year from now) has to be discounted
to its present values. Here we introduce a short-term risk-free asset to perform this job.

Given a state space, an asset is short-term risk-free if its unit price St at time t is a positive constant
function on every B ∈ Pt−1, i.e. St is positive and measurable on σ(Pt−1).

Here we use convention P−1 = P0 = {Ω}.
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Example 2.11. Consider the tree structure in Figure 2.1 with T = {ti}3i=0. Let {St}t∈T be the unit
price of an asset a defined by

St0(ω) = 1 ∀ω ∈ Ω;

St1(ω) = 1.1 ∀ω ∈ Ω;

St2(ωi) =
{

1.3 i = 1, · · · , 5,
1.2 i = 6, · · · , 10,

St3(ωi) =





1.4 i = 1, 2, 3
1.3 i = 4, 5,
1.2 i = 6,
1.25 i = 7, 8,
1.3 i = 9, 10.

Then a is a short term risk-free asset since one period return of investment is know at the time of
investment.

For example, at time t = t1, suppose the system is at the node B1
t1 = {ω1, ω2, ω3, ω4, ω5}. Then the

return of investment in period [t1, t2) is

St2(ω)
St1(ω)

− 1 =
1.3
1.2

− 1 = 0.0933 ∀ω ∈ B1
t1 .

Example 2.12. Consider the tree structure in Figure 2.1. Suppose {St}t∈T is the price of an asset
whose price is given by

St0(ω) = 1 ∀ω ∈ Ω, St1(ωi) =
{

1.3 i = 1, · · · , 5,
1.2 i = 6, · · · , 10,

Then this is not a short term risk free asset, since the investment from t0 to t1 is unknown in advance.
The return of the investment in [t0, t1) can be either 0.2 or 0.3, depending on which outcome B1

t1 or B2
t1

occurs at time t1.

Example 2.13. Consider the tree structure in Figure 2.1. Suppose {St}t∈T is the price of an asset
whose price is given by

St0(ω) = 1 ∀ω ∈ Ω, St1(ωi) =
{

1.3 i = 1, · · · , 4,
1.2 i = 5, · · · , 10,

This security cannot be modelled by state space in Figure 2.1 since St1 is not Pt1 measurable. In other
words, at time t = t1, one does not always know the unit price of the asset.

We assume that a0 is a short-term risk-free asset. Then for every t ∈ T and B ∈ Pt−∆t (t−∆t = ti−1

if t = ti), there exists a constant rt(B) such that

St
0(ω)

S0
0(Ω)

= ert(B) ∀ω ∈ B ∈ Pt−1.

We call rt : Ω → R (or more precisely Pt−∆t → R) the accumulated short-term risk-free rate,
which is measurable on (Ω, σ(Pt−∆t)) since it is a constant on every block in Pt−∆t.
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Example 2.14. Consider toss sequentially a coin three times. We can set

Ω = {000, 001, 010, 011, 100, 101, 110, 100}, T = {ti}3i=0,

Pt0 = {Ω},
Pt1 = {B0, B1}, Bi = {i00, i01, i10, i11};
Pt2 = {B00, B11, B10, B11}, Bij = {ij0, ij1},
Pt3 = {{ω} | ω ∈ Ω}.

Then Ω together with {Pti
}3i=0 form a state space since Pt3 = {{ω}; ω ∈ Ω} is a refinement of Pt2 , a

refinement of Pt1 , a refinement of Pt0 = {Ω}.
Now consider the functions {St}t∈T defined on Ω by

St0(ijk) ≡ 1, S0
t1(ijk) = 2 ∗ i, St2(ijk) = 4 ∗ i ∗ j, St3(ijk) = 8i ∗ j ∗ k ∀ijk ∈ Ω.

Then {St}t∈T can be unit prices of an asset. Note that St3 is not measurable on σ(Pt2) since it is not
a constant on every block in Pt2 . That is, after knowing the outcome of first two tosses of the coin,
one still does not know the amount of award. Thus, the price St has to be calculable after all events
at and before time t happened. For example, suppose St is the payoff of a bet. Then at time t, one
knows the payoff of St. But before t, it may not be possible to know the exact value of St. Note also
that the corresponding asset is not a short-term risk-free asset. The following is an example of prices of
a short-term risk-free asset

S0
t0(ijk) = 1, S0

t1(ijk) = eR0 , S0
t2(ijk) = eRi , S0

t3(ijk) = eRij

where R0, Ri, Rij are constants. It asserts that from time t = t0 to time t = t1, the interest rate is R0,
whereas from any node Bi at time t = t1 to time t = t2, the risk-free rate is Ri − R0 and from t = t2

to t = t3 and start from any node Bij , the rate is Rij . Different from ordinary assets, the prices of
short-term risk–free asset are uniformly the same at their landing states.

Quote often, a state space is called an information tree. The deeper we go, the more information
we have.

We have to emphasis that state economy is a model set-up at time t = 0. It does not need any
information acquired in the future. In other words, it is a tabulation of the asset’s prices under various
kinds of outcomes regarded as possible. Typically it is constructed based on facts and theories.

3. Contingent claim.

Our goal is to price securities that are derivatives of the basic assets. By price we mean to determine
an initial price for the derivative under the assumption that the market is free of arbitrage.

A contingent claim is a real valued random variable on (Ω, σ(PT )). At time T and under an event
ω ∈ Ω, the value of a contingent claim X is X(ω).

A contingent claim is quite often called a derivative security. Knowing the values of a claim
under all possible outcomes does not necessarily tell us its current value, since an any time t < T ,
nobody knows exactly which event ω ∈ Ω will actually happen, though as time progresses, the number
of possible outcomes narrows down. Nevertheless, we still want to know how much does a derivative
worth. As mentioned earlier, our strategy is try to find a portfolio that provides the price of a claim.
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Example 2.15. Let {S1
t }t∈T and {S2

t }t∈T be the unit price of two assets a1 and a2 respectively. Consider
a claim whose payment at time T is X given by

X(ω) = 1
2{S1

T (ω) + S2
T (ω)} ∀ω ∈ Ω.

At time t = 0, we do not know that the payment X for sure since we do not know which event ω ∈ Ω will
happen at time T . Nevertheless, we know the initial price of X if 1

2 (S1
0 + S1

0). This is so since one can
form a portfolio consisting half share of each asset a1 and a2, pay no attention to the market until time
T at which the value of the portfolio matches exactly the payment X. Of course, we need a no-arbitrage
assumption to make this argument rigorous.

Next consider a payment Y at t = T defined by

Y (ω) = max{S1
T (ω), S2

T (ω)} ∀ω ∈ Ω.

The is a claim since Y is known at time T . Clearly, the initial price of this claim is vary hard to calculate.
We have to use combinations of assets and manage them optimally (e.g. regroup the proportions of each
asset after revelation of an outcome at every trading time) to accumulate a wealth meet exactly the
requirement of the contingent claim.

4. Portfolio and Trading Strategy

A portfolio at time t ∈ T is an Rm+1 valued random variable nt(·) = (n0
t , · · · , nm

t ) on (Ω, σ(Pt)), where
ni

t is number of share of asset ai in the portfolio.

A trading strategy is a collection {nt(·)}t∈T where nt(·) is a portfolio at t ∈ T.

Consider the management of a portfolio. We use ni
t(ω) to denote the number of units of asset ai in

the portfolio at time t and event ω ∈ Ω. We use a compact notation nt = (n0
t , n

1
t , · · · , nm

t ) to denote the
set of units of shares of all assets.

At each time t ∈ T, we know only events in Pt. Thus, the number of shares has to be a constant
vector on every block in Pt. In theory of measure, we say nt(·) is measurable on (Ω, σ(Pt)).

At each time t ∈ T, one can trade assets, put in or take out money. Assume the market is perfect.
Then a trade is equivalent to a liquidation followed immediately by an acquisition; that is, cash in all
the assets and then purchase assets immediately according to the new weight wanted. Thus everything
can be recorded by the numbers of units nt.

Note that at any time moment t in T, there are two weights, one before the trading and one after.
For clarity, in this chapter, all weights are after trading:

ns(·) = nt(·) ∀ s ∈ [t, t + ∆t), nt−(·) := nt−∆t(·).

We emphasize that for each t ∈ T, nt(·) is a measurable function on (Ω, σ(Pt)), since any future
information cannot be used for the design of trading strategy.

Literally, a strategy is a pre-arrangement of reactions on outcomes—if x happen, do plan X, it y

happen , do plan Y , etc. One can think of it as a dynamical programming for a robot.

4. Valuation of Portfolios.
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Suppose we are given a state space (Ω, {Pt}t∈T) and its economy S. At each time t ∈ T and each
outcome B ∈ Pt, the value of a portfolio with unit z = (z0, · · · , zm) share of assets is the Rm+1 dot
product of z and St(B):

(
St(B), z

)
=

m∑

i=0

ziSi
t(B) = z0S0

t (B) +
n∑

j=0

zjSj
t (B) ∀B ∈ Pt.

We always normalize the risk-free asset price so S0
t0 = 1. Then S0

t is the time t value of unit capital
investment on risk-free (bank deposit) asset. Hence, the value

(St(B), z)
S0

t (B)
= z0 +

n∑

i=1

zi
Si

t(B)
St

0(B)
∀B ∈ Pt

is called the discounted value of the portfolio; namely, the value of the portfolio translated into today’s
worth. One purpose of the introduction of a short-term risk-free asset here is to provide a reference for
gain or loss.

Given a trading strategy n, the value (St,n) of the corresponding portfolio depends on the outcome
of the economy, and hence is a random variable.

The valuation associated with a state economy S is the following family of operators {Vt}t∈T which
map portfolios into real valued random variables: Vt : RV(σ(Pt);Rm+1)) → RV(σ(Pt),R),

Vt[z](ω) = (St(ω), z) ∀ z ∈ RV(σ(Pt);Rm+1), ω ∈ Ω, t ∈ T.

Given a trading strategy n and state of economy S, at time t = ti, its value is

before trading: Vt[nt−] = Vti [nti−1 ] = (Sti ,nti−1),

after trading: Vt[nt] = Vt[nt] = (St,nt).

Note the following:

1. Profit of investment in time [ti−1, ti): Vti [nti−1 ]− Vti−1 [nti−1 ] = (Sti − Sti−1 ,nti−1).

That is, the profit of investment comes from the unit price change of assets.

2. Extra Capital needed to perform the trading: Vt[nt−]− Vt[nt] = (St,nt − nt−).

That is, extra money needed to perform trading is due to the change of portfolio (the number of
units of shares for each assets).

If no money is put in or taken out, the values before and after each trading are the same.

A self-financing trading strategy under a state economy S is one {nt}t∈T that satisfies
(
St(B),nt−(B)

)
=

(
St(B),nt(B))

)
∀ t ∈ T, B ∈ Pt.

Since Pti is a refinement of Pti−1 , nti−1 is constant on every block of Pti . In the sequel, we pay
attention only on trading strategies that are self-financing.
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At this moment, we introduce two terminologies most often used in trading.

Roll Over. A rolling over at time t means the number of shares of each assets are kept fixed for the
rest of time:

ns(·) = nt(·) ∀ s ∈ [t, T ].

After taking the roll over strategy, the number of shares on each asset in the portfolio is fixed, but
the portfolio’s final value depends on final outcomes of the economy.

Lock in. A lock in at time t means the portfolio is liquidated and kept for the rest of the time:

ns(·) = (n0
t (·), 0, · · · , 0) ∀s ∈ [t, T ].

After lock in, the portfolios discounted value will never change.

6. Replication.

Our goal is to find portfolios that are equivalent to contingent claims. Hence, we introduce

A replicating strategy for a contingent claim X is a self-financing trading strategy n such that

VT [nT ](ω) = X(ω) ∀ω ∈ Ω.

An attainable contingent claim is a claim that has at least one replicating strategy.

A state model is said to be complete if every contingent claim is attainable.

7. The Finite State Model
We summarize our discussion as follows.

A state model consists of the following:

1. Trading dates T = {ti}K
i=0 and state space (Ω, {Pt}t∈T);

2. Assets (underlying securities) a0, · · · , am and their prices {St := (St
0, · · · , St

m)}t∈T at the states.

In a state model, portfolios, trading strategies, and evaluation of portfolios can be consequently
defined (by the defaults we discussed). Finally, the problem of pricing contingent claims (i.e. derivative
securities) can be studied by searching replicating strategies.

Example 2.16. Consider a three period investment, starting from 3 ($) cash. Suppose for some ω̂ ∈ Ω,
ω̂ is the actual event that happened and the unit share price Si

t(ω̂) of asset ai at time t are observed as
follows:

S0
t (ω̂) S1

t (ω̂) S2
t (ω̂)

t−1 0.9 0.9 0.9
t0 = 0 1 1 1

t1 1.1 1.2 1.3
t2 1.2 1.1 1.6

t3 = T 1.3 1.5 1.2

Find the final value of the portfolio with the following self-financing strategies:
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1. Static portfolio, starting from equal capital distribution on each assets.

2. Dynamical portfolio with equal capital distribution on each assets.

3. Always invest all capital on the asset that performed the best in most recent period.

4. Invest twice capital on the best performed in most recent period and short the needed capital on
the worst performed asset in most recent period.

5. Invest twice capital on the worst performed in most recent period and short the needed capital on
the best performed asset in most recent period.

1. First consider a trading strategy of equal share. That is,

nt(ω) = (1, 1, 1) ∀ω ∈ Ω, t ∈ T.

This is a self-finance trading strategy and the value Vt of the portfolio at each trading time t is

Vt0(ω̂) = Vt0 [nt0 ](ω̂) = 1 + 1 + 1 = 3,

Vt1(ω̂) = V1[nt0 ](ω̂) = 1.1 + 1.2 + 1.3 = 3.6,

Vt2(ω̂) = Vt2 [nt1 ](ω̂) = 1.2 + 1.1 + 1.6 = 3.9

VT (ω̂) = VT [nt2 ](ω̂) = 1.3 + 1.5 + 1.2 = 4.0($).

2. Consider a self financing trading strategy: Equal weights at each trading time:

n0
t S

0
t = n1

t S
1
t = n2

t S
2
t ∀ t ∈ T.

Initially, we form a portfolio n0 = (1, 1, 1). Its value at time t1 is Vt1(ω̂) = 1.1 + 1.2 + 1.3 = 3.6.
Even distribution on the three assets means investing ($)1.2 on each asset. Hence, the new portfolio

at time t = t1 is nt1 = (1.2/1.1, 1.2/1.2, 1.2/1.3).
The value of the portfolio at time t = t2 is

Vt2(ω̂) = Vt2 [nt1 ](ω̂) =
1.2
1.1

∗ 1.2 +
1.2
1.2

∗ 1.1 +
1.2
1.3

∗ 1.6 = 3.886.

Evenly distributing the capital on three asset means investing 3.866/3 = 1.2954 on each asset. Thus the
portfolio at t = t2 is nt2 = (1.2954/1.2, 1.2954/1.1, 1.2954/1.6).

The final value of the portfolio is

VT (ω̂) = VT [nt2 ](ω̂) =
1.2954

1.2
∗ 1.3 +

1.2954
1.1

∗ 1.5 +
1.2954

1.6
∗ 1.2 = 4.14($).

3. Suppose we use the self-financing strategy of investing all capital evenly on assets that performed
the best in most recent period.

Since in the time period [t−1, t0), the three asset performs equally well, we set n0 = (1, 1, 1).
At time t = t1, the value of the portfolio is Vt1(ω̂) = Vt1 [n0](ω̂) = 3.6. Since the best performed

asset in [t0, t1) is a2, we put all money on this asset, so nt1 = (0, 0, 3.6
1.3 ).

At time t = t2, the value of the portfolio is Vt2(ω̂) = Vt2 [nt1 ](ω̂) = 3.6
1.3 ∗ 1.6 = 4.43 . Since in [t1, t2)

period, the best performed asset is again a2, we put all the money on a2 by setting nt2 = (0, 0, 4.43
1.6 ).

At time T , the value of the portfolio is

VT (ω̂) = VT [nt2 ](ω̂) =
4.43
1.6

∗ 1.1 = 3.05($).
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4. Now we consider the trading strategy of shorting money equal available money on the worst
performed asset and invest all acquired money on the best performed asset.

Initially, n0 = (1, 1, 1), so Vt1(ω̂) = Vt1 [n0](ω̂) = 1.1 + 1.2 + 1.3 = 3.6. In [t0, t1], the best perform
asset is a2 and the worst perform asset is a0. Hence we short $3.6 from asset a0 and invest 3.6+3.6 = $7.2
on a2; namely, we put nt1 = (−3.6/1.1, 0, 7.2/1.3).

At time t = t2, the value of the portfolio is

Vt2(ω̂) = Vt2 [nt1 ](ω̂) = −3.6
1.1

∗ 1.2 +
7.2
1.3

∗ 1.6 = 4.934($).

In the period [t1, t2), the best and worst performed assets are a2 and a1 respectively. Hence, we short
4.934 on a1 and invest 2 ∗ 4.934 = 9.869 on the second asset. That is, nt2 = (0,−4.934/1.1, 9.869/1.6).

The final value of the portfolio is

VT (ω̂) = VT [nt2 ](ω̂) = −4.934
1.1

∗ 1.5 +
9.869
1.6

∗ 1.2 = 0.67($).

5. Finally we consider the strategy of invest twice available capital on worst performed asset and
short the needed capital on the best performed in the most recent period.

Initially, we have n0 = (1, 1, 1) so Vt1(ω̂) = 3.6. In [t0, t1), the worst and best performed assets are
a0 and a2 respectively, so nt1 = (7.2/1.1, 0,−3.6/1.3).

AT time t = t2, the value of portfolio is Vt2(ω̂) = 3.42. The portfolio at t = t2 is nt2 =
(0, 6.84/1.1,−3.42/1.6). The final value is

VT (ω̂) = VT [nt2 ](ω̂) =
6.84
1.1

∗ 1.5− 3.42
1.6

∗ 1.2 = 6.76($).

Exercise 2.13. Show that the set of all attainable contingent claims is a vector space.

Exercise 2.14. Show that each of the strategy described in example 2.16 is a self-financing trading strategy.

Exercise 2.15. Perform the same calculation as in example 2.16 using the following observed data:

S0
t (ω̂) S1

t (ω̂) S2
t (ω̂) S3

t (ω̂)
t−1 0.9 0.89 0.88 0.87

t0 = 0 1 1 1 1
t1 1.1 1.2 1.3 1.05
t2 1.2 1.5 1.6 1.15

t3 = T 1.3 1.5 1.3 1.3

Exercise 2.16. Consider the game of tossing a fair coin T times. Assume T = 3.
(1) Built a state model accounting all possible outcomes and the following two assets (stocks):

a1: one share worth $8.00, doubles after a head (H) but reduce by half after a tail (T).
a2: one share worth $27.00, triples after each T but reduces to 1/3 after each H.

(2) Based on the two securities a1 and a2, make a short-term risk free-asset a0 = θ1a1 + θ2a2. Is
the asset also long-term risk-free, i.e. its future value depends only on time, but not on the outcomes?

(3) Compare the values of the following claims:
(i) X1: Get $8.00 for three Hs, nothing otherwise.
(ii) X2: Get $6.00 for at least two Hs, nothing otherwise.
(iii) X2: Get $2.00 multiplied by the total number of H appeared.
(iv) X4: Get $8 if the sequence is THT .
(v) An option gives the right, but not obligation, to by one share of a2 at price 27 after three tosses.
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2.4 Arbitrage and Risk-Neutral Probability

1. Arbitrage

For a finite state model to be well-formed, we need the no arbitrage assumption.

A state model {T, Ω, {Pt}t∈T, {St}t∈T} is called arbitrage-free if there does not exist any self-financing
strategy {nt}t∈T satisfying

V0[n0] 6 0, VT [nT ](ω) > 0 ∀ω ∈ Ω,
∑

ω∈Ω

VT [nT ](ω)− V0[n0](Ω) > 0.

These inequality says the opposite of no-arbitrage. An arbitrage is an opportunity or the existence
of a self-financing trading strategy such that there is no initial cost, i.e. V0[n0] 6 0 and no obligation
of any future payment, i.e. VT [nT ](ω) > 0 for all ω ∈ Ω, but

∑
ω∈Ω VT [nT ](ω) − V0[n0](Ω) > 0 which

means either V0[n0](Ω) < 0, i.e. there is an initial profit, or
∑

ω∈Ω VT [nT ](ω) > 0 meaning there is a
positive probability of getting something. In view of this, we can divide arbitrage into two types:

Type A Arbitrage: V0[n0](Ω)] < 0,VT [nT ](ω) > 0 for every ω ∈ Ω;
Type B Arbitrage: V[n0](Ω) 6 0, VT [n(T )](ω) > 0 for all ω ∈ Ω,

∑
ω∈Ω VT [nT ](ω) > 0.

If a state model has no arbitrage, then we can define price of replicable contingent claims.

Theorem 2.2 (law of one price) In a arbitrage-free state model, there is no difference among

the initial values of portfolios of all self-financing trading strategies that replicate a same contingent

claim. Consequently, the price of any attainable contingent claim can be defined as the initial value

of the portfolio of any self-financing trading strategy that replicates it.

Proof. First by the definition of the valuation function, we see that Vt[·](ω) is a linear functional
on portfolios. Now suppose both self-financing trading strategy n1 and n2 replicate a contingent claim
X. Then VT [n1

T ] ≡ X ≡ VT [n2
T ]. It follows that for n = n1 − n2, we have VT [nT ] ≡ 0. Since there is no

type A arbitrage, we must have V0[n0](Ω) = 0. This implies that V0[n1
0] = V0[n0

0]; namely, the initial
value of portfolio n1 and portfolio n2 are the same. This completes the proof.

We point out that since the valuation operator V is linear, the pricing for all attainable contingent
claims are linear also.

2. Conditional Probability
Here we introduce some popular notations.
Suppose (Ω,F ,P) is a probability space and |Ω| is finite. We say that P is strongly positive if

F = 2Ω, P({ω}) > 0 ∀ω ∈ Ω.

Suppose B ⊂ Ω is a measurable set and has positive measure. We use B ∩ F to denote the set
{B ∩A | A ∈ F}. The conditional probability P(· | B) is defined by

P(A | B) =
P(A ∩B)
P(B)

∀A ∈ F .
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This means that under the occurrence of event B, the probability that A is observed is P(A|B). Note
that (B, B ∩ F ,P(· | B) is a probability space.

Now suppose ξ is a random variable. The expectation of ξ under the measure P(· | B) is called the
conditional expectation and is denoted by

E(ξ | B) :=

∫
B

ξ(ω)P(dω)
P(B)

.

Next suppose P = {B1, · · · ,Bk} is a partition of Ω where each Bi are measurable and has positive
measure. Then Bi ∈ P → E(ξ | Bi) is a random variable on P, which we can regard as a random
variable on Ω. We use notation E(ξ | P) to denote such random variable. More precisely,

E(ξ | P)(ω) := E(ξ | B) =

∫
B

ξ(ω̂)P(dω̂)
P(B)

∀B ∈ P, ω ∈ B.

We remark again that E(ξ | P) is constant on each block in P and hence can be regarded both as a
function from Ω to R and a function from P to R, depending on our needs and interpretations.

A filtration is a sequence {Pt}t∈T of partitions of Ω such that Pt+1 is a refinement of Pti for each
i = 0, · · · ,K − 1. It is called an information tree if P0 = {Ω} and PT = {{ω} | ω ∈ Ω}. Suppose ξt

is a random variable on (Ω, σ(Pt)) (e.g. ξt is constant on every block in Pt). The collection {ξt}t∈T is
called a martingale adapted to the filtration {Pt}t∈T if

ξti = E(ξti+1 |Pti) ∀i = 0, · · · ,K − 1,

that is

ξti(ω) := ξti(B) =
∫

B

ξti+1(ω̂)
P(dω̂)
P(B)

∀B ∈ Pti , ω ∈ B, i = 0, · · · ,K − 1.

In the sequel, we use notation t + ∆t = ti+1 when t = ti.

3. Risk-Neutral Probability

The most important structure hidden in arbitrage-free state model is the risk-neutral probability.

In a state model (T, {Pt}t∈T, {St}}, a risk-neutral probability is a strongly positive probability mea-
sure P on (Ω, 2Ω) such that {St/S0

t }t∈T is a martingale; that is,

St

S0
t

= E
(St+∆t

S0
t+∆t

∣∣∣ Ps

)
∀t = ti, t + ∆t = ti+1, i = 0, · · · , K − 1,

or equivalently, for each asset ai, i = 0, · · · , m and evert time t = 0, · · · , T − 1, the unit share prices of
ai satisfies

Si
t(B) = ert(B)−rt+∆t(B)E(Si

t+∆t|Pt) = ert(B)−rt+∆t(B)

∫

B

Si
t+∆t(ω)

P(dω)
P(B)

∀B ∈ Pt.

We notice that S0
t+∆t = eRt+∆(·) is constant on each block B in Pt so that

E
(St+∆t

S0
t+∆

∣∣∣ Pt

)
=

1
S0

t+∆t

E(St+∆t | Pt) = e−rt+∆t(·)E(St+∆t | Pt}.
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4. The risk-neutral transition probabilities

The collection {P(A | B) | B ∈ Pt, A ∈ Pt+∆t, A ⊂ B, t ∈ T} are called risk-neutral transition
probabilities. In the tree structure, P (A | B) assigns positive probability of each transition from the
node B to its successor A. One can show that to find a measure P it is equivalent to find all transition
measures, since our tree is full, namely, from any node, there is a unique path back the root.

The risk-neutral transition probability is similar to the risk-neutral probability in the one period
state model. Here we provided a little bit detail to see how we can find them.

Let’s fix a time t ∈ T.
If t = T , then E(· | Pt) = E(· | PT ). Since PT = {{ω} | ω ∈ Ω}, We have

E(ξ | PT ) = ξ

for every function ξ defined on Ω.
Now we assume t < T . Let B ∈ Pt be any block. For simplicity, let’s denote St(B) = s =

(S0
t (B), S1

t (B), · · · , Sm
t (B)). Suppose the node B has n successors, denoted by {B1, · · · , Bn}. We use

St+∆t(Bj) to denote the value of Si
t+∆t on Bj . Also, we denote

er :=
S0

t+∆t(B)
S0

t (B)
=

S0
t+∆t(B1)
S0

t (B)
= · · · = S0

t+∆t(Bn)
S0

t (B)
= ert+∆t(B)

the discount factor. Finally, we denote the transition probability from B to Bj by

pj := P(Bj | B) =
P(Bj)
P(B)

.

That P is risk neutral requires p := (p1, · · · , pn) be strongly positive and satisfy the following system

er Si
t(B) =

n∑

j=1

pjS
i
t+∆t(Bj) ∀i = 0, 1, · · · ,m (2.3)

since S0
t+∆t(B1) = · · · = S0

t+∆(Bn) = erS0
t (B), we see that the equation for i = 0 is equivalent to∑n

j=1 pj = 1.
From one period state model, we know that no-arbitrage implies the existence of at least one strongly

positive transition measure, even when m > n. We shall provide more details in the next section.
Here we emphasize again that risk-neutral probability has nothing to do with the natural probability,

i.e, the probability that each event Bj occurs at time t + 1 under the condition that B occurs at time t.

5. The Pricing Formula
Once a risk-neutral probability is found, the price of any attainable contingent claims can be easily

calculated.

Theorem 2.3 (Finite State Model Pricing Formula) Suppose a state model admits a risk-

neutral probability P. Then the initial price of any contingent claim X is

P (X) = E
(S0

0X

S0
T

)
=

∫

Ω

S0
0X(ω)
S0

T (ω)
P(dω). (2.4)
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We remark that although risk-neutral probabilities may not be unique, the price formula is unique
for all attainable contingent claims.

Proof. Let t ∈ T \ {T} be arbitrary. Pick an arbitrary B ∈ Pt. Let {B1, · · · , Bn} be all successors
of B at time t+∆t. Denote by (p1, · · · , pn) the risk-neutral transition probability from B to B1, · · · , Bn.

Suppose {nt}t∈T is a self-financing trading strategy. Then

Vt[nt](B)
S0

t (B)
=

(nt(B),St(B))
S0

t (B)
=

(nt(B),
∑n

j=1 pjSt+∆t(Bj))

St+∆t
0 (B)

=
∑n

i=1 pj(nt(B),St+∆t(Bj))
S0

t+∆t(B)

=

∑n
j=1 pj(nt+∆t(Bj),St+∆t(Bj)

S0
t+1(B)

=
n∑

j=1

pj
Vt+∆t[nt+∆t](Bj)

S0
t+∆t(Bj)

=
1

P(B)

∫

B

Vt+∆t[nt+∆t]
S0

t+∆t

P(dω).

It then follows
∫

B

Vt[nt]
S0

t

P(dω) = P(B)
Vt[nt](B)

S0
t (B)

=
∫

B

Vt+∆t[nt+∆t]
S0

t+∆

P(dω) ∀B ∈ Pt.

After adding over all B ∈ Pt, we the obtain
∫

Ω

Vt[nt]
S0

t

P(dω) =
∫

Ω

Vt+∆t[nt+∆t]
S0

t+∆t

P(dω) ∀t = ti, i = 0, 1, · · · ,K − 1.

Therefore, for any self-financing trading strategy {nt}t∈T,

Vt00[nt0 ]
S0

t0

=
∫

Ω

V0[n0]
S0

0

P(dω) =
∫

Ω

Vt1 [nt1 ]
S0

t1

P(dω) = · · · =
∫

Ω

VT [nT ]
S0

T

P(dω).

As we shall see in the next section, the existence of a risk-neutral probability implies the state model
has no arbitrage, so that price of contingent claims is well-defined. Now if X is a attainable contingent
claim and {nt}t∈T is a replicating self-financing trading strategy, then the value of X is

P (X) := Vt0 [nt0 ] = S0
0

∫

Ω

VT [nT ]
S0

T

P(dω) =
∫

Ω

S0
0X(ω)
S0

T (ω)
P(dω) = E

(S0
0X

S0
T

)
.

This completes the proof.

Example 2.17. Consider the tree structure in Exercise 2.6. We have

Ω = {ωijk | i, j, k = 1, 2}, T = {t0 := 0, t1 := T/3, t2 := 2T/3, t3 := T}.

P0 = {ω0}, ω0 := Ω,

Pt1 = {ω1, ω2}, ωi := {ωijk ; j, k = 1, 2}, i = 1, 2,

Pt2 = {ω11, ω12, ω21, ω22}, ωij := {ωij1, ωij2}, i, j = 1, 2.,

PT = {{ω} | ω ∈ Ω}.

Denote by St(ω) the stock price at time t and event ω. We have
ω111 ω112 ω121 ω122 ω211 ω212 ω221 ω222

St0 180 180 180 180 180 180 180 180
St1 190 190 190 190 175 175 175 175
St2 200 200 185 185 180 180 170 170
ST 205 195 190 180 185 175 180 160
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Assume that a0 is an risk free asset whose one period (∆t = T/3) return is er = 1.02. Hence,

S0
ti

(ω) = ei r = 1.02i ∀ i = 0, 1, 2, 3, ω ∈ Ω.

Now consider a sub-tree B → {B1, B2}. Denote by pi the risk-neutral transition probability from
B to Bi. Since S0

t+∆t/S0
t = er = 1.02, the system (2.3) becomes

1 = p1 + p2, er St(B) = p1St+∆t(B1) + p2St+∆t(B2).

Thus,

p(B → B1) = p1 =
erSt(B)− St+∆t(B2)

St+∆t(B1)− St+∆t(B2)
, p(B → B2) = 1− p1.

We find the following

p(ω0 → ω1) =
1.02 ∗ 180− 175

190− 175
= 0.573, p(ω0 → ω2) = 0.427,

p(ω1 → ω11) =
1.02 ∗ 190− 185

200− 185
= 0.587, p(ω1 → ω12) = 0.413,

p(ω2 → ω21) =
1.02 ∗ 175− 170

180− 170
= 0.85, p(ω2 → ω22) = 0.15,

p(ω11 → ω111) =
1.02 ∗ 200− 195

205− 195
= 0.90, p(ω11 → ω112) = 0.10,

p(ω12 → ω121) =
1.02 ∗ 1850− 180

190− 180
= 0.87, p(ω12 → ω122) = 0.13,

p(ω21 → ω211) =
1.02 ∗ 180− 175

185− 175
= 0.86, p(ω21 → ω212) = 0.14,

p(ω22 → ω221) =
1.02 ∗ 170− 165

180− 160
= 0.67, p(ω22 → ω222) = 0.33,

From the transition probability, we find the risk-neutral probability

Prob(ω111) = p(ω0 → ω1)p(ω1 → ω11)p(ω11 → ω111) = 0.286,

Prob(ω112) = p(ω0 → ω1)p(ω1 → ω11)p(ω11 → ω112) = 0.05,

Prob(ω121) = p(ω0 → ω1)p(ω1 → ω12)p(ω12 → ω121) = 0.206,

Prob(ω122) = p(ω0 → ω1)p(ω1 → ω12)p(ω12 → ω122) = 0.031,

Prob(ω211) = p(ω0 → ω2)p(ω2 → ω21)p(ω21 → ω211) = 0.312,

Prob(ω212) = p(ω0 → ω2)p(ω2 → ω21)p(ω21 → ω212) = 0.051,

Prob(ω221) = p(ω0 → ω2)p(ω2 → ω22)p(ω22 → ω221) = 0.043,

Prob(ω222) = p(ω0 → ω2)p(ω2 → ω22)p(ω22 → ω222) = 0.021,

Finally, consider a claim at time T whose payment is

X(ω) =
{

100 if ST (ω) > 187,
0 otherwise

The initial price of such a claim is

P (X) = E
(S0

0X

S0
T

)
= [1.02]−3E[X] = 1.02−3 ∗ 100 ∗ (0.286 + 0.05 + 0.206 + 0.31) = 54.00($).
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Exercise 2.17. Take the risk-free interest rate by er = 1.01, recalculate the risk-neutral (transition)
probability and the initial price of the claim in Example 2.17.

Also calculate the initial prices of European call and put options with strike price 180.
How about the initial prices of the American call and put options with strike price 180. (Hint: In

the subtree B → {B1, B2}, the value Vt of the American call option is

Vt(B) = max
{

St(B)− 180, e−r[p(B → B1)Vt+∆t(B1) + p(B → B2)Vt+∆t(B2)]
}

.

The value of the American put is

Vt(B) = max
{

180− St(B), e−r[p(B → B1)Vt+∆t(B1) + p(B → B2)Vt+∆t(B2)]
}

.

2.5 The Fundamental Theorem of Asset Pricing

Knowing a risk-neutral probability allows us to evaluate a contingent claim rather efficiently. Concerning
the existence and uniqueness of risk-neutral probabilities, we have the following fundamental result.

Theorem 2.4 (Fundamental Theorem of Asset Pricing) (1) In a multi-period finite state

model, there is no arbitrage opportunity if and only if there is a risk-neutral probability. (2) In a finite

arbitrage free model, the risk–neutral probability is unique if and only if the model is complete.

Proof. Due to the if and only if’s, we divide the proof into four parts.
1. Suppose there is a risk-neutral probability. We show that there is no arbitrage.
Let {nt}t∈T be any self-financing trading strategy such that VT [nT ](ω) > 0 for every ω ∈ Ω. Then

from the pricing formula (2.4) we see that V0[n0] ≥ 0. In addition, since P is a strongly positive measure,
we see that either VT [nT ] ≡ 0 = V0[n0] or V0[n0] > 0. Thus, there is no arbitrage.

2. Next assume that the model is arbitrage free. We show there exists a risk-neutral probability.
In the tree structure, take any one period subtree say {B − − > B1, · · · , Bk} where B ∈ Pt. We

claim that it is also arbitrary free. Indeed, if there is an arbitrage, we do nothing before t, and if B

reveals at time t, we can make free profit and lock in at time t+∆t. In this way we find there is arbitrage
for the original model.

Hence, any one period subtree is arbitrage free. The theory on one-period state model then provides
a risk-neutral probability for the subtree, which gives a transition probability from B to all its immediate
successors. Do this for every one-period subtree we then obtain a complete set of transition probabilities,
from which we obtain a risk-neutral probability for the original model. We leave details to the readers.

3. Suppose the model is arbitrage-free and complete. We show risk-neutral probability is unique.
Let P and P̃ be two risk-neutral probabilities. Since the model is complete, for any elementary state

security ei defined by ei(ωj) = δij for every ωj ∈ Ω, we have, by the pricing formula,

P (ei) =
∫

Ω

S0
0ei

S0
T

P(dω) =
S0

0

S0
T (ωi)

P(ωi).

In a similar manner, we can find that P (ei) is given by the same formula with P(ωi) replaced by P̃(ωi).
Hence, we must have P(ωi) = P̃(ωi). As ωi ∈ Ω is arbitrary, we then know that P = P̃. That is,
risk-neutral probabilities are unique.
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4. Finally suppose there is no arbitrage and there is a unique risk-neutral probability. We want
to show that the model is complete, i.e. every contingent claim has a replicating trading strategy.

To this purpose, we write Ω as Ω = {ω1, · · · , ωn} and set

πi =
S0

0P(ωi)
S0

T (ωi)
∀ i = 1, · · · , n.

Suppose the model is not complete. Then the dimension of M of all attainable contingent claims
is less that n. Consequently, the space M̃ := {(X(ω1)π1, · · · , X(ωn)πn)} | (x1, · · · , xn) ∈ M} also
has dimension less than n. Hence, there exists a non-zero vector y = (y1, · · · , yn) in the orthogonal
complement of M̄. That is,

0 =
n∑

i=1

yiπiX(ωi) = 0 ∀X ∈M.

Now take a sufficiently small positive ε and define a new measure P∗ on Ω by

P∗(ωi) = (1 + εyi)P(ωi). ∀ωi ∈ Ω.

Since ε is small but not zero we have a strongly positive measure P∗ on Ω that is different from P.
We now show that P∗ is also a risk-neutral probability, thereby derive a contradiction to the assumption
that the risk-neutral probability is unique.

We use E∗ to denote the expectation under the measure P∗. First of all, for any X ∈M, we have

E∗(S0
0X/S0

T ) =
n∑

i=1

S0
0Xi(ωi)
S0

T (ωi)
P∗(ωi) =

n∑

i=1

S0
0Xi(ωi)
S0

T (ωi)
(1 + εyi)P(ωi)

= E(S0
0X/S0

T ) + ε

n∑

i=1

yiπiX(ωi) = E(S0
0X/S0

T ) = P (X) ∀X ∈M.

Next, let nt = (1, 0, · · · , 0) for all t which corresponds to one share of short-term risk-free asset in
the portfolio for all time. Then its payoff is S0

T (ω). Take this as the contingent claim X we obtain by
the definition of price that

S0
0 = P (X) = P (S0

T ) = E∗(S0
0) = S0

0

n∑

i=1

P∗(ωi).

This implies that P∗ is a probability measure.
It remains to show that {St} is a martingale under P∗. For this, let t ∈ T \ {T} be arbitrary. Fix

any B ∈ Pt. Consider the following trading strategy. Do noting if B does not happen; if at t, B happen,
borrow money from short-term risk-free asset just enough to buy one share of asset aj , and wait one
period to time t + ∆t and then lock in. This is a self-financing trading strategy, whose portfolios can be
written as

nτ = 0 ∀ω 6∈ B, τ ∈ T, nτ = 0 ∀ω ∈ B, τ < t,

nt(B) =
(
− Sj

t (B)

S0
t (B)

, 0, · · · , 0, 1, 0, · · · , 0
)

(1 is at jth position),

nτ (ω) =
(
− Sj

t (B)

S0
t (B)

+
Sj

t+∆t(ω)

S0
t+∆t(B)

, 0, · · · , 0
)

∀ω ∈ B, τ ≥ t + ∆t.

Since the initial price of this portfolio is zero, the price of the contingent claim it replicates is also zero.
Consequently,

0 = P (VT (nT )) = E∗(S0
0nT /ST ) =

{
− Sj

t (B)
S0

t (B)
P∗(B) +

∫

B

Sj
t+∆t

S0
t+∆t

P∗(dω)
}
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Hence,

Sj
t (B)

S0
t (B)

=
∫

B

Sj
t+∆t

S0
t+∆t

P∗(dω)
P(B)

= E∗
(Sj

t+∆t

S0
t+∆t

∣∣∣ B
)
.

As B is arbitrary, we then have Sj
t /S0

t = E∗(Sj
t+1/S0

t+1 | Pt). Since t is also arbitrary, P∗ therefore is
a risk-neutral probability. Thus we obtain a contradiction. This contradiction shows that the model is
complete. This completes the proof.

Most of the content here can be find from [6].

Exercise 2.18 (A Trinomial Tree). A certain underlying state model is a tree where each node has three
successor nodes, indexed a, b, c. There are two assets defined on this tree. At certain period the prices of
the two assets are multiplied by factors, depending on the successor node. The factors are shown below:

Security successor nodes a b c
a1 1.2 1.0 0.8
a2 1.2 1.3 x

(A) Assume that x = 1.4. Is there a short term risk-free asset for this period?
(B) Assume that x = 1.4. Is it possible to construct an arbitrage?
(C) Assume that x = 0.7 and risk-free interest rate is 10%. Also assume that the above factors are

valid for all time. Show that the model is complete. Suppose the initial unit share price of a1 and a2 are
both $100. Calculate the price of the following claims at t = 2.

(i) A contingent claim with the following payoff:

X({aa, ab, ac, ba, bb, bc, ca, cb, cc}) = {1, 2, 3, 4, 5, 6, 7, 8, 9}.
(ii) The option, not obligation, to exchange one share of a2 to one share of a1,
(iii) The option, not obligation, to exchange one share of a1 with one share of a2.
(iv) A European call option for a2 at strike price K = 100.
(v) An American put option for a1 at strike price K = 100.
(vi) An Asian call option for asset a1 with strike price S = (S0

1 + S1
1 + S2

1)/3 where Si
1 is the price

of asset a1 at time t = i.
(vii) A European call option for either one share of more expansive asset, at strike price $100.
(viii) An American put option for one share of cheaper asset at strike price $100.

Exercise 2.19 (Node Separation). Consider a short-term risk-free rate on a binomial tree. At t = 0,
the interest rate is 10%. At t = 1, the rate for upper node is 10% and lower node is 5%. Trace out the
growth of $1 invested on short-term risk-free asset at t = 0 and rolled over at time t = 1. Show that a
full tree is needed.

Exercise 2.20 (Trinomial Tree and Lattice). Assume that that risk-free interest rate is 10% per period
and a stock price has three possibilities: (a) increases by 20%, (b) remains the same, and (c) decreases
by 10%.

(i) Construct a trinomial tree with T = 2.
(ii) Find all possible risk-neutral probabilities.
(iii) Find all contingent claims at t = 2 that are replicable.
(v) Construct a trinomial lattice with states being the stock’s prices. Find all possible risk-neutral

probabilities. Also find all possible contingent claims at t = 2 that are replicable. Are there differences
between a tree model and a lattice model?
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2.6 Cash Flow

A cash flow is a string of capitals to be received in a set of fixed dates. If the fixed dates are T =
{t0, t1, · · · , tK} (0 = t0 < t1 < · · · < tK = T ) and the capital to be received at ti is d(ti), then the cash
flow can be denoted by {(t0, d(t0)), · · · , (tK , d(tK))} or simply {(t, d(t))}t∈T.

1. Present Value and Future Value

Suppose the (continuously compounded) interest rate is a constant ν. Then the balance of depositing
P (0) at time t = 0 “grows” to

P (t) = P (0)eνt

at time t. That is to say, the present value of a future payment P (t) at time t is

P (0) = P (t)e−νt.

Thus, for a cash flow CF = {(t, d(t))}t∈T where T = {0 = t0, t1, · · · , tK = T}, its present value is

PV(CF) :=
∑

t∈T

d(t)e−νt.

Similarly, its future value at time T is

FV(CF) =
∑

t∈T

d(t)eν(T−t) = eνT PV(CF).

Example 2.18. Consider a $100,000 home mortgage on a 15 year term with a so-called 6%/year, but
indeed R = 0.5%/month interest rate. The mortgage is payed back monthly, with the first payment due
at the last day of the first month after receiving the mortgage. Find the monthly mortgage payment P

and the balance M(t) that is needed to payoff the mortgage at time t.
(i) Let’s use month as our unit time. Denote by T = {i}15∗12=180

i=0 the times of mortgage payments.
Then the cash flow of the home owner can be written as follows:

CF1 := {(0, 100000), (1,−P ), (2,−P ), · · · , (180,−P )}.

Similarly, the loaner has cash flow

CF2 := {(0,−100000), (1, P ), (2, P ), · · · , (180, P )}.

(ii) Let’s use M(t) to denote the principal that the mortgage borrower owe to the loaner at time t.
From time t − 1 to t, the interest on the principal is RM(t − 1), minus the payment P , so new

principle is

M(t) = M(t− 1) + RM(t− 1)− P = (1 + R)M(t− 1)− P.

Multiplying both sides by [1 + R]−t gives

M(t)[1 + R]−t = M(t− 1)[1 + R]−(t−1) − P [1 + R]−t.

By induction, we then obtain

M(t)[1 + R]−t = M(0)−
t∑

i=1

P [1 + R]−t = M(0)− P
1− (1 + R)−t

R
.
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Since M(T ) = 0, we find that the monthly payment P and consequently the principal M(t) are

P =
R

1− [1 + R]−T
M(0), M(t) =

1− [1 + R]t−T

1− [1 + R]−T
M(0).

In our example, R = 0.005, T = 180,M(0) = 100, 000 so the monthly payment is

P = 100, 000 ∗ 0.005/[1− (1.005)−180] = $843.85

(iii) The present value of the mortgage borrower’s cash flow, under constant interest rate R = eν−1
is

PV (CF) = M(0) +
T∑

t=1

(−P )[1 + R]−t

= M(0)− P
1− [1 + R]−T

R
= 0.

The future value of the cash flow of the mortgage loaner at time T , under the constant interest rate R,
is

FV(CF) = −M(0)[1 + R]T +
T∑

t=1

P [1 + R]T−t

= [1 + R]T
{

P
1− [1 + R]−T

R
−M(0)

}
= 0.

Quite often, the interest rate is a random variable, evaluating the value of a mortgage contract is
very difficult.

2. US Government Bonds
There are many kinds of government bonds. Short termed ones (0-1 year) are quite often called

bills, whereas medium termed (1–10 year) ones are often called notes. They are typically issued at
auctions. How to price a bond thus becomes a personal matter.

A typical US bond is issued with coupons that pay off semiannually the interest from the principle.
For example, a 10 year $1000 bond with 12%/year interest rate will pay $1,000 at the last day of the
tenth year, plus 20 coupons each of which pays $60; these coupons (sent in mail in old days) are payed
one at a time, with half year period, starting at the last day of the first half year. Using half year as our
unit time, the cash flow can be represented by

{(0,−P ), (1, 60), (2, 60), · · · , (19, 60), (20, 1060)}

where P is the cost to obtain such a bond. The value of P is driven by the financial market.
When a bond is detached from coupons, it is called a stripped bond or zero-coupon bond; it is

one of the simplest fundamental security used in mathematical finance. For example, when coupons are
“lost” (or kept by the owner as a not “for sale” object), the bond in the above example becomes zero
coupon bond in the financial market, it has the simplest case flow

{(0, 0), (1, 0), · · · , (19, 0), (20, 1000)}.

Of course, each coupon in the above example can also be regarded as a zero-coupon bond. The mathe-
matical usage of a zero-coupon bond is that it represents an absolute future value, regardless of inflation
or deflation. It is quite popular to use zero-coupon bond as collateral in many financial arrangements.
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Example 2.19. Consider a financial system in which there are two kinds of zero-coupon bonds available:
B1. A half year zero-coupon bond of face value $100 currently sold at $96;
B2. A one year zero-coupon bond of face value $100 currently sold at $90.
Suppose we have a total of $10,000, 10 year term, bonds which bear 12%/year interest payed

semiannually. These bonds are issued 9 years ago. How much do they worth now?
To solve the problem, first we notice the cash flow of the security (the total of these 10 year bonds):

{(0,−P ), (1, 600), (2, 10600)}.

We want to replicate this cash flow by that from B1 and B2. The cash flow of B1 and B2 can be
represented as

CF1 := {(0,−96), (1, 100), (2, 0)}, CF2 = {(0,−90), (1, 0), (2, 100)}.

We now use the principle of replicating portfolio and no arbitrage. Suppose x units of B1 and y

units of B2 can produce the cash flow of B. Then we need

P = x ∗ 96 + y ∗ 90, x ∗ 100 = 600, y ∗ 100 = 10600.

Thus, x = 6 units of bond B1 plus y = 106 units of bond B2 will produce the exact payment of B.
Hence, the present value of these 9 year old ten year term bonds is

P = 6 ∗ 96 + 106 ∗ 90 = $10116.

Finally, if the last interest ($600) from these bonds has not been collected yet, then they worth
10116 + 600 = $10716.

In an actual financial market, interest rates fluctuate with time. To make sense of them and to derive
necessary information on short term risk-free interest rates needed in a state model is a complicated
matter. We omit detailed study here.

3. Pricing a Security with Dividend

Suppose we are to price a derivative security which has a cash flow {(t, d(t, ·)}t∈T where d is a
random variable (say the dividend from a stock or bond). In a complete finite state model, such a
problem can be easily handled.

Consider the time from t to t+∆t. Suppose at time t, the state is at B ∈ Pt. Denote its descendent
states by {B1, · · · , Bn}, i.e. B = ∪n

i=1Bi and Bi ∈ Pt+∆t. Let p = (p1, · · · , pn) be the risk-neutral
transition probability from state B to states (B1, · · · , Bn).

Let Vt(ω) = Vt(B) be the value of the derivative security at time t, after the dividend payment.
Then by the pricing formula, its value can be calculated by

Vt(B) = ert(B)−rt+∆t(B)
n∑

i=1

{
d(t + ∆t, Bi) + Vt+∆t(Bi)

}
pi.

Exercise 2.21. Using the two bonds in Example 2.18 calculate the (market expected) short term inter-
est rates, for the first half and second half year respectively. Construct portfolios that support your
conclusion.
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Exercise 2.22. Suppose a stock, currently $100 per share, pays a fixed dividend of d = $1 per share per
month. Assume that the stock price (after the dividend) obeys a binomial tree model: after each month,
its price increases either by a factor u = 1.04 or a factor of d = 0.94. Suppose the risk-free interest
rate is R = eν0 − 1 = 0.01 per month. Calculate the price of a European put option with strike price
K = $100 and 3 month duration. Construct a replication portfolio to support your conclusion.

Exercise 2.23. Discuss the difference between using zero-coupon bonds and using cash as a collateral in
keeping an account (with zero interest) in a stock market performing trades on futures.

Exercise 2.24. Consider a 30-year mortgage of 10000 with monthly interest rate R = eν − 1 = 0.7%.
Find the monthly payment. Also use spreadsheet tabulate the balance at any time moment.

Redo the calculation for R = 0.6%, 0.5%, 0.4% respectively.

Exercise 2.25. Consider a 30-year mortgage of 10000 with monthly interest rate R = eν − 1. Find the
monthly payment. Assume that the zero coupon T -bond is sold at ZT

0 = e−0.005T−0.00001T 2
(T measured

in month). Find the present value of the cash flow of the mortgage payment for R = 0.6% and R = 0.5%
respectively. Also fine the critical R such that the present value of the mortgage payment is equal to
10000.

Hint: Since one can by a time T payment of P at current price of PZT
0 , the present value of the

mortgage payment is

PV (CF ) =
360∑

i=1

PZti
t0 .



Chapter 3

Asset Dynamics

True multi-period investments fluctuate in values, distribute random dividends, exist in an environment
of variable interest rates, and are subject to a continuing variety of uncertainties. By asset dynamics it
means the change of values of assets with time. Two primary model types are used to represent asset
dynamics: trees and stochastic processes.

Binomial tree models are finite state models based on the assumption that there are only two possible
outcomes between each single period. Consider a binomial tree model for a stock price. If we use U for
up and D for down, then in a n-period binary tree model, each state can be represented by a word of
n letters of only two symbols “U” and “D”. At the final time moment T , there are 2n possible states.
Quite often tree branches can be combined to form lattices. For example, if each U and D represent the
increment of stock price by a factor of u > 1 and d < 1, respectively. Then after k ups and n− k downs,
the stock price at time T is ukdn−k fold of its initial price. While there are Ck

n many ways to reach this
price, if only the stock prices are relevant to the problem, then we can combine all those nodes which
give the same price. In this ways, the 2n binary states can be replaced by an equivalent n + 1 states,
resulting the commonly used binomial lattice model.

Stochastic process, or continuum model, on the other hand, are more realistic than binomial tree
models in the sense that they have a continuum of possible stock prices at each period, not just two.
The continuum models allow sophisticated analytical tools get involved so some problems can be solved
analytically, as well as computationally. They also provide the foundation for constructing binomial
lattice models in a clear and consistent manner (once the necessary mathematical tools are assessed).
Stochastic process, particularly the Ito process, models are fundamental to dynamic problems.

Binomial tree models are conceptual easier to understand and analytically simpler than the Ito
process. They provide an excellent basis for computational work associated with investment problems.
We shall present a binary tree model known as the Cox-Ross-Rubinstein (CRR) Model [3] which is a
specific example of finite state model present in the previous chapter.

From the CRR model, we shall take a limit to derive the famous Black–Scholes model [1]. Historically
the paper of Black–Scholes came first and initialed the modern approach to option’s evaluation. They
discovered the rational option price derived from risk-neutral probability, an astonishing consequence
of the seemingly trivial no-arbitrage assumption. Another earlier significant contribution was Merton
[18, 17]. The simplified approach using binomial lattice was first presented by Sharpe in [28] and later
developed by Cox, Ross, Robinstein [3] and also Rendleman and Bartter [23].

73
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3.1 Binomial Tree Model

To define a binomial tree model, a basic period length of time is established (such as one week or one day).
According to the traditional Cox–Ross–Robinstein (CRR) model, if the price is known at the beginning
of a period, the price at the beginning of the next period is only one of two possible values—a multiple
of u for up and a multiple of d for down, here u > 1 > d > 0. The probabilities of these possibilities
are q and 1 − q respectively. Therefore, if the initial price is S, at the beginning of nth period, there
are only n + 1 possible stock prices, Sukdn−k, k = 0, 1, · · · , n with a binomial probability distribution
of parameter q ∈ (0, 1). The state model based on a tree of size

∑n
i=0 2i = 2n+1 − 1 can be collapsed to

a binary lattice {(tk, uidk−i) | k = 0, 1, · · · , i = 0, · · · , k} of size
∑n

i=0(i + 1) = (n + 1)(n + 2)/2. From
each node, there are two outgoing arrows, one for up and one for down. For a tree, each node (except
root) has only one incoming arrow; for lattice, each node (except the root and the first level) has two
incoming arrows. Hence, for a tree structure history is unique, whereas for lattice, one cannot trace the
history. In applications, if history is not needed, using lattice saves computation time. For most cases, a
tree structure is much clearer and much more versatile than a lattice structure and therefore is strongly
recommended.

u

d

uu

ud
du

dd

uuu

uud
udu
duu

udd
dud
ddu

ddd

u

d

u2

ud

d2

u3

du2

ud2

d3

Statistically one can gather historical data to estimate two of the most important parameters: the
expected return E(R) and variance Var(R). Hence, in applying the theoretical model to reality, the
model parameter (u, d, q) has to satisfy the matching condition

qu + (1− q)d = 1 + E(R), q(1− q)(u− d)2 = Var(R).

There are three parameters for two equations, so one of the parameter is free. One can show that if the
single period is sufficiently short, then the choice of the free parameter is not very much relevant. In
application, one adds in one of the following equations to fix the parameter:

(i) q = 1/2; (ii) ud = 1; (iii) p = 1/2

where p is the risk-netural probability (to be explained later). Each choice has its own advantages.
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Here we shall take a simpler but more fundamental and theoretical approach than the general
binomial tree or lattice approach described above. We shall simulate the stock price by using the
digitized Brownian motion: in each time period, the position of a particle either move to the left
or to the right by exactly one unit length, both with probability 1/2. Such digitized Brownian motion
seems very special, nevertheless, in its limit, it can form most of the known stochastic processes. This
phenomena has its root from the central limit theorem which asserts that almost all averages of i.i.d
random variables are empirically normally distributed.

1. Trading Dates.

The time interval in our consideration is [0, T ] which is divided into n subinterval of equal length.
Times of trading are at the end points of these subintervals. Hence, we set

T = {t0, t1, · · · , tn}, ti = i∆t ∀ i = 0, 1, · · · , n, ∆t =
T

n
.

In most applications, people use Excel spreadsheet, taking n ranging from 5 to 100; that is, ∆t can
be one day, one week, one month, or even one year. One keeps in mind that without accurate input (e.g.
evaluation of important parameters), taking large n but not the limit of n → ∞, may not help much.
Nevertheless, for mathematical beauty and deep theoretical analysis, we would like to take the limit as
∆t → 0 to obtain continuous models, for which, calculus will be very useful.

2. Assets.

In our consideration there are two assets:

a0 : a risk-free asset with constant continuous compounded interest rate ν0;

a1 : a security (e.g. stock) whose unit share price is St, a random variable satisfying

S0 = S, Sti = Sti−1eν∆t+σ
√

∆t εi ∀ i = 1, 2, · · · , n

where εi is a random variable with probability distribution

Prob(εi = 1) = Prob(εi = −1) = 1
2 ∀ i = 1, 2, · · · , n.

It is assumed that ε1, ε2, · · · , εn are independent, identically distributed random variables.

The random variable ν∆t + σ
√

∆t εi is the continuously compounded return rate of the stock in
a single period. The conventional one period return rate Ri introduced in the mean-variance theory is
given by Ri := eν∆+σ

√
∆tεi − 1. Hence, in a single period, the expected return rate E(Ri) and variance

Var(Ri) are given by

E(Ri) = 1
2eν∆t+σ

√
∆t + 1

2eν∆+σ
√

∆t − 1 =
(
ν +

σ2

2

)
∆t + O(∆t3/2),

Var(Ri) = 1
4 (eν∆t+σ

√
∆t − eν∆t−σ

√
∆t)2 = σ2∆t + O(∆t3/2).

It is very important to notice that

when interests are compounded continuously, the expected growth rate ν differ from the expected
return rate µ by approximately half of the variance.

3. State Space
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Base on the behavior of the stock price, we build a state space as follows. We use

Ω = Bn := {(z1, · · · , zn) | |zi| = 1 ∀ i = 1, · · · , n}, B = {−1, 1}.

The information tree {Pt}t∈T is then defined by

Pti = {{(z1, · · · , zi)×Bn−i} | |zk| = 1 for all k = 1, · · · , i}, i = 0, 1, · · · , n.

4. State Economy.

For the risk-free asset, its unit share price St
0 at time t is easily calculated to be

St
0(ω) = S0

0eν0t ∀ω ∈ Ω, t ∈ T.

The stock price St can be calculated by, for every ω = (z1, · · · , zn) ∈ Ω,

Stk(ω) = Stk−1eν∆t+σ
√

∆t zk = · · · = Seνtk+σ
√

∆t
∑k

i=1 zi ∀k = 1, · · · , n.

We remark that according to our construction, the natural probability is

Prob({ω}) = 2−n =
1
|Ω| ∀ω ∈ Ω.

Consequently, using combinatory, for any k = 0, 1, · · · , n,

qk := Prob
(
ST = SeνT+σ

√
∆t(2k−n)

)
= 2−n

(
n
k

)
= 2−nCk

n =
1
2n

n!
k!(n− k)!

,

That is to say,
ln ST − νT

σ
√

∆t
is binomially distributed .

We remark that the binary tree can be collapsed to binary lattice by combing the nodes with same
sum

∑k
i=1 zi, for every k = 1, · · · , n. This is allowed as far as only spot stock prices are concerned.

Here we remark that the possibility of collapsing of a binomial tree model to a binary lattice model
relies on the constancy of µ and σ. In sophisticated models, both µ and σ are functions of St and t and
one realizes it to be very hard to collapse a binary tree model to a binary lattice. Nevertheless, one can
use a trinomial lattice model.

5. Risk-Neutral Probability.

First we calculate the risk-neutral transition probability. For any node (z1, · · · , zk)× Bn−k ∈ Ptk ,
there are two immediate successors, (z1, · · · , zk, 1)×Bn−k−1 and (z1, · · · , zk,−1)×Bn−k−1. Denote by
p the probability for up and by 1− p the probability for down. It is easy to derive the equation for p:

eν0∆t = p eν∆t+σ
√

∆t + (1− p) eν∆t−σ
√

∆t =⇒ p =
e(ν0−ν)∆t − e−σ

√
∆t

eσ
√

∆t − e−σ
√

∆t
.

For the model to be good, i.e., arbitrage free, we need 0 < p < 1. This is equivalent to

σ > |ν − ν0|
√

∆t.
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Under this condition, we have unique risk-neutral probability. That is, the state model is arbitrage free
and complete.

From the transition probabilities, we can derive the risk-neutral probability

P({ω}) = p
1
2

∑n
i=1(1+zi)(1− p)

1
2

∑n
i=1(1−zi) ∀ω = (z1, · · · , zn) ∈ Ω.

From which, we can also calculate the risk-neutral probability distribution of ST :

pk := P
(
{ω | ST (ω) = SeνT+σ

√
∆t(2k−n)}

)
=

n! pk(1− p)n−k

k! (n− k)!
, k = 0, · · · , n.

As we know from the previous chapter, in pricing contingent claims, one has to use the risk-neutral
probability distribution. This is a revolutionary idea of Black and Scholes. In old days, people used
natural probabilities pricing derivative securities, resulting mismatch with reality.

5. Pricing Formula

Suppose we have a derivative security whose payoff is given by

X = f(ST ) only at time T

where f : R → R is a given smooth function. Then by our pricing formula, the price for the derivative
security is

P (X) = E
(S0

0X

ST
0

)
= e−ν0T E(X) = e−ν0T E(f(ST )) = e−ν0T

∑

ω∈Ω

f(ST (ω)) P({ω})

=
n∑

k=0

pk e−ν0T f(SeνT+σ
√

∆t(2k−n))

=
n∑

k=0

n! pk(1− p)n−k

k!(n− k)!
e−ν0T f(SeνT+σ

√
T (2k−n)/

√
n).

We can summarize our calculation as follows:

Theorem 3.1 ( Contingent Claim Price Formula) Assume that the risk-free continuously

compounded interest rate is ν0 and the log of the underlying security price obeys the digtized

Brownian Motion with mean ν∆t and variance σ2∆t:

ln Stk − ln Stk−1 = ν∆t + σ
√

∆t εk, tk = k∆t ∀k ∈ N,

where ε1, ε2, · · · are independent, identically distributed random variables satisfying Prob(εk = 1) =

Prob(εk = −1) = 1/2 for all k ∈ N. Also assume that σ > |ν − ν0|
√

∆t.

Then for any derivative security X with payoff f(ST ) at time T = n∆t, its price at initial time is

P (X) = P∆t(S, T ) :=
n∑

k=0

n! pk(1− p)n−k

k!(n− k)!
e−ν0T f

(
S eνT+σ(2k−n)

√
∆t

)

where S is the current price of the underlying security and p =
e(ν0−ν)∆t − e−σ

√
∆t

eσ
√

∆t − e−σ
√

∆t
.
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Exercise 3.1. Under the assumption of Theorem 3.1, show that if the current time is t = T − kn∆t and
spot security price is S, then the price of a contingent claim with payoff f(ST ) at time T is

P∆t(S, T − t) :=
m∑

i=0

m! pi(1− p)m−i

i!(m− i)!
e−ν0(T−t) f

(
S eν(T−t)+σ(2i−m)

√
∆t

)
(3.1)

3.2 Pricing Options

An option is the right, but not obligation, to buy or sell an asset under specific terms.

A call option is the one that gives the right to purchase something.

An put option is the one that gives the right to sell something.

To exercise an option means the actually buying or selling asset according to option terms.

An option buyer or holder has the right to exercise an option according to the option terms.

An option writer or seller has the obligation to fulfil buyer’s right.

The specifications of an option include, but may not limited to the following:

1. A clear description of what can be bought (for a call) or sold (for a put).

For options on stock, each option is usually for 100 shares of a specified stock. Mathematically,
one option means for one share of stock.

2. The exercise price or strike price for the underlying asset to be sold or bought at.

3. The period of time that the option is valid. This is typically defined as expiration date.

There are quite a number of options types:

1. European option In this option, the right of the option can be exercise only on the expiration
date. Strike price is fixed.

2. American option The option right can be exercised any time on or before the expiration data.
Strike price is fixed.

3. Bermudan option The exercise dates are restricted, in some case to specific dates, in other cases
to specific periods within the lifetime of the option.

4. Asian option The payoff depend on the average price Savg of the underlying asset during the
period of the option. There are basically two ways that the average can be used.

(i) Savg is served as strike price; the payoff for a call is max{ST − Savg, 0}.
(ii) Savg is served as the final asset price; the payoff for a call is max{Savg −K, 0}.

5. Look-back option The effective strike price is determined by the minimum (in the case of call) or
maximum (in the case of put) of the price of the underlying asset during the period of the option.
For example, a European look-back call has payoff = max{ST −Smin} where Smin is the minimum
value of the price S over the period from initiation to termination T .
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6. Cross-ratio option These are foreign-currency options denominated in another foreign currency;
for example, a call for 100 US dollars with an exercise price of 95 euros.

7. Exchange option Such option gives one the right to exchange one specified security for another.

8. Compound option A compound is an option on an option.

9. Forward start option These are options paid for one date, but do not begin, until a later date.

10. ”As you like it” option The holder can, at a specific time, declare the option to be either a put
or a call.

PS: The words European, American, Bermudan, Asian are words for the structure of the option, no
matter where they are issued.

Option prices can be calculated by using tree structures, if the dynamics of the price of underlying
asset can be described by a finite state model. In the sequel, we provide a few examples demonstrating
how to calculate prices of options by using a binomial tree structure. The key here is we have to use
risk-neutral probability, not natural probability!

Assume that risk-free interest rate is ν0 = 0.10. Let’s consider of a stock of initial price S0 = 100,
growth rate ν = 0.12/year, and volatility σ = 0.20/

√
year. We shall consider options of duration three

months, so we construct a three month tree structure. For simplicity, de take ∆t = 1 (month) = 1/12
(year). We find

u = eν∆t+σ
√

∆t = 1.0701, d = eν∆−σ
√

∆t = 0.9534, p =
e(ν0−ν)∆t − e−σ

√
∆t

eσ
√

∆t − e−σ
√

∆
= 0.4712

The tree is displayed as follows:

states ddd ddu dud duu udd udu uud uuu
pk .1479 .1318 .1318 0.1174 .1318 .1174 .1174 0.1046

S3(k) 86.66 97.26 97.26 109.17 97.26 109.17 109.17 122.53
S2(k) 90.89 102.02 102.02 114.51
S1(k) 95.33 107.01
S0 100.00

Here the second line displays all possible states, and the top line provides the risk-neutral probability
of these states, being pk = pk(1 − p)3−k, k = 0, 1, 2, 3. The lines after are possible prices of the stock.
Since we have constant ν, ν0, σ, the risk-neutral probabilities are constants in the sense that probability
p for up and 1− p for down.

We now consider the following options. Their durations are all three months.

1. A European call option with strike price K = $100. The caller can buy a stock from seller at
price 100 and sell it on the market at price ST , so the payoff is St − 100. Of course, if St 6 100,
the caller just let the option void. Hence the payoff is X = max{S3 − 100, 0}. From this, we can
use the risk-neutral probability to determine its price

EC = e−ν0T
8∑

k=1

pkX(k) = e−u0T
8∑

i=0

pk max{S3(k)− 100, 0}

= e−0.1∗3/12
{

0 + 3 ∗ 0 + 3 ∗ 9.17 ∗ 0.1174 + 22.53 ∗ 0.1046
}

= $5.44 .
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Thus, one European call option worths $5.44.

Note that for European call options, we need only a lattice structure.

2. A European put option with strike price K = $100. The option holder can by one share of
stock at price ST and sell to the writer at K = 100, with profit 100−ST . Surely, if ST > 100, the
option expires quietly. Hence the payoff of is X = max{100− S3}. Using risk-neutral probability,
we calculate the option’s price as

EP = e−ν0T
8∑

i=0

pk max{100− S3(k), 0}

= e−0.1∗3/12
{

13.34 ∗ 0.1479 + 3 ∗ 2.74 ∗ 0.1318 + 3 ∗ 0 + 0
}

= 2.97.

We check the put-call option parity formula EC − EP = S0 −Ke−ν0T :

EC − EP = 5.44− 2.97 = 2.47, S −Ke−ν0T = 100− 100e−0.1∗3/12 = 2.47.

3. An Asian call option with strick price K = (
∑3

i=1 St)/3 (The average of past three month).
Then the payoff is X = max{0 , S3 − (

∑3
i=1 St)/3)}. Tracking the history, we find value’s of X

and the corresponding probability as follows:

history uuu uud udu duu udd dud ddu ddd
K 114.68 110.23 106.07 102.18 102.10 98.21 94.50 90.96
S3 122.53 109.17 109.17 109.17 97.26 97.26 97.26 86.66
p 0.1046 0.1174 .1174 0.1174 0.1317 0.1317 0.1317 0.1479

Here K is calculated by taking the average of three stock prices in the last three month. For
example,

K(udu) =
{

S0u + S0ud + S0udu
}

/3 = 106.07.

Thus, the price of the Asian call option is

AC = e−0.1∗3/12{(122.53− 114.68) ∗ 0.1046 + (109.17− 106.07) ∗ 0.1174

+(109.17− 102.18) ∗ 0.1174 + (97.26− 94.50) ∗ 0.1317) = $2.31 .

4. An Asian Put Option with strick price being the average of past three month. Then the payoff
is X = max{(∑3

i=1 St)/3) − S3, 0}. Tracking the history, we find value’s of X and calculate its
price by

AP = e−0.1∗3/12{(110.23− 109.17) ∗ 0.1174 + (102.10− 97.26) ∗ 0.1317

+(98.21− 97.26) ∗ 0.1174 + (90.96− 86.66) ∗ 0.1479) = $1.41 .

Thus, the Asian put option should have a price of $1.41.

5. An American Call Option with strike price K = 100. It can be argued that the best strategy
for American call is to exercise the right at the last day. There is no advantage to exercise earlier!
We leave the detailed calculation as an exercise.
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6. American Put. This is a much hard problem. We have to work backwards to obtain its solution.

At the end of time, we know the value of the put, denoted by P 3 = (K−S3)+ := max{K−S3, 0}.
S3 122.53 109.17 97.26 86.66

P 3 = (K − S3)+ 0 0 2.74 13.34

At t = 2, we first use the risk-neutral probability calculate the price of the claim. It’s value is

P̂ 2(ω) = e−r∆t{p P 3(ωu) + (1− p)P 3(ωd)}

One can show that a replicating portfolio at time t = 2 can be prepared to pay the P 3 exactly at
time t = 3, and the cost of the portfolio is P̂ 2.

Since we have option to exercise the right valued at max{K − S2}. If we know the value P̂ 2 is
smaller this, then we should exercise the option. Hence, we take the maximum of (K − S2)+ and
P̂ 2. The calculation is as follows:

S2 114.51 102.02 90.89
(K − S2)+ 0 0 9.11

e−r∆t[P 3(iωu) + (1− p)P 3(ωd)] 0 1.43 8.28
P 2 0 1.43 9.11

In the next step, we perform the same calculation

P 1(ω) = max
{

(K − S1(ω))+ , e−r∆t(pP 2(ωd) + (1− p)P 2(ωd)
}

S1 107.01 95.34
(K − S1)+ 0 4.66

e−r∆t[pP 2[i] + (1− p)P 3(i + 1)] 0.75 5.46
P 1 0.75 5.46

Finally, P 0 = max{(K − S0), e−r∆t(pP 1(u) + (1− p)P 1(d)} = 3.21. Thus, the American put has
value $3.21.

7. Summary. From these example, we can summarize the method as follows:

1. If the claim has only a final payment X. Then the value at earlier time tk can be evaluated by

P tk(ω) = p P tk+1(ωu) + (1− p) P tk+1(ωd).

2. If there are options to exercise a right at time tk with value Xtk(Stk) after the revelation of
stock price Stk at time tk, then

P tk(ω) = max
{

Xtk(Stk(ω)) , p P tk+1(ωu) + (1− p) P tk+1(ωd)
}

Finally, we have to emphasize that the value we calculated is obtained by taking ∆t = 1 month. It
is too big for the value to be accurate. Theoretically we should take ∆t = dt, an infinitesimal.

Exercise 3.2. For the American call option, follow the process as the American put option, go backward
step by step find the value of the American call option. Show that at each time, the value of the call
option is always bigger than St−K, so option holder should not exercise the option right. Consequently,
the value of the American option is the same as that of the European put option.
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Exercise 3.3. A stock has an initial price S0 = $100 and we are considering a four month security. Take
∆t = one moth, ν0 = 0.1/year, ν = 0.15/year and σ2 = 0.04/year, construct both a binomial tree and
binomial lattice. Computer the risk-neutral probabilities.

(1) Use the lattice to calculate the prices of a European put option, a European call option, an
American call option, and an American put option. Here strike prices are the same as the current stock
price and duration is fourth month.

(2) Use the tree to calculate the price for an Asian call option to be called at the beginning of the
fifth month with strike price is K = (S2 + S3 + S4)/3 where St is the price at the first day of (t + 1)th
month.

3.3 Replicating Portfolio for Derivative Security

As a special example of the general finite model, here we see how a portfolio is managed to provide the
exact payment of a contingent claim, thereby providing the price of the claim. We continue to use the
notations in the previous section.

Suppose X is a contingent claim with payoff f(ST ). Here we shall use the binary tree model. Let
{(nt

0(·), nt
1(·))}t∈T be the trading strategy, where nt

0 is the number of shares of risk-free asset whose unit
price is eν0t and nt

1(·) is the number of shares of the underlying security whose unit price is St(·).
We denote by V t(ω) the value of the portfolio at time t and event ω ∈ Ω. Hence,

V t(·) = nt
0(·)eν0t + nt

1(·)St(·).

Clearly, at time T , we require

V T (ω) = f(ST (ω)) ∀ω ∈ Ω.

We now investigate how a portfolio can be established at time tn−1 so that regardless of the outcome
at time T , the updated value generated by the portfolio matches, with 100% certainty, with the needs,
e.g. pay the claim off at time T .

Hence, assume that we are at time t = tn−1 and at a state (z1, · · · , zn−1)×B. For convenience we
use the following notations

z = (z1, · · · , zn−1, ? ) ∈ Pn−1,

zU = (z1, · · · , zn−1, 1), zD = (z1, · · · , zn−1,−1).

s = Stn−1(z), sU = ST (zU ) = su, sD = ST (zD) = sd

where
u = eν∆t+σ

√
∆t, d = eν∆t−σ

√
∆t.

At current time t = tn−1, we know event z happened and we have nt
0(z) shares of risk-free asset

whose unit price is eν0t and nt
1(z) shares of security whose unit price is s = St(z). At the end period (e.g.

at time T ), the outcome is either zU or zD. For the value of the portfolio to prepare for the payment of
the claim X in either outcome, it is necessary and sufficient to have

f(sT ) = nt
0(z)e

ν0T + nt
1(z)sU

f(sD) = nt
0(z)e

ν0T + nt
1(z)sD

∣∣∣∣∣
t = tn−1, s = St(z)

sU = su, sD = sd

This system has a unique solution given by, for t = tn−1,

nt
0(z) = e−ν0T f(sd)u− f(su)d

u− d
, nt

1(z) =
f(su)− f(sd)

su− sd
.
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Notice that the value of the portfolio at time t = tn−1 is

V t(z) = nt
0(z)e

ν0t + nt
1(z)St(z) = eν0(t−T ){p f(su) + (1− p) f(sd)}.

Thus, the portfolio at time t = tn−1 is completely determined by the claim.

Now we consider the general time period from t = tk to tk+1 = t + ∆t. Similar to the above
discussion, we denote a general block in Pk by

z = (z1, · · · , zk, ?, · · · , ?),∈ Pk,

zU = (z1, · · · , zk, 1, ?, · · · , ?) ∈ Pk+1,

zD = (z1, · · · , zk,−1, ?, · · · , ?) ∈ Pk+1,

s = St(z), sU = St+∆t(zU ) = su, sD = St+∆t(zD) = sd.

Suppose we know the value of V t+∆t(zU ) = V t+∆t(su) and V t+∆t(zD) = V t+∆t(sd). Then for the
portfolio constructed at time t = tn−1 to match exactly with the needed portfolio at time t + ∆t, we
need

V t+∆t(zU ) = eν0(t+∆t)nt
0(z) + s u nt

1(z), V t+∆t(zD) = eν0(t+∆t)nt
0(z) + s d nt

1(z).

It follows that there are a unique portfolio (nt
0, n

t
1) that provides the need for payment at at time tk+1:

nt
0(z) = e−ν0(t+∆t) V

t+∆t(zD)u− V t+∆t(zU )d
u− d

,

nt
1(z) =

V t+∆t(zU )− V t+∆t(zD)
su− sd

,

The value of the portfolio at t = tk is

V t(z) = e−ν0t
(
p V t+∆t(zU ) + (1− p) V t+∆(zD)

)
.

With this reduction formula, we then use an induction to derive the following formula, at t =
tn−m = T −m∆t and spot security price s = St(z),

V t(z) =
m∑

i=0

m! pi (1− p)m−i

i! (m− i)!
eν0(t−T ) f

(
s eν(T−t)+σ

√
∆t(2i−m)

)
.

It is important to observe that the right-hand sides depends only on s, i.e., it depends only on
∑m

i=1 zi;
namely, the binomial tree model can be replaced by a binomial lattice model, whose states are

{(tk, Suidk−i) | i = 0, · · · , k, k = 0, · · · , n}.

Hence, we can summarize our result in terms of the lattice model setting as follows.
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Theorem 3.2 (Portfolio Replication Theorem) Assume the condition of Theorem 3.1. Then

at any time t ∈ T and spot underlying security price s, the value V = V (s, t) of the contingent claim

is

V (s, t) =
m∑

i=0

m! pi (1− p)m−i

i! (m− i)!
eν0(t−T ) f

(
s eν(T−t)+σ

√
∆t(2i−m)

)
, m =

T − t

∆t
.

The portfolio replicating the contingent claim is unique. At any time t−∆t and spot security price

s, it consists of nrf (s, t−∆t) shares of risk-free asset and nS(s, t−∆t)) shares of security, where

nrf (s, t−∆t) = e−rν0∆t V (sd, t) u− V (su, t) d

u− d
,

nS(s, t−∆t) =
V (su, t)− V (sd, t)

su− sd
,

u = eν∆t+σ
√

∆t, d = eν∆t−σ
√

∆t, p =
e(ν0−ν)∆t − e−σ

√
∆t

eσ
√

∆t − e−σ
√

∆t
=

eν0∆t − d

u− d
.

Example 3.1. Consider a European call option with duration 3 month and strike price 19. The risk-free
interest rate is ν0 = 0.1/year, current stock price is 20 with variance σ2 = 0.02/year and return rate
ν + σ2/2 = 0.22/year. Set ∆t = 1/12 we have n = 3 and

u = 1.079, d = 0.961, p = 0.399.

The stock price, value of the call, and number of shares are given as follows:

time stock price
0 20.00
1 19.23 21.58
2 18.48 20.75 23.28
3 17.77 19.95 22.39 25.13

time value
0 1.73
1 0.98 2.89
2 0.37 1.90 4.44
3 0 0.95 3.39 6.13

time shares
0 (-14.56, 0.815)
1 (-11.93, 0.676) (-18.53, 1.000)
2 (-7.53, 0.435) (-18.53, 1.000) (-18.53, 1.000)
3 (-7.53, 0.435) (-18.53, 1.000) (-18.53, 1.000) (-18.53, 1.000)

Here the table for value is constructed as follows: (i) Last row is the payoff = max{S − 19, 0}. (ii)
From each row up, v(i, j) = [0.399 ∗ v(i + 1, j + 1) + (1 − 0.399) ∗ v(i + 1, j)] ∗ e−0.1/12. For example,
third row last number: [6.13 ∗ p + 3.39 ∗ (1− p)]e−r∆t = 4.44. The initial price of the call is 1.73.

Now we see how portfolio is constructed, i.e. how a writer of the call prepares for the call.
At time t = 0: the writer sells an option for 1.73 and sets up a portfolio consisting of -14.56 cash

(share of risk-free asset) and 0.815 share of stock. We can check the balance −14.56+0.815∗20.00 = 1.73.

At time t = 1 month, if stock price drops to 19.23, then the portfolio is worth 0.98. The writer
responds by shorting 11.93 ∗ e0.1/12 cash and longing 0.676 share of stock, total −11.93 ∗ e0.1/12 +0.676 ∗
19.23 = 0.98. If stock price rises up to 21.58, then the portfolio is worth 2.89. The writer responds by
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shorting 18.53 share of risk-free asset and longing 1.000 share of stock, totaling −18.53 ∗ e0.1/12 +1.000 ∗
21.58 = 2.89.

At time t = 2 month, if stock price is 20.75 or 23.28, the writer rolls over the portfolio. If price drops
to 18.48, the writer shorts 7.53e0.1∗2/12 cash and buys 0.435 share of stock, net value −7.53 ∗ e0.1∗2/12 +
0.453 ∗ 18.46 = 0.37.

At t=3, in each situation, the portfolio pays the call exactly. Note that if stock price drop from
18.48 to 17.77, the portfolio worths −7.53 ∗ e0.1∗3/12 + 0.435 ∗ 17.77 = 0, no need to answer call. If it
moves up from 18.48 to 19.95, then the portfolio worths −7.50 ∗ e0.1∗3/12 + 0.435 ∗ 19.95 = 0.95 which,
adding caller’s 19, is just enough to buy one share of stock at 19.95/share to give it to the caller. In other
situations, -18.53 share of risk-free becomes -19.00 cash. Hence, the portfolio has -19.00 cash balance
and one share of stock, just enough to pay the caller.

We emphasize again that we take ∆t = 1 (month) is for illustration only. If possible, smaller ∆t is
preferred.

Exercise 3.4. Using the parameters the example 3.1, calculate the price and corresponding replicating
portfolio for (i) six month European call, strike price 19. (ii) Six month European put with strike price
19.

Also, study the American call and put options with duration 3 months and strike price 20.

3.4 Certain Mathematical Tools

We review necessary mathematical tools from probability that are needed for the study of stochastic
process.

A probability space is a triple (Ω,F ,P), where Ω is a set, F is a σ-algebra on Ω, and P
is a probability measure on (Ω,F).

A random variable is a measurable function on a probability space.

A stochastic process is a collection {St}t∈T of random variables on a probability space
(Ω,F ,P); here T is a set for time such as T = [0, T ], T = [0,∞),T = {0, 1, 2, · · · }, or
T = {t0, t1, t2, · · · , tn}, etc.

Here by F being a σ-algebra on Ω it means that F is a non-empty collection of subsets of Ω that
is closed under the operation of compliment and countable union.

Also, by a probability measure, it means that P : F → [0, 1] is a non-negative function satisfying
P (Ω) = 1 and for every countable disjoint sets A1, A2, · · · in F ,

P
( ∞⋃

i=1

Ai

)
=

∞∑

i=1

P(Ai).

Finally, a function f : Ω → R is called F measurable if

{ω ∈ Ω | f(ω) < r} ∈ F ∀ r ∈ R.
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Two random variables X and Y are called equal and write X = Y if P({ω ∈ Ω | X(ω) 6= Y (ω)}) = 0.

The simplest measurable function is the characteristic function 1A of a measurable set A ∈ F
defined by

1A(ω) =
{

1 if ω ∈ A,
0 if ω 6∈ A.

A simple function is a linear combination of finitely many characteristic functions. For a
simple function

∑n
i=1 ci1Ai

, its integral is defined as

∫

Ω

(
n∑

i=1

ci1Ai
(ω)

)
P(dω) :=

n∑

i=1

ciP(Ai).

The integral of a general measurable function is defined as the limit (if it exists) of integrals
of an approximation sequence of simple functions.

In a probability space (Ω,F ,P), each ω ∈ Ω is called a sample event, and each A ∈ F is called an
observable event with observable probability P(A). Similarly, if A is not measurable, then A is called
a non-observable event.

Let Ω be a set and S be a collection of subsets of Ω. We denote by σ(S) the smallest σ-algebra that
contains S. σ(S) is called the σ-algebra generated by S.

In R, the σ-algebra B generated by all open intervals is called the Borel σ-algebra and each set in
B is called a Borel set.

If X is a random variable on (Ω,F ,P) and B is a Borel set of R, then

X−1(B) := {ω ∈ Ω | X(ω) ∈ B}

is a measurable set. In the sequel, we use notation, for every Borel set B in R,

Prob(X ∈ B) := P(X−1(B)) = P({ω ∈ Ω | X(ω) ∈ B}).

Note that the mapping:

PX−1 : B ∈ B −→ P(X−1(B))

defines a probability measure on (R,B); namely, (R,B,PX−1) is a probability space.

R P←− F X−1

←− B

In the study of a single random variable X, all properties of the random variable are observed
through the probability space (R,B,PX−1), since X is experimentally observed by measuring the prob-
ability of the outcome X−1(B) for every B ∈ B.

Given a random variable X, its distribution function is defined by

F (x) := Prob(X 6 x) := Prob(X ∈ (−∞, x]) := P({ω ∈ Ω | X(ω) 6 x}) ∀x ∈ R.

The distribution density is defined as the derivative (if it exists) of F :

ρ(x) =
dF (x)

dx
∀x ∈ R.
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A random variable is called N(µ, σ2) (µ ∈ R, σ > 0) distributed, or with mean µ and standard
deviation σ (i.e. variance σ2) if it has the probability density

ρ(x) :=
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
.

When σ = 0, a N(µ, 0) random variable X becomes a deterministic constant function X(ω) ≡ µ for
(almost) all ω ∈ Ω .

In the sequel, we use E for expectation and Var for the variance

E[X] :=
∫

Ω

X(ω)P(dω),

Var[X] :=
∫

Ω

(
X(ω)− E(X)

)2

P(dω) = E[X2]− (E[X])2.

The Law of the unconscious statistician

Given a random variable X with probability density function ρ and an itegrable real function
f on (R,B), the expectation of f(X) is

E[f(X)] :=
∫

Ω

f(X(ω))P(dω) =
∫ ∞

−∞
f(x)ρ(x) dx.

As far as a single random variable X is concerned, in certain sense all relevant information in P
is contained in the measure PX−1, i.e. the distribution function F . Of course in such a study we lost
track of the model underlying the random variable. Nothing is lost just so long as we are interested in
one random variable.

If however we have two random variables X and Y on (Ω,F ,P), then two distribution functions for
PX−1 and PY −1 are not by themselves sufficient to say all there is about X, Y and their interrelation.
We need to consider Z = (X, Y ) as a map of Ω into R2 and define a measure by PZ−1. This measure
on the Borel sets of the plane defines what is usually called the joint distribution of X and Y , and is
sufficient for a complete study of X, Y and their interrelations. This idea of course extends to any finite
number of random variables.

The concept of a stochastic process is now a straightforward generalization of these ideas. For
any index set T of time, a stochastic process on T is a collection of random variables {St}t∈T

on a probability space (Ω,F ,P). If T = {t1, · · · , tn} has finitely many elements, then the stochastic
process can be described completely by the joint distribution of the random variables St1 , · · · , Stn . In
other words, it is completely characterized by the probability distribution function of the vector valued
random variable

Z := (St1 , · · · , Stn) : Ω → Rn.

For each ω ∈ Ω, the map S(ω) : T → R defined by t → St(ω) is a function from T to R, which we call
a sample path. Let’s denote by Map(T;R) the collection of all functions from T to R. Thus, a stochastic
process can be viewed as a function S from Ω to Map(T;R) defined by S : Ω → S(ω) ∈ Map(T;R).
Here S(ω) : t → R is defined by S(ω)(t) = St(ω). In many applications, one simply take Ω as a subset
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of Map(T;R). In such a case, any ω ∈ Ω is a function in Map(T;R) and hence, the function S from
Ω → Map(T;R) is realized through the default inclusion

S(ω) := ω(·) ∀ω ∈ Ω ⊂ Map(T;R),

S(ω)(t) = St(ω) = ω(t) ∀ t ∈ T ∀ω ∈ Ω ⊂ Map(T;R),

Note that the probability is needed to build upon a subset Ω of the space Map(T;R) of functions.

Exercise 3.5. Assume that f : R→ R is a simple function. Prove the law of unconscious statistician.

Exercise 3.6. Let Ω = {1, 2, 3, 4}. Let F be the smallest σ-algebra that contains {1} and {2}.
(i) List all the elements in F ;
(ii) Is the event {1, 2, 3} observable?

Exercise 3.7. For every random variable X, show that

Var[X] = E[X2]− (E[X])2.

Exercise 3.8. Suppose X is N(µ, σ2) distributed. Find the following:

E[X], Var[X], E[(X − E[x])3], E[(X − E[x])4], E[eiλX ] (λ ∈ C).

Exercise 3.9. Let f, g : R → R be continuous functions. Show that there exists a smallest σ-algebra F
on R such that both f and g are F measurable. Also show that each element in F is a Borel set.

Suppose f = 1[1,∞) and g = 1(−∞,0]. Describe F . Also show that if h : R → R is F measurable,
then there exist constants c1, c2, c3 such that h = c11(−∞,0] + c21(0,1) + c31[1,∞). Consequently, h =
c2 + (c1 − c2)g + (c3 − c2)f .

3.5 Random Walk

Brownian motion is one of the most important building block for stochastic process. To study Brownian
motion, we begin with a random walk, a discretized version of the Brownian motion. Roughly speaking,

A random walk is the motion of a particle on a line, which walks in each unit time step a
unit space step in one direction or the opposite with probability 1/2 each.

3.5.1 Description

Mathematically, we describe a random walk on the real line by the following steps.

1. Let X1, X2, X3, · · · be a sequence of independent binomial random variables taking values
+1 and −1 with equal probability:

Probability(Xi = 1) =
1
2
, Probability(Xi = −1) =

1
2
.

Such a sequence can be obtained, for example, by tossing a fair coin, head for 1 and tail for −1.
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2. Let ∆t be the unit time step and ∆x be the unit space step. Let Wi∆t be the position of the
particle at time ti := i∆t. It is a random variable, and can be defined as

W0 := 0,

Wi∆t :=
i∑

j=1

Xj ∆x = W[i−1]∆t + Xi ∆x, i = 1, 2, · · · .

Here the last equation Wi∆t = W[i−1]∆t+Xi∆x means that the particle moves from the position W[i−1]∆t

at time ti−1 = [i − 1]∆t to a new position Wi∆t at time ti = i∆t by walking one unit space step ∆x,
either to the left or to the right, depending on the choice of Xi being −1 or +1.

3. Though not necessary, it is sometimes convenient to define the position Wt of the particle at an
arbitrary time t > 0. There are jump version and continuous versions. Here we use a constant speed
version by a linear interpolation:

Wt =
(
[i + 1]− t

∆t

)
Wi∆t +

( t

∆t
− i

)
W[i+1]∆t ∀ t ∈ (i∆t, [i + 1]∆t), i = 0, 1, · · · . (3.2)

We call {Wt}t>0 the process of a random walk with time step ∆t and space step ∆x.

3.5.2 Characteristic Properties of a Random Walk

The random walk is described by the stochastic process {Wt}t>0 defined earlier. Here the probabil-
ity space for the process is determined by the probability space associated with the random variables
{X1}∞i=1.

A standard probability space (Ω,F ,P) for a sequence {Xi}∞i=1 of binary random variables can be
obtained as follows.

1. First we set

Ω = {−1, 1}N = {(x1, x2, · · · ) | xi ∈ {1,−1}∀ i ∈ N}.

Each ω = (x1, x2, · · · ) ∈ Ω can be regarded as the record of a sequences of coin tossing where xi records
the outcome of the ith toss, xi = +1 for head and xi = −1 for tail.

2. We define random variables Xi for each i ∈ N by

Xi(ω) = xi ∀ω = (x1, x2, · · · ) ∈ Ω.

Thus, Xi(ω) is the i-th outcome of the event ω ∈ Ω. Note that Xi takes only two values, +1 and −1.
We denote

Ω+1
i := {ω ∈ Ω | Xi(ω) = +1} = {(x1, x2, · · · ) ∈ Ω | xi = +1},

Ω−1
i := {ω ∈ Ω | Xi(ω) = −1} = {(x1, x2, · · · ) ∈ Ω | xi = −1}.

3. The σ algebra F on Ω is the smallest σ-algebra on Ω such that all X1, X2, · · · are measurable.
Clearly, it is necessary and sufficient to define F as the σ-algebra generated by the the countable boxes

Ω+1
1 , Ω−1

1 , Ω+1
2 , Ω−1

2 , · · · .

Under this σ-algebra, each Xi is (Ω,F) measurable.
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For each (x1, · · · , xn) ∈ {−1, 1}n, the cylindrical box c(x1, · · · , xn) is defined by

c(x1, · · · , xn) := (x1, · · · , xn)×
∞∏

j=n+1

{−1, 1}

= {(x1, · · · , xn, yn+1, yn+2, · · · ) | yj ∈ {−1, 1}∀ j ≥ n + 1}.

Note that each cylindrical box belongs to F since

c(x1, · · · , xn) =
n⋂

i=1

{ω ∈ Ω | Xi(ω) = xi}.

4. To define P such that both Xi = 1 and Xi = −1 has probability 1/2, we first define P on the
each cylindrical box by

P(c(x1, · · · , xn)) = 2−n ∀n ∈ N, (x1, · · · , xn) ∈ {−1, 1}n.

One can show that such defined P on all cylindrical boxes can be extended onto F to become a probability
measure. Hence, we have a standard probability space (Ω,F ,P).

5. One can show that under the probability space (Ω,F ,P), {Xi}∞i=1 is a sequence of i.i.d. random
variables having the property that the probability of Xi = ±1 is 1/2.

The stochastic process {Wt}t>0 on (Ω,F ,P) bas the following properties:

Properties of Random Walk

1. W0(ω) ≡ 0 for every ω ∈ Ω;

2. E[W (t)] = 0 and Var[W (t)] = σt for every t ∈ T, where

T = {i∆t}∞i=0, σ =
(∆x)2

∆t
.

3. For every t0, t1, t2, · · · , tn ∈ T with 0 = t0 < t1 < · · · < tn, the following random
variables are independent:

W (tn)−W (tn−1), W (tn−1 − tn−2), · · · , W (t1)−W (t0).

4. For every ω ∈ Ω, the function t ∈ [0,∞) → Wt(ω) ∈ R is a continuous function.

3.5.3 Probabilities Related To Random Walk

In the rest of this section, we assume that {Wt}t> is a random walk with ∆x = 1 and ∆t = 1.

Example 3.2. Find the probability that W3 > 0.
Solution. If we use “u” for up and “d” for down, any three-step random walk can be registered

(denoted) by a three letter word consisting of only two alphabets “u” and “d”. The set {ω | W3 6 0}
consists of random walks registered as “uuu”, “uud”, “udu”, or “duu”. Since there are a total of 8
three-step random walks, each of which has probability 1/8. Hence

Prob(W3 > 0) =
4
8

=
1
2
.
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Example 3.3. Find the probability that W3 > 0 and W4 6 0.
Solution. Among all four step random walks, those satisfying W3 > 0 and W4 6 0 are registered as

“uudd”, “udud”, ”duud”. Since there are a total of 16 four-step random walks,

Prob(W3 6 0,W4 > 0) =
3
16

.

Example 3.4. Find E[τ ] and E[Wτ ] where τ is the random variable defined by

τ = min{t > 0 | either t = 4 or Wt > 1}. (3.3)

Solution. Note that if τ < 4, then τ is the first time t such that Wt = 1. Hence τ is integer valued.
We need only working on four-step random walks. We calculate

Prob(τ = 0) = 0, Prob(τ = 1) = 1/2, Prob(τ = 2) = 0, Prob(τ = 3) = 1/8, Prob(τ = 4) = 3/8.

Hence,

E[τ ] =
1
2

+ 3 ∗ 1
8

+ 4 ∗ 3
8

=
19
8

.

Note that when τ < 4, we have Wτ = 1. Also, the set τ = 4 consists of four-step random walks registered
as “dddd”, “dddu”, ”ddud”, “dduu”, “dudd”, “dudu”. Hence,

E[Wτ ] =
∫

τ<1

WτP (dω) +
∫

τ=4

WτP (dω) =
5
8

+
1
16

{
− 4− 2− 2− 0− 2− 0} = 0.

Example 3.5. Consider the game that one wins one dollar if the outcome of a coin tossed is head, and
lost one dollar otherwise. Consider the following strategy: Leave the game as soon as one wins a total
of one dollar; otherwise, leave the game after four betting. What is the expected wining of such strategy?

Solution. Denote by τ the time that the gambler leaves the game. It is given by (3.3). For each
event ω ∈ Ω, she has Wτ(ω)(ω) amount of money when her leaves the game. Hence, for such a strategy,
the expected wining is E[Wτ ] = 0.

Exercise 3.10. Let (Ω,F ,P) be defined as in §3.5.2. Show that

P({ω ∈ Ω | Xi(ω) = 1) = 1
2 ,

Prob(Xi ∈ A,Xj ∈ B) = Prob(Xi ∈ A) Prob(Xj ∈ B) ∀i 6= j.

Exercise 3.11. Show that the stochastic process {Wt} constructed in this section has the four listed
properties for random walk.

Exercise 3.12. Show that for every positive integer n, Wn∆t has the range {k∆x}n
k=−n and

Prob(Wn∆t = k∆x) =
Ck

n

2n
, Ck

n :=
k!(n− k)!

n!
.

Exercise 3.13. Let {Wt} be a random walk with ∆x = 1 and ∆t = 1. Calculate the following probabilities:

Prob(W3 = 0,W6 = 0), Prob(W3 ∈ [−1, 0],W6 ∈ [0, 1]), Prob( max
06t66

Wt 6 1).
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Exercise 3.14. Let n be a positive integer and set ∆t = 1/n and ∆x = 1/
√

n. Let Ωn = {−1, 1}n,
Fn = 2Ωn (the collection of all subsets of Ωn) and

P(ω) =
1
2n

∀ω ∈ Ωn.

1. Show that (Ωn,Fn,Pn) is a probability space.

2. In time interval [0, 1], show that there are a total of 2n samples random walks. We denote by
W 1, · · · , W 2n

all the sample random walks.

3. Denote by C([0, 1]) = C([0, 1];R) the space of all continuous functions from [0, 1] to R. Denote by
B the Borel algebra on C([0, 1]) generated by all open sets under the norm

‖x‖ = sup
t∈[0,1]

|x(t)| ∀x ∈ C([0, 1]).

For every subset B of C([0, 1]), we define P(B) as the number of random walks in B divided by
2n. Show that P is a probability measure on (C([0, 1]),B).

4. Let W : Ω → C([0, 1]) be defined by W (ω) being the function t ∈ [0, 1] → Wt(ω). Show that W

lift the probability space (Ωn,Fn,Pn) to the probability space (C([0, 1]),B,P); that is, prove the
following:

(a) for every A ∈ Fn, W (A) ∈ B and Pn(A) = P(W (A));

[Notice that A is a finite set so W (A) is also a finite set, and hence is a closed set in C([0, 1]) which
is of course a Borel set.]

(b) for every B ∈ B, W−1(B) ∈ Fn and P(B) = Pn(W−1(B)).

[Count how many random walks are in the set B.

3.6 A Model for Stock Prices

In this section, we present a model for stock prices, by taking the limit of discretized model.

1. Random Walk and Brownian Motion

Let {εi}∞i=0 be a sequence of independent, identically distributed real valued random variables with
mean zero and variance one. For simplicity, we assume that

Prob(εi = 1) = Prob(εi = −1) = 1
2 ∀i = 0, 1, · · · .

Fix any ∆t > 0. Consider the following random variables {z∆t(t)}t≥0 defined by

z∆t(0) ≡ 0, z∆t(t) =
√

∆t
∑

06i<t

εi ∀ t > 0.

A random walk is the motion of a particle whose position at t is given by z∆t(t) for all t ≥ 0.
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Now fix a positive time t. Let n = n(∆t, t) be an integer such that t ∈ ((n− 1)∆t, n∆t]. Then

z∆t(t) =
√

∆t

n−1∑

i=0

εi =
√

t

√
n∆t

t

∑n−1
i=0 εi√

n
.

According to the central limit theorem, as ∆t → 0, the right-hand side has a limit in distribution, and
the limit is normally distributed. Let’s denote this limit by Bt. We know Bt is a random variable in
some measure space (Ω,F , m). The measure space (Ω,F , m) is extremely hard to construct so we shall
not worry about it. What we care is the distribution of Bt, which we can derive without much difficulty.

(A) First of all, from the central limit theorem, Bt is normally distributed with variance t:

Prob(Bt ∈ A) := N(0, t; A) ∀A ∈ B

where B is the σ-algebra of Borel set on R and N(µ, σ; A) represents the normal distribution

N(µ, σ; A) :=
1√
2π σ

∫

A

e−(x−µ)2/(2σ2)dx ∀ A ∈ B.

(B) Next, for any fixed t and τ satisfying t > τ ≥ 0, we investigate the random variable Bt − Bτ .
Assume that t ∈ ((n− 1)∆t, n∆] and τ ∈ (k − 1)∆t, k∆t] we have

z∆t(t)− z∆t(τ)√
t− τ

=

√
(n− k)∆t

t− τ

∑n−1
i=k−1 εi√
n− k

.

Again, sending ∆t → 0 we see that Bt −Bτ is normally distributed, with mean zero and variance t− τ .
(C) Finally, take any {ti, τi}m

i=1 that satisfies 0 6 τ1 < t1 < τ2 < t2 < · · · < τm < tm. When ∆t is
sufficiently small, we know that z∆t(t1)− z∆t(τi), i = 1, · · · ,m, are independent. Hence in the limit, we
know that Bti −Bτi , i = 1, · · · ,m are also independent, i.e.

Prob(Bti −Bτi ∈ Ai ∀ i = 1, · · · ,m) = Πm
i=1Prob(Bti −Bτi ∈ Ai) ∀A1, · · · , Am ∈ B.

These three properties characterize all needed properties of the Brownian motion, also known as
Winner Process. We formalize it as follows.

A stochastic process is a collection {ξt}t>0 of random variables in certain measure space (Ω,F ,m).

A Brownian motion or Wiener process is a stochastic process {Bt}t≥0 satisfying the following:

1. B0 ≡ 0;

2. for any t > τ > 0, Bt −Bτ are normally distributed with mean zero and variance t− τ ;

3. for any 0 6 t1 < t2 < · · · < tm, the following increment are independent:

Btm −Btm−1 , Btm−1 −Btm−2 , · · · , Bt2 −Bt1 .

We know that to model n independent real valued random variables, we need to use a sample
space as big as (Rn,Bn). If we are going to describe a sequence of i.i.d. random variables, we need
a space something like (RN,BN). Now to model the Brownian motion, we could use the space R[0,∞).
However, this space is enormously big and we can hardly define a σ-algebra and meaningful measure
on it. Deep mathematical analysis shows that Brownian motion can be realized on the space of all
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continuous functions from [0,∞) → R. That is, one can take Ω = C([0,∞);R), on it build a σ-algebra
and define a measure. As a result, for every ω ∈ Ω, Bt(ω) is a continuous function from t → Bt(ω).

2. Generalized Winner Process and Ito Process

Note that in discretized approximation of the Brownian motion, we have

z∆t(t + ∆t)− z∆t = ε(t)
√

∆t

where ε(t) is a random variable with mean zero and variance one. Hence, symbolically we can write

dBt = ε(t)
√

dt

where ε(t) is normally distributed having mean zero and variance 1. We have to say that the Brownian
process is nowhere differentiable since

E
([Bt −Bτ

t− τ

]2)
=

t− τ

(t− τ)2
=

1
t− τ

→∞ as τ ↘ t.

In engineering field, people use dBt/dt symbolically to describe white noise.

The general Wiener process can be written as

Wt = νt + σBt or dWt = νdt + σdBt.

An Ito process is a solution to the stochastic differential equation

dxt = a(xt, t)dt + b(xt, t)dBt

Since with probability one the sample path t → Bt(ω) is not differentiable, spacial tools, e.g.
stochastic calculus are need. The following Ito’s lemma [12] is no doubt one of the most important
results.

Lemma 3.1 (Ito Lemma). Suppose {xt} is a stochastic process satisfying dx = a(x, t)dt + b(x, t)dBt.
Let f be a smooth function : R× [0,∞) → R. Then

df(xt, t) =
∂f

∂x
dx +

∂f

∂t
dt +

b2

2
∂2f

∂x2
dt.

If we use the ordinary differentials, the rule can be memorized as

(dt)2 = 0, dtdBt = 0, (dBt)2 = dt.

3. The Lognormal Process for Stock Prices.

A basic assumption in the Black–Scholes model is the geometric Brownian motion for the stock
price St. In the form of stochastic differential equation, it reads

dSt

St
=

(
ν +

σ2

2

)
dt + σ dBt.

Here Bt is the standard Brownian motion also called Wiener process.
In the discretized case, we can write it as

St+∆t − St

St
=

(
ν +

σ2

2

)
∆t + σ

√
∆t ε(t)
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where Prob(ε(t) = 1) = Prob(ε(t) = −1) = 1/2. It then follows that

ln St+∆t − ln St = ln
{

1 +
St+∆t − St

St

}

=
St+∆t − St

St
− 1

2

(St+∆ − St

St

)3

+ O(1)
(St+∆t − St

St

)3

=
(
ν +

σ2

2

)
∆t + σ

√
∆t ε(t)− 1

2
σ2∆t (ε(t))2 + O(∆t3/2)

= ν∆t + σ
√

∆t + ((∆t3/2)

here we use the assumption Prob(ε2(t) = 1) = 1. Hence, in the limit, we should have, symbolically

d ln St = ν dt + σdBt.

Hence, a geometric Brownian motion is also called a lognormal process. Here lognormal means log is
normal not log of normal. To make everything rigorous, one needs first define stochastic calculus. For
this we omit here.

Finally, since d(ln St − µt−Bt) = 0, the solution is given by

ln St = ln S0 + νt + Bt or St = S0eνt+σBt .

Exercise 3.15. A stock price is governed by S0 ≡ 1 and d ln St = νdt + σdBt. Find the following:

E[ln St], Var(lnSt), lnE(St), Var(St).

Exercise 3.16. If R1, R2, · · · , rn are return rates of a stock in each of n periods. The arithmetic mean
RA and geometric mean RG return rates are defined by

RA =
1
n

n∑

i=1

Ri, RG =

(
n∏

i=1

(1 + Ri)

) 1
n

− 1.

Suppose $40 is invested. During the first it increases to $60 and the second year it decreases to $48.
What is the arithmetic mean and geometric mean?

When is it appropriate to use these means to describe investment performance?

Exercise 3.17. The following is a list of stock price in 12 weeks:
10.00, 10.08, 10.01, 9.59, 9.89, 10.55, 10.96, 11.25, 10.86, 11.01, 11.79, 11.74.

(1) From these data, find appropriate ν and σ2 in the geometric Brownian motion process for the
stock price, take unit by year.

(2) Suppose R is the annual rate of return of the stock. Find approximation for E(R) and Var(R).
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3.7 Continuous Model As Limit of Discrete Model

In this section, we shall derive, in an indirect way, the Black–Scholes equation for pricing derivative
securities. In the sequel, we shall assume that ν0, ν, σ, T are all fixed constants, where T > 0, σ > 0.

We start with the price formula from the finite state model. We wish to derive the limit of the
price, as ∆t → 0, so that we can obtain the continuous limit.

We shall use Taylor’s expansion

ex = 1 + x +
x2

2
+

x3

6
+ O(x4), ln(1 + x) = x− x2

2
+ O(x3) as x → 0 .

We can expand the risk neutral probability p by

p =
e(ν0−ν)∆t − e−σ

√
∆t

eσ
√

∆t − e−σ
√

∆t
.

=
σ
√

∆t + [ν0 − ν − σ2/2]∆t + σ3∆t3/2/6 + O(∆t2)
2σ
√

∆t + 2σ3(∆t)3/2/6 + O(∆t5/2)

=
1
2

{
1 +

ν0 − ν − σ2

2

σ

√
∆t + O(∆t3/2)

}
.

It then follows that for any integer k ∈ [0, n],

ln[pk(1− p)n−k] = k ln p + (n− k) ln(1− p)

= k ln
{1

2

[
1 +

ν0 − ν − 1
2σ2

σ

√
∆t + O(∆t3/2)

]}
+ (n− k) ln

{1
2

[
1− ν0 − ν − 1

2σ2

σ

√
∆t + O(∆t3/2)

]}

= n ln
1
2

+ (2k − n)
(ν0 − ν)− σ2

2

σ

√
∆t− n∆t

2

{ν0 − ν − σ2

2

σ

}2

+ nO(∆t3/2)

= −n ln 2 +
(2k − n)√

n

(ν0 − ν − σ2/2)
√

T

σ
− 1

2

( (ν + σ2/2− ν0)
√

T

σ

)2

+ O
( 1√

n
).

Now we define

xk =
2k − n√

n
∀ k ∈ Z, ∆x = xk+1 − xk =

2√
n

.

Then

k =
n

2

{
1 +

xk√
n

}
, n− k =

n

2

{
1− xk√

n

}
.

For the factories, we use the Stirling’s formula

k! =
√

2π exp
(
(k + 1/2) ln k − k +

θk

12k

)
∀k ≥ 1, 0 < θk < 1.

It follows that when k = 1, · · · , n− 1,

1
∆x

n!
k!(n− k)!

=
1√
2π

exp
(
[n + 1] ln n− ln 2− [k + 1/2] ln k − ([−k + 1/2] ln[n− k] + ξk

)

where

ξk =
θn

12n
− θk

12k
− θn−k

12(n− k)
0 < θk, θn−k, θn < 1.
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Therefore, substituting k = n[1 + xk/
√

n]/2 and n− k = n[1− xk/
√

n]/2 we have

ln
(√2π

∆x

n!
k!(n− k)!

)
− ξk = [n + 1] ln n− ln 2− [k + 1/2] ln k − [n− k + 1/2] ln[n− k]

= n ln 2− n

2

(
1 +

1
n

+
xk√
n

)
ln

(
1 +

xk√
n

)
− n

2

(
1 +

1
n
− xk√

n

)
ln

(
1− xk√

n

)

= n ln 2− n + 1
2

ln
(
1− x2

k

n

)
−
√

nxk

2
ln

1 + xk/
√

n

1− xk/
√

n
.

When |xk| < 2n1/4, we have

n + 1
2

ln
(
1− x2

k

n

)
+
√

nxk

2
ln

1 + xk/
√

n

1− xk/
√

n
.

=
n + 1

2

{
− x2

k

n
+

O(1)x4
k

n2

}
+
√

n xk

2

{2xk√
n

+
O(1)x3

k

n3/2

}

= 1
2x2

k +
O(1)x4

k

n
.

Combining all these together, we than obtain when |xk| ≤ 2n1/4,

1
∆x

n!
k!(n− k)!

pk(1− p)n−k

=
1√
2π

exp
{
− 1

2x2
k + xk

(ν0 − ν − σ2/2)
√

T

σ
− 1

2

( (ν + σ2/2− ν0)
√

T

σ

)2

+
O(1)x4

k

n

}

=
1√
2π

exp
(
− 1

2

[
xk +

(ν + σ2/2− ν0)
√

T

σ

]2

+
(O(1)x4

k

n

)
.

When |xk| ≥ 2n1/4, one can verify that

ρk :=
1

∆x

n!
k!(n− k)!

pk(1− p)n−k ≤ O(1)e−
√

n

since when 2n1/4 ≤ |xk| ≤ 2n1/4 + 1, ρk < e−
√

n and

ρk+1

ρk
=

(n− k)p
(k + 1)(1− q)

> 1 when xk < −n1/4,

ρk+1

ρk
=

(n− k)p
(k + 1)(1− q)

< 1 when xk > n1/4.

Hence, assume that f is continuous and bounded, we have

P∆t(S, T ) :=
n∑

k=0

n!
k!(n− k)!

pk(1− p)n−ke−ν0T f(S eνT+σ
√

∆t(2k−n))

=
∑

|xk|<2n−1/4

e−ν0T

√
2π

e−
1
2 [xk+

(ν+σ2/2−ν0)
√

T
σ ]2+O(1)x4

k/n)f(SeνT+σ
√

Txk)∆x + O(1)ne−
√

n.

Sending ∆t →∞ (i.e. n →∞) we then obtain

lim
∆t→0

P∆t(S, T ) =
∫

R

e−ν0T

√
2π

e−
1
2 (x+

(ν+σ2/2−ν0)
√

T
σ )2e−rT f(SeνT+σ

√
Tx)dx

=
e−ν0T

√
2π

∫

R
e−z2/2f(eln S+σz

√
T+(ν0−σ2/2)T ) dz.
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We summarize our calculation as follows.

Theorem 3.3 Suppose the risk-free interest rate is a constant ν0 and the unit price of the

underlying stock is a geometric Brownian (or lognormal) process

log St = ln S + νt + σBt ∀ t > 0

where Bt is the standard Brownian motion process. Then a contingent claim at time T > 0 with

payoff f(ST ) has price given by the Black-Scholes’ pricing formula

P (S, T ) =
e−ν0T

√
2π

∫

R
e−z2/2f(eln S+σz

√
T+(ν0−σ2/2)T ) dz.

In addition, at any time t ∈ (0, T ) and spot stock price s, the value of the contingent claim is

V (s, t) =
e−ν0(T−t)

√
2π

∫

R
e−z2/2f(eln s+σz

√
T−t+(ν0−σ2/2)(T−t)) dz.

Furthermore, at any time t ∈ (0, T ) and spot price s, the portfolio replicating the contingent claim

is given by nS(s, t) shares of stock and nrf (s, t) shares of risk-free asset (whose unit share price is

eν0t) where

nS(s, t) =
∂V (s, t)

∂s
, nrf (s, t) = e−ν0t

{
V (s, t)− s nS(s, t)

}
.

We leave the derivation of formula for nS and nrf as an exercise.

Here we make a few observations:

(i) The parameter ν does not appear in the formula. Namely, the mean expected return of the stock
is irrelevant to the price. This sounds very strange, but it explains the importance of Black-Scholes’
work.

(ii) One notices that

V (s, t) = P (s, T − t).

That is, if the current stock price is s and there is T − t time remaining toward to final time T , then the
price of the contingent claim is P (s, T − t), so is the value V (s, t) of the portfolio.

(iii) Denote by

Γ(x, τ) :=
1√
2πτ

e−x2/(2τ) ∀x ∈ R, τ > 0.

Then a change of variable y = ln S + σz
√

T + (ν0 − σ2/2)T we have

P (S, T ) =
∫

R

1√
2σ2T

e−(y−ln S−[ν0−σ2/2]T )2/(2σ2T )f(ey)dy

= e−rT

∫

R
Γ
(
y − ln S − [ν0 − σ2/2]T, σ2T

)
f(ey)dy.
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Direct differentiation gives

∂P (S, T )
∂S

= −e−ν0T

S

∫

R
Γxf dy,

∂2P (S, T )
∂S2

= − 1
S

∂P

∂S
+

e−ν0T

S2

∫

R
Γxxf dy,

∂P (S, T )
∂T

= −ν0P − (ν0 − σ2/2)e−ν0T

∫

R
Γx f dy + σ2

∫

R
Γτ f dy,

Finally using Γτ = 1
2Γxx we then obtain

∂P

∂T
= −ν0P +

(
ν0 − σ2

2

)
S

∂P

∂S
+

σ2S2

2

{∂2P

∂S2
+

1
S

∂P

∂S

}
=

σ2S2

2
∂2P

∂S2
+ ν0S

∂P

∂S
− ν0P.

Using V (s, t) = P (s, T − t) we can derive an equation for V . We summarize our result as follows.

Theorem 3.4 Suppose the risk-free interest rate is ν0 and the price St of a security satisfies

ln St = ln S + νt + σBt ∀ t > 0

where Bt is the Brownian motion process. Consider a derivative security whose payoff occurs only

at t = T and equals f(ST ). Then its price at t = 0 is P (S, T ) which, as function of S > 0, T > 0,

satisfies the following Black-Scholes’ equation

∂P (S, T )
∂T

=
σ2S2

2
∂P

∂S2
+ ν0S

∂P

∂S
− ν0P ∀S > 0, T > 0. (3.4)

Analogously, at any time t ∈ [0, T ] and spot price s of the security, the value V (s, t) of the derivative

security satisfies

∂V (s, t)
∂t

+
σ2s2

2
∂V

∂s2
+ ν0 s

∂V

∂s
= ν0V ∀t < T, s > 0. (3.5)

Both P (S, T ) and V (s, t) can be solved by supplying the respective initial conditions

P (S, 0) = f(S) ∀S > 0, V (s, T ) = f(s) ∀s > 0.

It is very important to know that ν plays no rule here. This is one of the Black–Scholes’ most
significant contribution towards the investment science.

That ν is irrelevant is due to the fact that only risk-neutral probability play roles here.

3.8 The Black–Scholes Equation

Here we provide a direct derivation for the Black-Scholes equation and a proof for the pricing formula.
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Considered in the problem is a market system consisting of a risk-free bond and a risky stock. The
price Bt of the bond and the spot price St of the stock obey the stochastic differential equations

dBt

Bt
= r dt,

dSt

St
= µ dt + σ dWt

where {Wt}t>0 is the standard Wiener (Brownian motion) process. To be more general, we shall not
assume that r, µ, σ are constants. In stead, we assume that r = r(S, t), µ = µ(S, t) and σ = σ(S, t)
are given functions S and t. Of course, for the Black-Scholes equation to be well-posed (existence of a
unique solution) we do need to assume that σ is positive and all r, µ, σ are bounded and continuous.

The problem here is to price, at time t < T and spot stock price St, a derivative security (legal
document) which will pay f(ST ) at time T .

We shall carry out the task in two steps. In the first step, we show that if the derivative security
can be replicated by a portfolio of stocks and bounds, then the value V (S, t) of the portfolio at time t

and spot price S must satisfy the Black-Scholes equation.
In the second step, we construct explicitly a self-financing portfolio whose value V (S, t) is exactly

the solution to the Black-Scholes equation. Thus, the price of the derivative is equal to V (S, t); that is
to say, the solution to the black-Scholes equation provides the price to the derivative security.

We have to say that step 1 is only a derivation of the equation. It is not part of the proof. If only a
proof is needed, then step 1 is totally unnecessary. That is, only step 2 is the real proof that the price
of derivative security satisfies the Black-Scholes equation. We present step 1 here is to let the reader see
how Black-Scholes equation is first formally derived, and then shown to be the right one.

1. Assume that there is a replicating portfolio for the security. We denote by ns(S, t) the number
of shares of stock and by nb(S, t) the number of shares of bond in the portfolio at time t and spot stock
price S.

At time t and spot stock price St, the portfolio’s value is

V t = ns(St, t)St + nb(St, t)Bt.

At time t + dt and spot stock price St+dt, the portfolio’s value is

V t+dt = ns(St, t)St+dt + nb(St, t)Bt+dt.

Thus, the change dV t of the value of the portfolio due to change of prices of the stock and bond is

dV t = V t+dt − V t = ns(St, t){St+dt − St}+ nb(St, t){Bt+dt −Bt} (3.6)

= ns(S, t)dS + nb(S, t)dB = ns{µSdt + σSdW}+ nbrBdt

= {µnsS + nbrB}dt + σnsSdW t (3.7)

after we plug in the assumed dynamics for prices of the stock and bond. Note that dV t is a random
variable, normally distributed.

Now assume that V t can be written as V (St, t) where V (·, ·) is a certain known function. Let’s see
how can we do this. Given a function V (s, t) on R × (−∞, T ], when we replace s by St, we obtain a
random variable defined on the same space as that of the Brownian motion. By Ito’s lemma, we know
that V (s, t)|s=St relates the Brownian motion according to

dV (St, t) =
∂V

∂t
dt +

∂V

∂S
dS +

1
2

∂2V

∂S2
(dS)2

=
{∂V

∂t
+ µS

∂V

∂S
+

σ2S2

2ven

∂2V

∂S2

}
dt + σS

∂V

∂S
dW. (3.8)
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Here we have used the fact that (dt)2 = 0, dtdW = 0, (dW )2 = dt so (dS)2 = σ2S2dt.
Hence, to have V t = V (s, t)|s=St , it is necessary and sufficient for coefficients of dt and dW in (3.7)

and (3.8) to be exactly equal. Thus, we must have

µnsS + nbrB =
∂V

∂t
+ µS

∂V

∂S
+

σ2S2

2
∂2V

∂S2
,

σnsS = σS
∂V

∂S
.

This is equivalent to require

ns =
∂V

∂S
, nb =

1
rB

{∂V

∂t
+

σ2S2

2
∂2V

∂S2

}
. (3.9)

Therefor, the portfolio and the only portfolio that can replicate the derivative security is ns shares of
stock and nb shares of bound, where ns and nb are as above. This is the only way that we can get rid
of the randomness caused by Brownian motion process dW in the price change of stock.

We repeat a few more words about the randomness. Here St+dt is a random variable with normal
distribution. The function V (s, t + dt) itself is not a random variable, it becomes a random variable
only when we replace s by St+dt. That the random variable ns(St, t)St+dt + nb(St, t)Bt+dt is exactly
the same as V (St+dt, t + dt) is a very strong requirement. In the discrete model, we have learned of
how to construct a replicating portfolio that matches exactly the required payment for contingent claim,
regardless of which state the stock price lands on. Here is the same situation. The randomness is
get rid of by matching the coefficients of two dV ′s. The former from the actual behavior of the stock
price change, the other from Ito’e lemma and our hypothesis that V t+dt = V (s, t + dt)|s=St+dt , where
V (s, t + dt) is a function to be constructed without knowledge of the outcomes of actual price.

The value of the portfolio is V = nsS + nbB. Hence we need, in view of (3.9),

V = nsS + nbB = S
∂V

∂S
+

B

rB

{∂V

∂t
+

σ2S2

2
∂2V

∂S2

}
.

After simplification, this becomes

∂V

∂t
+

σ2S2

2
∂2V

∂S2
+ rS

∂V

∂S
= rV,

which is exactly the famous Black–Scholes equation.
So far we have derived the Black–Scholes equation. We know that if a derivative security can be

replicated by a portfolio, then its value or price must satisfy the Black-Scholes equation.

2. Now let V be the solution to the Black-Scholes equation with “initial” condition V (s, T ) = f(s)
for all s > 0. Let ns and nb be defined as in (3.9). Consider the portfolio consisting of ns(St, t) shares
of stock and nb(St, t) shares of bound at time t + 0 and spot stock price St.

First of all the value of the portfolio is

nsS + nbB = V (s, t)

by the definition of ns, nb and the differential equation for V .
Now we show that the portfolio is self-financing. For this, we calculate the capital needed to maintain

such a portfolio.
At time t + 0, we have a portfolio of ns(St, t) shares of stock and nb(St, t) shares of bond. At

time t + dt before rebalancing, its value is ns(St, t)St+dt + nb(St, t)Bt+dt which we wish to rebalance to
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ns(St+dt, t + dt) shares of stock and nb(St+dt, t + dt) shares of bond. The capital δ needed to perform
such a trade is

δ := {nb(St+dt, t + dt)St+dt + nb(St+dt, t + dt)Bt+dt} − {ns(St, t)St+dt + nb(St, t)Bt+dt}(3.10)

=
[
{nb(St+dt, t + dt)St+dt + nb(St+dt, t + dt)Bt+dt} − {nb(St, t)St + nb(St, t)Bt}

]

+ns(St, t)
[
St − St+dt

]
+ nb(St, t)

[
Bt −Bt+dt

]

= dV − nsdS − nbdB

= dV − ∂V

∂S

{
µSdt + σ SdW

}
− 1

rB

{∂V

∂t
+

σ2S2

2
∂2V

∂S2

}{
rB dt

}

= dV −
{∂V

∂t
+ µS

∂V

∂S
+

σ2S2

2
∂2V

∂S2

}
dt− S

∂V

∂S
dW

= 0.

Thus, the portfolio is self-financing. Since the outcome of the portfolio at time T is V (ST , t) which is
equal exactly f(ST ), regardless what ST is, we see that the value of the contingent claim at any time t and
spot stock price St had to be V (St, t). Since if the the claim is sold for more, say at V̂ (St, t) > V (St, t).
Then we sell it at price V̂ , and form a portfolio of value V (St, t), keep V̂ (St, t)− V (St, t) in our pocket.
Manage the portfolio in a self-financing way (prescribed by (ns, nb)) till the end of time T , at this time,
the value of the portfolio exactly pays the claim. Thus there is no future payoff and we have a profit at
time t. Similarly, if V̂ (St, t) < V (St, t) one can do other way around. Since such arbitrage is excluded
from the mathematical perfection, we conclude that the value of the contingent claim has to be V (St, t).

Therefore, the price of the derivative security must be equal to V which is the unique solution to
the Black-Scholes equation.

We summarize our result as follows.

Theorem 3.5 Consider a system consisting of a risk-free asset and a risky asset whose price

obeys a geometric Brownian motion process. Then any contingent claim with only a fixed one time

payment can be uniquely replicated and therefore be priced, and the price can be calculated from

the solution to the Black-Scholes equation.

Exercise 3.18. Complete the argument that if the price V̂ (St, t) of the contingent claim is smaller than
V (St, t) at some time t < T and some spot stock price St, then there is an arbitrage.

Exercise 3.19. Note that δ in (3.10) can be expresses as

δ = St+dt[ns(St+dt, t + dt)− ns(St, t)] + Bt+dt[nb(St+dt, t + dt)− nt
b(S

t, t)]

= St+dtdns + Bt+dtdnb = {S + dS}dns + (B + dB)dnb.

Using Ito’s lemma, the expression of ns and nb in (3.9), and the Black-Scholes equation for V show
directly that δ = 0.
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Exercise 3.20. Assume that r and σ are constants and σ > 0. Make the change of variables from (S, t, V )
to (x, τ, v) by

x = ln S +
(
r − σ2

2

)
(T − τ), τ =

σ2

2
(T − t), V (s, t) = v(x, τ)e−r(T−t)

Show that the Black-Scholes equation for V (S, t) becomes the following linear equation for v:

∂v

∂τ
=

∂2v

∂x2
∀x ∈ R, τ > 0, v(x, 0) = f(ex) ∀x ∈ R.

Also show that the solution for v is given by the following formula:

v(x, t) =
1√
4πτ

∫

R
e−(x−y)2/(4τ)f(ey)dy ∀x ∈ R, τ > 0.

Exercise 3.21. Assume risk-free rate is r and volatility of a stock is σ > 0. Both r and σ are constants.
Find the price for European put and call options, with duration time T and strick price K.
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Chapter 4

Optimal Portfolio Growth

In this chapter we consider multi-period investments. This leads to the study of dynamic portfolio in
which one takes every opportunity to rebalance portfolio according to revelation of outcome of financial
market.

To explain the idea, let’s consider a simple situation. There is a stock whose price after each period
is either double or reduce to half, with equal probability. If wealth is initially invested in the stock and
unattended later on for quite many periods, the wealth will not change much. Therefore one may give
up the idea of investment. However, the theory of dynamic portfolio tells us that there is indeed an
excellent opportunity of investment. Suppose we start with $200 and invest half of the wealth in to the
stock. At the end of first period, if stock price doubles, we have a total wealth $300, consisting of $100
cash and $200 worth of stock. We then happily cash in §50 stock, so the new balance is $150 stock and
$150 cash. If unfortunately the stock price is halved, we have a total wealth of $150, consisting of $100
cash and $50 worth of stock. Without hesitation we buy $25 more stock, so the new balance is $75 cash
and $75 worth of stock. Later on at the end of each period we always split the total wealth into half
cash and half stock. In the long run, it is almost sure that the total wealth grows exponentially. The
reason behind this is that we are following the dictum:

“sell high, buy low.”

Conclusions of multi-period investment situations are not mere variations of single-period conclu-
sions, rather they often reverse those earlier conclusions. This makes the subject exciting, both intellec-
tually and in practice. Once subtleties of multi-period investment are understood, the reward in terms
of enhanced investment performance can be substantial. This chapter shows how to design portfolios
that have maximal growth.

4.1 Risk Aversion

1. Utility Function.

Consider the rationale of a person buying a lottery ticket with $1, hoping to win a prize of
$1,000,000,000 with chance of 1 per 2,000,000,000. With $1, there are two choices: $1 risk-free if
one keeps the money; a random payoff with expectation $0.50 and great risk (uncertainty) if one buys
the lottery ticket. In view of the mean-variance theory, what is the logic that one chooses investment
with smaller expected return and larger “risk”?

105
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To explain the rationale, we use von Neumann and Morgenstern’s idea [20], introducing the following:

A utility function of an investor is a function U : R→ R such that the decision to choose among invest-
ment plans with respect to random payments X1, · · · , Xm is based on the maximum of the expectation
E(U(X)); namely, the investor with utility function U chooses a plan with return Xi satisfying

E(U(Xi)) = max
16j6m

E(U(Xj)).

The one general restriction placed on the form of the utility function is its monotonicity:

x > y =⇒ U(x) > U(y).

Other than this restriction, the utility function can take any form.

Example 4.1. Suppose we use U(x) = x2/(100 + x) as our utility function.

1. Consider two choices: (a) a free lottery ticket having 1/2,000,000,000 chance of wining $1,000,000,000,
and (b) $1.00 cash. What do we choose? We calculate which choice gives larger expected utility.

For choice (a), E(U(Xa)) = 0 + (109)2/(100 + 109)/(2× 109) ≈ 0.50.

For choice (b), we have E(U(Xb)) = 12/(100 + 1) ≈ 0.01.
Clearly, option (a) is chosen.

2. Consider two options: (c) 1,000 free lottery tickets, (b) $1,000 cash. Which one do we choose?
For choice (c), E(U(Xc)) ≈ (109)2/(100 + 109) ∗ 1, 000/(2× 109) ≈ 500.
For choice (d), E(U(Xd)) = 1, 0002/(100 + 1000) ≈ 909.

Hence, according the rank criterion, option (d) is chosen.

The simplest utility function is U(x) = x. An individual using this utility function ranks random
payoffs by expected returns; that is, given choices X1, · · · , Xm of payoffs, the payoff Xi is chosen if

E(Xi) = max
16j6m

E(Xj).

This utility function U(x) = x is called risk neutral since it does not count for any risk being made.

From now on, we give another name to the standard deviation σ of a return—volatility. It is risk,
but in another point of view, it is a chance. Later we shall see how volatility can be a good thing.

In practice, there are certain types of utility functions that are popular:

1. Exponential

U(x) = −e−αx, α > 0.

This utility function has negative values, but it does not matter, as long as it is strictly increasing.

2. Logarithmic

U(x) = ln x, ∀x > 0, U(x) = −∞ ∀x 6 0.

Note that this function has a severe penalty for x ≈ 0. Namely, if an investment has a chance that
nothing will be payed, such a plan is out of consideration.
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3. Power

U(x) = xα α > 0, x > 0.

The case α = 1 is the risk-neutral utility.

4. Quadratic

U(x) = 2Mx− x2, x 6 M,M > 0.

In using this utility, it is assumed that the payoff has no chance of being larger than M .

5. Rational

U(x) =
xα

M + x
, x > 0, M > 0, α > 1.

We have seen the use of this utility in the lottery example.

It is important to observe that if k > 0 and b ∈ R, there is no difference between the utility function
U and V = kU + b. Thus, in practice, we can scale a utility function conveniently.

2. The Quadratic Utility Function

Suppose we use the utility function U(x) = 2Mx − x2 and have a number of assets a1, · · · , am to
invest upon for a total capital V0. Assume the return of asset ai is Ri. Then for a portfolio with weight
w = (w1, · · · , wm),

∑m
i=1 wi = 1, on assets (a1, · · · , am), its final value is

V[w] =
m∑

i=1

(V0wi)(1 + Ri) = V0 + V0

m∑

i=1

wiRi = V0 + V0(w,R)

where R := (R1, · · · , Rm) is a vector valued random variable. Hence, the rank of the portfolio w is
made according to the value

E(U(V[w])) = 2MV 2
0 − V 2

0 + (2MV0 − 2V 2
0 )E

(
(w,R)

)
− V 2

0 E
(
(w,R)2

)

= 2MV 2
0 − V 2

0 + 2V0(M − V0)µ− V 2
0 (µ2 + σ2)

where µ is the expected return and σ is the standard deviation of the return of portfolio:

µ =
m∑

i=1

wiµi, σ2 =
m∑

i,j=1

wiwiσij , µi = E(Ri), σij := Cov(Ri, Rj).

Taking the equivalent utility function V (x) = [U(x)− 2MV 2
0 + V 0]/V 2

0 and denoting b = M/V0 − 1 we
have

E(V[w]) = b µ− µ2 − σ2.

It is easy to show that there is at least a maximizer, and in terms of the mean-variance Markowitz
theory, the maximizer corresponds to a particular solution on the Markowitz frontier.

3. Risk Aversion1

1According to web dictionary, aversion: A fixed, intense dislike; repugnance.



108 CHAPTER 4. OPTIMAL PORTFOLIO GROWTH

Risk aversion is a penalty on the uncertainty (risk) of returns in ranking choices of investments.
A utility function U is said to be risk averse on [a, b] if it is concave on [a, b], i.e.

U ′′(x) < 0 ∀x ∈ [a, b].

If U is concave everywhere, it is said to be risk averse. The degree of risk aversion is formally defined
by the Arrow-Pratt absolute and relative risk aversion coefficients defined as

a(x) := −U ′′(x)
U ′(x)

, r(x) = −xU ′′(x)
U ′(x)

.

Example 4.2. Suppose U is risk averse and we have two options: (a) flatly receive $M; (b) based on
the toss of a fair coin—head, we win $10; tail, win nothing.

Now if we use a risk averse utility function U , we can make decision based on the expected utilities
as follows:

Option (a): E(U(Xa)) = U(M).
Option (b): E(U(Xb)) = 1

2{U(0) + U(10)}.
(i) If M = 5, we see that U(5) > 1

2{U(0)+U(10)} since U is concave. Hence, option (a) is selected.
(ii) Suppose U(x) = 25x− x2. Then E(U((Xa)) = M(25−M) and E(U(Xb)) = 75 = M̄(25− M̄)

where M̄ = 3.49. Hence, if M > 3.49, one prefers to receive $M for sure instead of having a 50-50 chance
of getting $10 or 0.

From this example, we see that choosing a risk averse utility function lays penalty on uncertainties.

4. Certainty Equivalent.

The actual value of the expected utility of a random wealth variable is meaningless except in
comparison with that of another alternative. There is a derived measure with units that do have
intuitive meaning. This measure is certainty equivalent.

The certainty equivalent of a random variable X under utility U is the unique number c satisfying

U(c) = E(U(X)).

In making a decision, one compares the certain equivalents of all possible payoffs and chooses the
one having the highest certain equivalent.

Given a random variable X, denote its expectation E(X) by X̄. Then by Taylor’s expansion,

U(X) = U(X̄) + U ′(X̄)(X − X̄) + (X − X̄)2
∫ 1

0

(1− θ)U ′′(X̄ + θ[X − X̄])dθ.

Taking expectation on both sides we obtain

U(c) = U(X̄) +
∫ 1

0

(1− θ)E
(
U ′′(X̄ + θ[X − X̄])(X − X̄)2

)
dθ .

Hence, if U ′′ 6 0, we have U(c) 6 U(X̄) and also c 6 X̄. From here we see that risk aversion puts
penalty on risky payoffs in ranking investment plans.
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The risk aversion characteristics of an individual depends on the individual’s felling about risk, his or
her current financial situation (such as net worth), the prospects for financial gains or requirements (such
as college expenses) and individual’s age. Financial planers can obtain such function by asking certain
questions and based on answers to have values on certain parameters in a general formula, typically
linear combinations of exponential functions.

Exercise 4.1. (certainty equivalent) An investor has utility function U(x) = x1/4. He has a new job offer
which pays $80,000 with a bonus being $0, $10,000, $20,000, $30,000, $40,000, or $50,000, each with
equal probability. What is the certainty equivalent of this job offer.

What are the corresponding certain equivalents when U(x) = x, ln x, x2, −e−x, respectively?

Exercise 4.2. Consider an investment of total capital V0 among assets a1, · · · , am, each of which has a
positive expected return. Assume that C = (σij)m×m is positive definite. Show that with a quadratic
utility function U(x) = 2Mx − x2, there is a unique optimal portfolio. Also find the certain equivalent
of the optimal portfolio.

Exercise 4.3. Show that (i) the absolute risk aversion coefficient is a constant for exponential utility
functions, and (ii) the relative risk aversion coefficient is constant for logarithmic and power utilities.

Exercise 4.4. Suppose X is a random wealth variable which has small E(|X − E(X)|3). Show that its
certainty equivalent c can be approximated by

c ≈ E(X)− 1
2

a(E(X)) Var(X).

Exercise 4.5. Why does a utility function have to be strictly increasing?

Exercise 4.6. For the lottery ticket example in Example 4.1, find the certainty equivalent c(x) of x lottery
tickets. When c(x) > x and when x > c(x)?

4.2 Portfolio Choice

In this section we focus on a single-period portfolio problem in which an investor uses the expected
utility criterion to rank investment alternatives. Using the basic framework of Markowitz theory, we
shall obtain conclusions more decisive than the original theory.

Suppose an invertor prefers a particular utility function U and has a total capital V 0 > 0 to invest
among m assets a1, · · · , am. For i = 1, · · · , m, the asset ai has an initial unit share price S0

i > 0 and a
final (end of period) price Si, a non-negative bounded random variable with positive expectation E(Sj)
on certain probability space (Ω,F , P ).

The investor wishes to form a portfolio to maximize the expected utility of final wealth. We denote
a generic portfolio by w = (w1, · · · , wm) ∈ Rm with

∑n
i=1 wi = 1, where wi is the initial weight of total

value of asset ai in the portfolio. Since the initial unit share price for asset ai is S0
i and a total of V0wi

capital is invested in it, there are V 0wi/S0
i shares of asset ai in the portfolio. Hence, the final value V[w]

of the portfolio is a random variable given by

V[w](ω) :=
m∑

i=1

V0wi

S0
i

Si(ω) ∀ω ∈ Ω.
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The investor’s problem, or optimal portfolio problem, can be formulated as follows:

Investor’s Problem: Find w∗ ∈ W := {w ∈ Rm | (w,1) = 1, V[w] > 0} such that

E
(
U(V[w∗])

)
= max

w∈W
E

(
U(V[w]))

)
. (4.1)

We now show that this problem is connected to arbitrage.

Theorem 4.1 (Portfolio Choice Theorem) Suppose U is continuous and increasing in (0,∞),

U(0) := limx↘0 U(x) and limx→∞ U(x) = ∞. Also E(U(V[w])) > −∞ for some w ∈ W .

Then the optimal portfolio problem (4.1) has a solution if and only if there is no-arbitrage.

The solution, if exists, is unique if U is risk averse and all a1, · · · , an are linearly independent.

Here by linearly dependent if means there exists a non-zero vector w ∈ Rm such that VT [w] ≡ 0.
Therefore, linear independent means that

Vt[w] ≡ 0 =⇒ w = 0. (4.2)

Theorem 4.2 (Portfolio Pricing Theorem) Let w∗ = (w∗1 , · · · , w∗n) be an optimal portfolio

and V ∗ be the corresponding final payoff. Assume that w∗ is in the interior of W . Then any

derivative security of the underlying assets with a final payoff X has an initial price of

P (X) =
1

1 + µ0

∫

Ω

X(ω)P(dω), P(A) :=

∫
A

U ′(V ∗) P (dω)∫
Ω

U ′(V ∗)P (dω)
∀A ∈ F ,

where µ0 > −1 is a constant (the risk-free return rate) and P is called risk-neutral probability.

Proof of Theorem 4.2. Consider the Lagrangian

L(w, λ) = E(U(V[w]))− λ V0{(w,1)− 1}.

Since w∗ is a minimizer in the interior of W , according to a general theory from calculus, the first
variation of L with respect to λ and w is zero. As V[w] =

∑
i V 0wiSi/S0

i , we then have

0 =
∂L(w∗, λ)

∂wi
= E

(
U ′(V ∗)Si

)V0

S0
i

− λV0 ∀ i = 1, · · · ,m. (4.3)

Since U ′ > 0 and E(Si) > 0, we see that λ > 0. Hence, define

µ0 =
λ

E(U ′(V ∗))
− 1

we have λ = (1 + µ0)E(U ′(V ∗)) so that

S0
i =

1
λ

E(U ′(V ∗)Si) =
1

1 + µ0

E(U ′(V ∗)Si)
E(U ′(V ∗))

=
1

1 + µ0

∫

Ω

Si(ω)P(dω)) ∀ i = 1, · · · ,m.
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This is the price formula for each individual assets. In addition, if there is a risk-free asset having return
rate µ̂0, its final payoff S must be S(·) ≡ (1 + µ̂0)S0. Substituting this into the the pricing formula we
obtain µ̂0 = µ0.

Suppose X is the final payoff of a derivative security of the underlying assets. Then in the one-period
case X is a linear combination of S1, · · · , Sm. Thus writing X =

∑m
i=1 xiSi we have, by no arbitrage

assumption, its initial price has to be

P (X) =
m∑

i=1

xiS
0
i =

1
1 + µ0

∫

Ω

m∑

i=1

xiSiP(dω) =
1

1 + µ0

∫

Ω

X(ω)P(dω).

This completes the proof.

The pricing equation tells us that the initial unit share price S0
i of asset ai is the discounted

expectation of its payoff Si under the risk-neutral probability measure.
If the number of states in Ω is finite and the utility function satisfies U(0) = −∞ and U ′ > 0 on

(0,∞), then any optimal portfolio w∗ is in the interior of W . This gives an alternative proof for the
positive state prices theorem of the finite state model. Clearly, the result here is more general and deeper
than that of the positive state prices theorem in the finite state model.

We remark that the resulting risk-neutral probability measure may depend on V 0 > 0 and on the
choice of U . Nevertheless, all resulting formulas provide the same price for every derivative security.

Proof of Theorem 4.1. We divide the proof into two parts.

(a)(i) Suppose there is a type B arbitrage. Then there is an investment ŵ = (ŵ1, · · · , ŵm) such
that (ŵ,1) = 0, V[ŵ] > 0 and E(V[ŵ]) > 0. Let w = (1, 0, · · · , 0). Then for any θ > 0, w + θŵ ∈ W .
However, since V[θŵ + w] = θV[ŵ] + V[w] > θV[ŵ], we have

lim
θ→∞

E
(
U(V[w + θŵ])

)
= ∞.

Namely, the investor’s problem (4.1) does not have a solution.
(ii) Similarly, one can show that if there is a type A arbitrage, (4.1) also does not have s solution.
Hence, the existence of arbitrage implies the non-existence of a solution to (4.1).

(b) Suppose there is no arbitrage. We show that the investor’s problem has a solution.
(i) First of all, we delete one by one those assets which are linear combinations of remaining ones.

After finitely many steps, the remaining assets will be linearly independent. By no arbitrage A assump-
tion, all portfolios can be constructed from the remaining ones. Hence, we can assume, without loss of
generality, that a1, · · · , am are linearly independent, i.e. (4.2) holds.

(ii) Let {wj}∞j=1 be a maximizing sequence, i.e. wj ∈ W for all j ∈ N and

lim
j→∞

E(U(V[wj ])) = sup
w∈W

E(U(V[w])) ∈ (−∞,∞].

.
Denote by ‖w‖ the Euclidean Rm norm of w. There are two possibilities:

(a) sup
j>1

‖wj‖ < ∞, (b) sup
j>1

‖wj‖ = ∞.

Consider case (a) supj ‖wj‖ < ∞. In this case, we can select a subsequence, which we still denote
by {wj}, such that for some w∗ ∈ Rm, ‖wj − w∗‖ → 0 as j → ∞. Then by continuity, (w∗,1) = 1,
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V[w∗] > 0; i.e. w∗ ∈ W . In addition, let M = supj≥1,ω∈Ω V[wj ](ω). Then U(M)−U(V[wj ]) > 0, so by
Fatou’s lemma,

E
(
U(M))− U(V[w∗])

)
= E

(
lim

j→∞
[U(M)− U(V[wj ])]

)

6 lim
j→∞

E
(
U(M)− U(V[wj ]))

)

= U(M)− sup
w∈W

E(U(V[w])).

Thus, E(U(V[w∗])) ≥ supw∈W E(U(V(w))), i.e. w∗ is a maximizer so (4.1) has a solution.

Next consider case (b) supj ‖wj‖ = ∞. Let

vj = wj/‖wj‖ ∀ j ∈ N.

By selecting a subsequence if necessary, we can assume that limj→∞ ‖wj‖ = ∞ and for some v∗ ∈ Rm,
‖vj − v∗‖ → 0 as j → ∞. Clearly, we have ‖v∗‖ = 1. Also since V[vj ] = V[wj ]/‖wj‖ > 0, V[v∗] > 0.
Finally, (v∗,1) = limj→∞(wj ,1)/‖wj‖ = limj→∞ 1/‖wj‖ = 0. As there is no type B arbitrage, we must
have V[v∗] ≡ 0. In view of (4.2), we conclude that v∗ = 0, contradicting to the earlier conclusion that
‖v∗‖ = 1. This contradiction shows that case (b) does not happen.

In conclusion, the invest’s problem has a solution if and only if there is no arbitrage. ,
The proof for the second assertion of the theorem is left as an exercise. This completes the proof.

Exercise 4.7. (1) Make a mathematical definition for the terminology “arbitrage-free”. You have to state
the environment that the definition is to be used. For example, it could be as follows:

“A state of economy is a set {S0
1 , · · · , S0

m} of positive real numbers and a set {S1, · · · , Sm} of
real random variables on a probability space (Ω,F , P ). The state of economy is called arbitrage-free
if (the following holds).... ”

(2) Consider the following assets, with an initial payment $100, it pays as follows:
a0: $105, for sure;
a1: $95, $100, or $ 130, with probability 0.3, 0.4, 0.3, respectively.
a2: $90, $100, or $130, with probability 0.3, 0.4, 0.3, respectively.

Are there arbitrage in the system consisting of only these three assets?
(3) Suppose the events of the first asset return $95,100,130 exactly correspond to that of the second

asset return $130,100,90. Find the Markowitz efficient frontier (CAPM’s capital market line). Also
using U(x) = ln x find the log-optimal portfolio.

Exercise 4.8. (a) Provide details on the parts (a)(ii) and (b)(i) in the proof of Theorem 4.1.
(b) Prove the second assertion of Theorem 4.1. [Hint: Suppose w1 and w2 are two solutions.

Consider the weight 1
2 (w1 + w2).]

Exercise 4.9. Suppose there are two investment opportunities:
a0: earn a 20% risk-free interest;
a1: earn a return of 200%, 0%, or −100% with probability 0.3, 0.4, 0.3 respectively.

1. Use U(x) = ln x solving (numerically) the investor’s problem with V0 = 10, 000.

Also, find the expected return and certainty equivalent.

2. Use U(x) =
√

x solving the investor’s problem with V0 = 20, 000.
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3. Use U(x) = −e−x solving the investor’s problem with V0 = 1 and V0 = 10 respectively.

4. Use U(x) = x2 solving the investor’s problem with V0 = 30, 000.

Find the risk-neutral probability measures from solutions in part (1), (2) and (3) respectively. Does
(4) provide a risk-neutral probability measure?

Finally, explain the four portfolio choices in terms the Markowitz or CAPM model.

Exercise 4.10. Suppose the utility U has the following properties:

U ∈ C∞(R), U ′ > 0 on R, lim
x→∞

U(x) = ∞, lim
x→∞

U(x)
U(−θx)

= 0 ∀ θ > 0.

Show that the following problem

maximize E
(
V[w]

)
in {w ∈ Rm | (w,1) = 1}

has a solution if and only there is no-arbitrage.
Use this result prove the Theorem of positive state prices of the finite state model.

4.3 The Log-Optimal Strategy

From now on we investigate multi-period investments. The key difference between single period and
multi-period is that the latter needs management, i.e., updating the portfolio at each trading time. We
assume that one can buy and (short) sell for any quantity as wish, without any transaction cost.

1. An Investment Wheel Understanding portfolio growth requires that one adopt a long term
viewpoint. To highlight the importance of such a viewpoint, we consider an investment wheel shown
below. You are able to place a bet on any of the three sectors, named A, B and C respectively. In fact,
you may invest different amounts on each of sectors independently. The numbers in sectors denote the
winnings (multiplicative factor to your bet) for that sector after the wheel is spun. For example, if the
wheel stops with the pointer at the top sector A after a spin, you will receive $3 for every $1 you invested
on that sector (which means a net profit of $2); all bets on other sectors are lost.

H

C
6

A

B

3

2

An Investment Wheel
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The odds of three sectors are 1/2, 1/3, 1/6, respectively. We can calculate the expected returns on
each bet.

Invest on sector A: E(RA) = 3 ∗ 1/2− 1 = 50%.

Invest on sector B: E(RB) = 2 ∗ 1/3− 1 = −33%;
Invest on sector C: E(RC) = 6 ∗ 1/6− 1 = 0%.

Now suppose we start with an initial capital V0, say $100. What is the best strategy to bet so that
(in certain statistical sense) after n’th betting, Vn is the largest?

(i) Since sector A is the most attractive, we may intend to invest all money on sector A in each
spin. However, we immediately realize that we go broke very quickly and cannot continue the game.

(ii) A second more conservative strategy would be to invest, say, only half of the money on sector
A, and holding the other half. That way, if an unfavorable outcome occurs, we are not out of the game
entirely. But it is not clear if this is the best that can be done.

2. Analysis

To begin a systematic search for a good strategy, let us limit our investigation to fixed-proportion
strategies. These are strategies that prescribe proportions to each sector of the wheel, these proportions
being used to apportion current wealth among the sectors as bets at each spin.

Let’s use w = (w1, w2, w3) as the proportions of money put on sectors A,B,C respectively. Of
course, we need w1 > 0, w2 > 0, w3 > 0, w0 := 1− w1 − w2 − w3 > 0.

We denote by Vn the wealth after nth spin. It is a random variable depending on the outcome of
the wheel, as well as the betting strategy. Fix a strategy w, the wealth at time t = n is given by

Vn = Vn−1e
rn[w]

where, denoting Ω = {A,B, C} the occurrence of A,B and C respectively,

Prob(A) = 1/2, rn[w](A) = ln(1 + 3w1 − w1 − w2 − w3),

Prob(B) = 1/3, rnw](B) = ln(1 + 2w2 − w1 − w2 − w3),

Prob(C) = 1/6, rn[w](C) = ln(1 + 6w3 − w1 − w2 − w3).

It then follows that

Vn = V0e
∑n

i=1 ri[w], ln
(Vn

V0

)1/n

=
1
n

n∑

i=1

rn[w].

Now sine r1, · · · , rn are i.i.d random variables, the law of large numbers therefore states that

lim
n→∞

1
n

n∑

i=1

rn[w] = ν := E(r1[w]) almost surely.

We can summarize our calculation as follows:

Theorem 4.3 (Logarithmic Performance) If {Vj}∞j=0 is a random sequence of capital val-

ues generated by the process Vk = Vk−1e
rk where r1, r2, · · · are i.i.d. random variables, then in

distribution,

ln
(Vn

V0

)1/n

−→ ν := E(r1) as n →∞.
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Then, formally, we find that

Vn ≈ V0e
nν .

In other words, for large n, the capital grows (roughly) exponentially with n at rate ν.

3. The Log-Optimal Strategy

The foregoing analysis reveals the importance of the number ν. If governs the rate of growth of the
investment over a long period of repeated trials. It seems appropriate therefore to select the strategy
that leads to the largest value of ν. We see that

ν(w) := E(r[w]) = E(lnV1)− ln V0.

Hence, if we define our utility function as U(x) = ln x, the problem of maximizing the growth rate ν

is equivalent to maximizing the expected utility E(U(Vi)) and using this strategy in every trial. In other
words, by using the logarithm as utility function, we can treat the problem as if it were a single-period
problem! We find the optimal growth strategy by finding the best thing to do on the first trial with the
expected logarithm as our criterion. This single-step view guarantees the maximum growth rate in the
long run. Note that this argument is based on the fact that all spins are independent. We summarize
our discussion as follows:

The log-optimal strategy: Given the opportunity to invest repeatedly in a series of similar prospects,
it is wise to compare possible investment strategy relative to their long-term effects on capital. For this
purpose, one useful measure is the expected rate of capital growth. If the opportunities have identical
probabilistic properties, then this measure is equivalent to the expected logarithm of a single return, e.g.
taking a logarithmic function as the utility function. In other words, long-term expected rate of capital
growth can be maximized by selecting a single strategy that maximizes the expected logarithm of return
at each trial.

Although the log-optimal strategy maximizes the expected growth rate, the short run growth rate
may differ. We can, however, make some quite impressive statement about the log-optimal strategy.

Theorem 4.4 (Characteristic Property of the Log-optimal Strategy) Suppose two people

start with the same initial capital; one uses the log-optimal strategy and the other does not. Denote

the resulting capital streams by {V A
k } and {V B

k }, respectively, for the periods k = 1, 2, · · · . Then

E
(V A

k

V B
k

)
> 1 ∀ k = 1, 2, · · · .

We leave the proof as an exercise.

4. Solution to the Investment Wheel Problem

Let’s agree that the log-optimal strategy is used (otherwise what are we going to do?).
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We compute the full optimal strategy for the investment wheel problem. Given a strategy w, the
logarithm of the expected growth rate is

ν(w) =
1
2

ln(1 + 2w1 − w2 − w3) +
1
3

ln[1 + w2 − w1 − w3] +
1
6

ln(1 + 5w3 − w1 − w2).

Suppose w∗ is an optimal strategy. First assume that w∗1 > 0, w∗2 > 0, w∗3 > 0. Then the partial
derivatives of ν(w) with respect to w1, w2, w3 are zero at w∗. This leads to a system of three equations
with three unknowns. One solution to the system is

w∗1 = 1
2 , w∗2 = 1

3 , w∗3 = 1
6 .

One can check that this is one of the optimal solution. Hence, the logarithm of the expected optimal
growth rate is

ν∗ = 1
2 ln 3

2 + 1
3 ln 2

3 + 1
6 ln 1 = 1

6 ln 3
2 = ln 1.0699

Thus, the average growth rate is approximately 107% per period.
Notice that the optimal strategy requires an investment on the unfavorable sector B which pays a

negative expected return. This investment serves as a hedge for other sectors—it wins precisely when
the others do not2. It is like fire insurance on your home, paying when other thins goes wrong.

Exercise 4.11. (The Kelly Rule of Betting) Suppose you have the opportunity of investing in a
prospect that will either double your investment, with probability p, or return nothing. Show that the
log-optimal strategy is the following Kelly rule [14]:

If p > 1/2, you should bet a fraction of 2p− 1 of your wealth; otherwise, bet nothing.

Exercise 4.12. (Volatility Pumping) Suppose there are two alternatives of investment available: (a)
A stock that in each period either double or reduce by half, each has 50% chance; (b) hide money under
mattress. Show that if one always invest half capital into the stock, then an expected 105.6% growth rate
per period can be achieved.

Here the gain is achieved by the volatility of the stock in a pumping action. If stock goes up in
certain period, some of the proceeds are put aside (under the mattress). If on the other hand the stock
goes down, additional capital is invested in it. This strategy follows automatically the dictum:

buy low, sell high.

Exercise 4.13. (a) Prove Theorem 4.4. Hint: Use ex > 1 + x for all x ∈ R.
(b) In the same setting as Theorem 4.4, show that in measure

lim inf
k→∞

(V A
k

V B
k

)1/k

> 1.

Exercise 4.14. Consider the investment wheel problem discussed in this section.
(1) Find all log-optimal strategies;
(2) Use a random number generator simulating the investment wheel and compare graphically port-

folio values of different strategies during the first 100 spins;
(3) Suppose the payoff factor for sector B is changed from 2 to 2.5 whereas everything else is

unchanged. Find all log-optimal strategies.
2The algebraic system for (w1, w2, w3) is actually degenerate. There is a whole family of optimal solutions. An

alternative solution is w1 = 5/18, w2 = 0, w3 = 1/18. In this solution, nothing is invested on the unfavorable sector;
instead, one bets only 1/3 of total wealth, holding the remaining 2/3.
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Exercise 4.15. Let three assets (investment instruments) be the corresponding bets on sector A,C and
B of the investment wheel, respectively, and denote by R1, R2, R3 the corresponding return rate of one
period (spin).

1. Show that the system is arbitrage-free.

2. Calculate the statistic parameters: the mean µi = E(Ri); variance σi = Var(Ri); covariance
σij = Cov(Ri, Rj); correlation ρij = σij/(σiσj). Show that the matrix (σij)3×3 is degenerate.

3. Construct a risk-free asset a0, and eliminate asset a3 (investment on B sector) from the system.

4. Use the Markowitz theory (for a1 and a2) and CAMP theory (for a0, a1, a2) find the Markowitz
efficient frontier, the capital market line, security market line, and market portfolio. Also discuss
these mean-variance theories for the case where short selling is forbidden.

5. With utility function Uα(x) = xα−1
α , α > 0 (note limα→0 Uα(x) = ln x). Find (using FindRoot

software) the optimal investment strategy. Plot the corresponding µ-σ on the same plane as in (4).

6. State whatever your opinion on the investment portfolio after (4) and (5).

4.4 Log-Optimal Portfolio—Discrete-Time

Now consider the management of a portfolio using the log-optimal strategy, over a time interval [0, T ]
which is divided into a number of periods of duration ∆t. We use notation

K = T/∆t, tk = k∆t, ∀ k = 0, 1, · · · ,K, T = {ti}K
i=0.

1. Asset’s Performance

Suppose there are m assets a1, · · · , am available for investment. We assume that the unit share
price St

i of asset ai at time t ∈ T obeys

Rt
i :=

∆St
i

St
i

:=
St+∆t

i − St
i

St
i

= µi∆t + ∆zt
i (4.4)

where u = (µ1, · · · , µm) is a constant vector, ∆zt := (∆zt
1, · · · , ∆zt

m) is a vector valued random variable
satisfying

E(∆zt
i) = 0, Cov(∆zt

i , ∆zt
j) = σij∆t ∀ i, j = 1, · · · ,m.

Here for simplicity, we assume C = (σij)m×m is a positive definite constant matrix. Also, all ∆zt0 , · · · , ∆ztK

are i. i. d. random variables. We use σi =
√

σii > 0 to denote the standard deviation of the return Rt
i.

To make sure the prices are always positive, we assume for simplicity that
∣∣∣µi∆t + ∆zt

i

∣∣∣ 6 1
2
.

For convenience, we use vector notation St = (St
1, . . . , S

t
m),Rt = (Rt

1, · · · , Rt
m).

2. The Log-Optimal Strategy
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Fix any t ∈ T. Suppose the current outcome is St and the portfolio value is V t (here we ignore the
martingale formalism). We consider optimal portfolio that maximize the expected utility. For a weight
w = (w1, · · · , wm) ∈ Rm with

∑m
i=1 wi = 1, the value of the corresponding portfolio at time t + ∆t is

the random variable

Vt+∆t[w] =
m∑

i=1

wiV
t

St
i

St+∆t
i = V t

m∑

i=1

wi[1 + Rt
i] = V t[1 + (w,Rt)].

It then follows that

E
(

ln
Vt+∆t[w]

V t

)
= E

(
ln[1 + (w,Rt)]

)
.

For the time period [t, t + ∆t), using the utility function U(x) = ln x, we can derive the system of
equations for the optimal weight w∗ = (w∗1 , · · · , w∗m) and corresponding Lagrangian multiplier λ as

m∑

j=1

wi = 1, E
( Rt

i

1 + (w,Rt)

)
= λ ∀ i = 1, · · · ,m. (4.5)

This system has a unique solution since U(x) = ln(x) is strictly convex and all Rt
1, · · · , Rt

m

are linearly independent (recall C = (σij)m×m is assumed to be positive definite). In addition, the
optimal weight w is time-independent since all Rt0 , · · · ,Rtk are i.i.d. random variables. We use
R = (R1, · · · , Rm) to denote a random variable having the same distribution as each of Rt0 , · · · ,RtK .

3. Asymptotic Expansion of the Solution

We try to solve the algebraic system (4.5), at least approximately. For this, we assume that ∆t is
small and ∆zt

i is not too large: for some positive constant M ,

E(|∆zt
i |3) 6 M∆t3/2 ∀ t, i.

The optimal weight w can be computed approximately as follows. By Taylor’s expansion,

Ri

1 + (w,R)
= Ri

{
1− (w,R) + O(1)(R,w)2

}
.

Then using the definition of Ri = µi∆t + ∆zi we have

λ = E
( Ri

1 + (w,R)

)
= E(Ri)−E(Ri(w,R)) + O(1)‖w‖2E(|R|3)

= µi∆t−
m∑

j=1

wjσij∆t + O(∆t3/2)[1 + ‖w‖2].

Hence, denoting u = (µ1, · · · , µm), we obtain

w = uC−1 + α1C−1 + O(
√

∆t), α :=
1− (uC−1,1)

(1C−1,1)
.

Thus, the log-optimal strategy is to redistribute the wealth according to the fixed weight w among
assets a1, · · · , an at each trading time t0, t1, t2, · · · , tk. Denote the corresponding value of the portfolio
using the log-optimal strategy at time t by V t. We then have

V tk = V tk−1 [1 + (w,Rtk−1)] = V 0
k−1∏

i=0

[1 + (w,Rti)].
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Consequently,

E
(

ln
V T

V 0

)
=

K−1∑

i=0

E
(

ln[1 + (w,Rti)]
)

=
T

∆t
E

(
ln[1 + (w,R)]

)

=
T

∆t
E

(
(w,R)− 1

2 (w,R)2 + O(1)|(w,R)|3
)

=
T

∆t

{
(w,u)∆t− 1

2 (wC,w)∆t + O(1)∆t3/2
}

=
{

(w,u)− 1
2 (wC,w) + O(

√
∆t)

}
T.

We summarize our calculation as follows.

Theorem 4.5 (Optimal Growth Rate Theorem) When the log-optimal portfolio rebalancing

strategy is applied to an investment among m asserts in every trade of period ∆t, the portfolio attains

its maximum possible expected growth rate among all possible trading strategies. The maximum

growth rate is

ν =
1
T

E
(

ln
V T

V 0

)
=

1
∆t

max
(w,1)=1

E
(

ln[1 + (w,R)]
)

= νopt + O(
√

∆t)

where

νopt = max
(w,1)=1

{
(w,u)− 1

2 (wC,w)
}

= (wopt,u)− 1
2 (woptC,wopt)

wopt = uC−1 + α 1C−1, α :=
1− (uC−1,1)

(1C−1,1)
.

Exercise 4.16. The following are return rates of two stocks in 10 periods. Start with $100. Using the
log-optimal rebalancing strategy find the value of the portfolio at the end of last period.

R1 0.00 0.40 0.40 0.80 0.00 0.00 0.00 -0..40 0.40 -0.40

R2 0.05 0.25 0.25 -0.35 0.05 0.05 0.05 0.65 0.25 0.65

(Pretend that the statistics generated from above data using appropriate parameter estimators are the
ones we got from history.)

Also using the same parameters calculate the growth of a portfolio without any rebalancing.

Exercise 4.17. Consider two stocks with single period (∆t = 0.49) return rates R1 and R2 respectively.
Assume that

Prob(R1 = 0.2, R2 = 0.2) = 1/4, Prob(R1 = 0, R2 = 0) = 1/4 Prob(R1 = 0.05, R2 = 0.25) = 1/6,

Prob(R1 = 0.25, R2 = −0.05) = 1/6 Prob(R1 = 0.1, R2 = 0.1) = 1/6

Find µ1, µ2, σ11, σ12, σ22. Also find the log-optimal portfolio and optimal growth rate.
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Exercise 4.18 (rates). The following are distributions of return R from an investment after unit period:

return R -.20 -.10 0.00 0.10 0.20 0.30 0.40
probability 0.10 0.10 0.20 0.20 0.20 0.10 0.10

1. Find the expected return µ := E(R) and risk σ where σ2 = Var(R);

2. Find the instantaneous return rate µ̂ := lnE(R + 1); show that 1 + µ = eµ̂.

3. Find the growth rate ν := E(ln[1 + R]) and volatility σ̂ where σ̂2 = Var(ln[1 + R]).

4. For x = [ν + 1
2σ2]/µ, [ν + 1

2 σ̂2]/µ̂, µ̂/µ, and σ̂/σ, find x + 1/x− 2. Are they all small?

4.5 Log-Optimal Portfolio—Continuous-Time

Optimal portfolio growth can be applied with any rebalancing period—a year, a month, a week, or a
day. In the limit of very short time periods we consider continuous rebalancing, by taking the limit, as
∆t → 0 of the time discrete case. In fact, there is a compelling reason to consider the limiting situation:
the resulting equations for optimal strategies turn out to be much simpler, and as a consequence it is
much easier to computer optimal solutions. Hence, even if rebalancing is to be carried out, say weekly, it
is convenient to use the continuous-time formulation to do the calculation. The continuous-time version
also provides important insight; for example, it reveals very clearly how volatility pumping works.

1. Dynamics of Multiple-Assets

We first extend the discrete-time asset price model to the case of continuous-time model.
From a stochastic point of view, the limit as ∆t → 0 of the asset price dynamics (4.4) becomes the

following version

dSi

Si
= µi dt + dBi, i = 1, · · · ,m, t > 0

where B := (B1, · · · , Bm) is a vector valued Winner process ( Brownian motion process) satisfying

E(dBi) = 0, Cov(dBi, dBj) = σijdt, σi =
√

σii.

Note that by the Ito’s lemma, the growth rate and its invariance of asset ai can be calculated as follows:
omitting all the indexes i,

d(lnS) = 1
S dS − 1

2S2 (dS)2 = ν dt + dB,

ν := µ− 1
2σ2,

ln S(t) = ln S(0) + νt + B(t),

S(t) = S(0)eν t+B(t),

E
(

ln
S(t)
S(0)

)
= ν t,

Var
(

ln
S(t)
S(0)

)
= σ2 t,

E
( S(t)

S(0)

)
= E(eνt+B(t)) = eνit

∫

R

ex

√
2πtσ2

e−x2/(2σ2t)dx = eµ t,

Var
( S(t)

S(0)

)
= E

( S2(t)
S2(0)

)
−

(
E

( S(t)
S(0)

))2

= e2µ t(eσ2t − 1).
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We call ν the (long term) growth rate and µ the (instantaneous, or short term) return rate.

2. Equation of Dynamic Portfolio

Denote by w = (w1, · · · , wm) the weight and V the value of a portfolio. It is crucial here to observe
the following: The weight change does not affect the portfolio’s value since it is only rebalancing, i.e.
redistributing the wealth among investment instruments—assets; the value change of the portfolio is due
to the unit price change of assets. In the time-discrete version, we have

∆V

V
:=

V t+∆t − V t

V t

=

∑m
i=1

V twi

St
i

St+∆t
i − V t

V t

=
m∑

i=1

wi
St+∆t

i − St
i

St
i

=
m∑

i=1

wi
∆S

S
.

Hence, in the continuous-time limit, we have the equation of dynamics portfolio:

dV

V
=

m∑

i=1

wi
dSi

Si
=

m∑

i=1

{
wiµi dt + wi dBi

}
.

Consequently, by Ito’s lemma,

d(lnV ) = 1
V dV − 1

2V 2 (dV )2 =
{

(u,w)− 1
2 (wC,w)

}
dt + (w, dB).

3. Solution

Taking expectation and using the fact that w and dB are independent3, we obtain

d
(
E(lnV (t))

)
= E

(
(w,u)− 1

2 (wC,w)
)
dt.

Thus, the log-optimal strategy is to

maximize E
(
(w,u)− 1

2 (wC,w)
)
.

In sophisticated models, all u,C are functions of asset’s prices s and time t. Hence, expectation is
needed. Nevertheless, in this situation w is also a function of s and t, hence to maximize the expectation,
we need only to maximize the function inside the expectation. Thus, the above problem is equivalent to

maximize (w,u)− 1
2 (wC,w) in {w ∈ Rm | (w,1) = 1 }.

If u = (µ1, · · · , µm) and C = (σij)m×m are functions of s and t, the solution is also a functions of s and
t; namely, the resulting strategy depends on the spot prices s = St of the assets and time t.

Here we assume that u = (µ1, · · · , µm) is a constant vector and C = (σij)m×m is a constant positive
definite matrix, then it is easy to see that the maximum is obtained at a constant vector w = wopt where
wopt solves the following

3In the probability space where dB is defined, w is a constant function. This can be made rigorous if martingale or
conditional probability are introduced.
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The Log-Optimal Strategy Problem: Find wopt such that (wopt,1) = 1 and

(wopt,u)− 1
2 (woptC,wopt) = νopt := max

(w,1)=1

{
(w,u)− 1

2 (wC,w)
}
.

At this moment, we see that the maximal growth of E(lnV ) is attained when we use the constant
weight w = wopt, and the optimal growth rate of E(lnV ) is νopt:

E
(

ln
Vopt(t)
V (0)

)
= νopt t ∀ t > 0.

We can calculate the volatility of the portfolio with weight w:

Var
(

ln
V (t)
V (0)

)
= E

(
(w,B)2

)
= (wC,w) t.

In many applications, u and C are not constants, in such cases we do not have a closed form for the
solution; nevertheless, we have set-up a framework which enable us to find solution, at least numerically.

4. Examples

In the follows we provide a few examples.

Example 4.3. (One asset). Suppose we invest only in one asset whose price obeys dS = S(µdt+σdBt)
where Bt is the Standard Brownian motion process. Then V (t) = V (0)eν t+σBt and we find the growth
rate of the expected logarithmic utility for a single asset investment as

1
t

E
(

ln
V (t)
V (0)

)
= ν := µ− 1

2σ2.

Example 4.4. (Multiple Uncorrelated Identical Assets). Suppose for simplicity that we have n

assets whose unit share price obeys dSi = Si(µ dt + σdBi) where Cov(dBi, dBj) = δijdt. Namely, all
these asserts are uncorrelated and have the same probabilistic characteristics. Then the optimal portfolio
problem can be easily solved:

wopt = 1
m1, νopt = µ− 1

2mσ2.

From the expression of νopt, one clearly see the volatility pumping effect. By investing m assets,
the growth rate has increased from ν of a single asset investment to νopt, a net increase of

νopt − ν = 1
2 (1− 1

m )σ2.

The pumping effect is obviously most dramatic when the original variance is high. After being
convinced of this, you will be likely to enjoy volatility, seeking it out for your investment rather than
shunning it, as you may have after studying the single-period theory.

Volatility is not the same as risk. Volatility is opportunity!
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Example 4.5. (Volatility in Action) Suppose a stock has an expected growth rate of ν = 15% and
a volatility of σ = 20%. These are fairly typical values. This means µ = 17%. By combining 10 such
stocks in equal proportions (and assuming they are uncorrelated), we obtain an overall growth rate
improvement of 1

2 (1− 1
10 ) ∗ 0.22 = 1.8%—nice, but not dramatic.

If instead the individual volatilities were σ = 40%. The improvement in growth would be 7.1%. At
volatilities of 60% the improvement would be 16.2%, which is truly impressive. Unfortunately, it is hard
to find 10 uncorrelated stocks with this kind of volatility, so in practice one must settle for more modest
gains. Of course, we must temper our enthusiasm with an accounting of the commissions associated
with frequent trading.

5. Inclusion of a Risk-Free Asset

Suppose that there is a risk-free asset. We denote it by a0 and its (continuously compounded)
interest rate by µ0 = ν0. Then the unit price of the asset is S0(t) = eν0t ( assuming S0(0) = 1 for
simplicity). This can be put in the differential form

dS0 = µ0 S0 dt .

Now we can write a weight as ŵ = (w0,w) where w0 = 1− (w,1) and w ∈ Rm is arbitrary. Then
the log-optimal problem becomes

maximize [1− (w,1)]µ0 + (u,w)− 1
2 (wC,w) in Rm .

Setting the derivative with respect to wi, i = 1, · · · ,m, equal to zero we obtain a system of equations
for the log-optimal portfolio, which we highlight:

Theorem 4.6 (log-optimal portfolio theorem) When there is a risk-free asset, the log-optimal

portfolio has weights for the risky assets that satisfy

wC = u− µ01 or

m∑

j=1

σijwi = µi − µ0 ∀ i = 1, · · · , m.

Example 4.6. (A single risky asset and a risk-free asset) Suppose there is a single stock with
price S and riskless bond with price B. These prices are governed by

dS = S(µdt + σ dWt), dB = ν0B dt (µ0 = ν0)

where W is the standard Winner process. The log-optimal strategy will have a weight on the risky asset
w = (µ− µ0)/σ2. The corresponding optimal growth and its corresponding variance is then

νopt = ν0 +
(µ0 − µ)

2σ2
, σopt =

|µ− µ0|
σ

.

Let’s plug some numbers in it. Assume that µ0 = ν0 = 10%, µ = 17%, σ = 20%. Then we find
w = 1.75 which means we must borrow the risk-free asset to leverage the stock holding. We also find
the optimal growth rate νopt = 0.10 + (0.7)2/(2 ∗ 0.22) = 16.125%. This is only a slight improvement
over the ν = µ − 1

2σ2 = 15% expected growth rate of the stock alone. The new standard deviation is
σopt = 0.7/0.20 = 35%, which is much worse that that of the stock σ = 20%.
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From this example, we see that the log-optimal strategy does not give much improvement in the
expected value and it worsens the variance (risk) significantly. This shows that the log-optimal approach
is not too helpful unless there is opportunity to pump between various stocks with high volatility, in
which case, there can be dramatic improvement.

Exercise 4.19. Suppose there are three stocks and one risk free assets, with following parameters

Asset µi σij

a0 0.10 a1 a1 a3

a1 0.24 0.09 0.02 0.01
a2 0.20 0.02 0.07 -0.01
a3 0.15 0.01 -0.01 0.03

Find the log-optimal portfolio wopt, its growth rate νopt, and its standard deviation σopt.

Exercise 4.20. Suppose there are m stocks. Each of them has a price that is governed by geometric
Brownian motion. Each has νi = 15% and σi = 40%. However, these stocks are correlated and for
simplicity assume that σij = 0.08 for all i 6= j. What is the value of ν and σ for a portfolio having equal
portions invested in each of the stocks?

4.6 Log-Optimal Pricing Formula (LOPF)

The log-optimal strategy has an important role as a universal pricing asset and the pricing formula, first
presented by Long [16], is remarkably easy to derive.

1. The Basic Assumption

Here we summarize what we have studied for the continuous log-optimal model.

We assume that there are m risky assets with prices each governed by geometric Brownian motion,
also known as log-normal process, as

d ln Si = νi dt + dBi ∀ i = 1, · · · ,m,

E(dBi) = 0, Cov(dBi, dBj) = σijdt, σi =
√

σii.

There is also a risk-free assert with interest rate ν0 = µ0. This can put in the same form as above by

d ln S0 = ν0 dt.

We call νi the expected (long-term) growth rate since, omitting indexes,

S(t) = S(0)eνt+B(t), E
(

ln
V (t)
V (0)

)
= ν t.

The stochastic equation is equivalent to

dSi

Si
= µi dt + dBi, µi = νi + 1

2σ2
i .

From this equation, we see that µ = ν + 1
2σ2 is the (instantaneous) expected return rate. Accu-

mulatively, we have

E(S(t)) = S(0)eµt.
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A set of weight w = (w1, · · · , wm) defines a dynamic portfolio in the usual way4. Different from
the mean-variance theory where weight only refers to initial time, here the weight refers to all time, so
rebalancing of portfolios are the key in dynamic portfolio management.

For a dynamic portfolio with constant weight w on risky assets and weight 1 − (w,1) on risk-free
asset, its value V is governed by the geometric Brownian motion

d ln V =
(
ν0[1− (w,1)] + (w,u)− 1

2 (wC,w)
)
dt + (w, dB)

or equivalently, setting µ0 = ν0,

dV

V
=

m∑

i=0

wi
dSi

Si
=

(
µ0[1− (w,1)] + (w,u)

)
dt + (w, dB)

where B = (B1, · · · , Bm). When u and C are constants, its solution is given by

V (T ) = V (0) exp
(
{ν0[1− (w,1)] + (w,u)− 1

2 (wC,w)}t + (w,B)
)
.

It has the property that

1
t
E

(
ln

V (t)
V (0)

)
= ν := ν0[1− (w,1)] + (w,u)− 1

2 (uC,w),

1
t
Var

(
ln

V (t)
V (0)

)
= σ2 := (wC,w).

The log-optimal portfolio is constructed according to the maximization of expected logarithmic
utility function. The choice of the logarithmic utility is by nature. The logarithmic utility maximizes
the expected overall growth rate. As a result, when u = (µ1, · · · , µn) is a constant vector and C = (σij)
is a constant matrix, the log-optimal portfolio corresponds to a constant weight wopt trading strategy.
The weight is obtained by solving the system

n∑

j=1

σijwj,opt = µi − µ0 ∀i = 1, · · · , m.

Denote by Vopt the value of the log-optimal portfolio. For each asset ai we can define their correlation
coefficient σi,opt by

σi,opt = Cov
(dVopt

Vopt
, ,

dSi

Si

)/
dt .

Also, we can define

βi,opt =
σi,opt

σ2
opt

as the best linear predicator in linear regression of Si by Vopt.
Under these settings, we have the following.

4If u = (µ1, · · · , µn) and C = (σij)m×m are functions of t and the spot price s, then w = w(s, t) : Rm× [0,∞) → Rm.
This corresponds to the following trading strategy: At time t, find out the stock price s = St and rebalance the portfolio
according to the weight w(s, t). The function w(s, t) is calculated at time t = 0, based on the geometric motion assumptions.
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Theorem 4.7 (Log-Optimal Pricing Formula (LOPF)) With µ0 = ν0, there holds

µopt − µ0 = σ2
opt, µi − µ0 = σi,opt = βi,optσ

2
opt = βi,opt(µopt − µ0),

νopt = µopt − 1
2σ2

opt, νi − ν0 = σi,opt − 1
2σ2

i = βi,optσ
2
opt − 1

2σ2
i .

Proof. The result follows from the equation for log-optimal portfolio:

µi − µ0 =
m∑

j=1

σijwj .

By definition,

σi,opt = Cov
(dVopt

V
,
dSi

Si

)/
dt

=
m∑

i=1

wjCov(dBj , dBi)
/

dt =
m∑

j=1

wjσij = µi − µ0.

Apply this to the optimal portfolio we also have µopt − ν0 = σopt,opt = σ2
opt. The rest equations are

derived by playing around these identities. This completes the proof.

We make a few remarks.

(1) Many indexes such as The Dow Jones Industrial Average can be indeed served as the log-optimal
portfolios since they are computed according to the very idea of constant weights rebalancing strategy
and the capitalization weight. Hence, we at least have a very reliable reference to look for representatives
of log-optimal portfolios.

(2) According to these formulas, the covariance σi,opt of the asset ai with the log-optimal portfolio
completely determines the instantaneous expected return rate µi via µi = µ0 + σi,opt(µopt − µ0).

Typically the overall growth rate νi is of primary concern in dynamic portfolio management. The
pricing formula shows that νi = ν0 + βi,optσ

2
opt − 1

2σ2
i . The second term βi,optσ

2
opt is parallel to the

CAMP model. However, for large volatility the last term − 1
2σ2

i comes to the play and decreases ν.
(3) If we speculate that volatility σ of an asset in the system is proposition to its beta value, i.e.

σ = β
√

2κ. Then we see a quadratic relation between the beta value and its overall growth rate ν via

ν = ν0 + σoptβ − κβ2. (4.6)

Thus is a parabola open downwards; in particular the overall growth rate ν has a ceiling. This is
completely different from the capital market line where return rate has no ceiling as long as risks are
large enough.

(4) If we were to look at a family of many real stocks, we would not expect the corresponding (ν, β)
pair to fall on a single parabola described by (4.6). However, according to the theory discussed, we would
expect a scatter diagram of all stocks to fall roughly along such a parabolic curve. Indeed a famous
comprehensive study by Fama and French [9] for market returns for decades of data seem to confirm
such a statement. This study has been used to argue that the traditional relation predicated by CAMP
does not hold, since the return is clearly not linear in β.
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(5) Finally, we emphasize that LOPF is independent of how investors behave. It is a mathematical
identity. All that matters is whether stock prices really are lognormal (log is normal or geometric
Brownian motion) precess as assumed by the model. Since returns are indeed close to being lognormal
the log-optimal pricing model must closely hold as well.

2. LOPF and Black-Scholes Equation

The log-optimal pricing can be applied to derivative securities, and the resulting formula is precisely
the Black–Scholes equation. Hence we obtain a new interpretation of the important Black–Scholes result
and see power of the LOPF. The lop-optimal pricing equation is more general than the Black–Scholes
equation since log-optimal pricing applies more generally—not just to derivative assets.

Now we use the LOPF to derive the Black–Scholes equation. For this, it is assumed that there is
an underlying system consisting of a risk-free asset a0 with interest rate ν0 = µ0 and a risky asset a1

whose price is governed by the geometric Brownian motion process

dS = µ S dt + σ S dBt

where Bt is the standard Wiener process. Let F (S, t) be the price of an asset a2 that is a derivative of
the underlying asset a0 and a1.

First of all, by Ito’s lemma, the value F of the derivative security a2 satisfied the geometric motion

dF

F
=

1
F

(∂F

∂t
+ µS

∂F

∂S
+

1
2S2

∂F 2

∂S2

)
dt +

σS

F

∂F

∂S
dBt.

Thus this asset a2 has instantaneous return rate

µ2 :=
1
F

(∂F

∂t
+ µS

∂F

∂S
+

1
2S2

∂F 2

∂S2

)
.

Now consider the system consists of three assets: a0, a1, a2, and the corresponding log-optimal
portfolio aopt. Since a2 is a derivative of a0 and a1, it cannot enhance the return of aopt. Hence, the
log-optimal portfolio is a combination of the asset a0 and a1 with weight calculated in Example 4.6.
Specifically, the weight is w = (µ− µ0)/σ2. That is

dVopt

Vopt
= [1− w]µ0dt + w

dS

S
=

{
[1− w]µ0 + wµ

}
dt +

µ− µ0

σ
dBt.

It then follows that

σ2,opt = Cov
(dF

F
,
dVopt

Vopt

)/
dt =

(µ− µ0)S
F

∂F

∂S
.

Hence, by the pricing formula, µ2 − µ0 = σ2,opt we obtain

1
F

(∂F

∂t
+ µS

∂F

∂S
+

1
2S2

∂F 2

∂S2

)
− µ0 =

(µ− µ0)S
F

∂F

∂S
.

After simplification, we then obtain the Black-Scholes equation

∂F

∂t
+ µ0S

∂F

∂S
+

σ2S2

2
∂2F

∂S2
= µ0F.

We now have three different interpretations of the famous Black-Scholes equation. The first is a no-
arbitrage interpretation, based on the observation that a combination of two risky assets can reproduce
a risk-free asset and its rate of return must be identical to the risk-free asset. The second is a backward
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solution process of the risk-neutral pricing formula. The third is that the Black–Scholes equation is a
special case of the log-optimal pricing formula.

The power of the log-optimal pricing formula (LOPF) is made clear by the fact that the Block-
Scholes equation can be directly derived from LOPF. However, the LOPF is not limited to the the
pricing of derivatives—it is a general result.

Exercise 4.21. Calculate the betas and σi,opt for three stock problem in Exercise 4.19.

Exercise 4.22. We know the growth rate ν and volatility σ of a dynamic portfolio with fixed weight w is
given by

ν(w) := (w,u)− 1
2σ2(w), σ(w) =

√
(wC,w).

Mimic the mean-variance single period portfolio theory, perform the following:

1. Describe on the ν-σ plane the feasible region defined by

D := {(σ(w), ν(w)) | w ∈ Rm, (w,1) = 1}

2. Find the minimum log-variance

σ2
∗ = min

(w,1)=1
σ2(w).

3. Find the efficient frontier

νmax(s) := max
σ(w)=s

ν(w) ∀s ≥ σ∗.

4. Prove the Two Fund Theorem:

Any point on the efficient frontier can be achieved as a mixture of any two points on that frontier.

In addition, the minimum-log-variance portfolio and the log-optimal portfolio can be used.

5. Now assume that a risk-free asset is included so that

ν(w) = [1− (w,1)]ν0 + (u,w)− 1
2σ2(w), σ(w) =

√
(wC,w).

Performing the same analysis as above show the following One Fund Theorem:

Any efficient portfolio can be achieved by a mixture of risk-free and log-optimal portfolio.

Also show that the Markowitz portfolio lies strictly inside the feasible region.

Exercise 4.23. A stock price is governed by dS = µS dt + σ S dBt where Bt is the standard Wiener
process. Risk-free interest rate is µ0. Consider the utility U(x) = xα (0 < α < 1). Let w, a constant, be
the proposition of wealth invested in stock in an constantly rebalanced portfolio. Show that

E
(
U(V (t))

)
= U(V (0)) exp

(
[µ0 + w(µ− µ0) + 1

2 (α− 1)w2σ2]αt
)
.

An invertor, using U(x) = xα as her utility function, wants to construct a constantly rebalanced
portfolio of these assets (stock and risk-free bond) that maximizes the expected value of her power utility
at all time t > 0. Show that the proportion w of wealth invested in the stock is a constant given by

w =
µ− µ0

(1− α)σ2
.
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