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Abstract. We investigate the mathematical properties of a model for the simulation of large
eddies in turbulent, electrically conducting, viscous, incompressible flows. We prove existence and
uniqueness of solutions for the simplest (zeroth) closed MHD model (1.7), we show that its solutions
converge to the solution of the MHD equations as the averaging radii converge to zero, and derive
a bound on the modeling error. Furthermore, we show that the model preserves the properties of
the 3D MHD equations: the kinetic energy and the magnetic helicity are conserved, while the cross
helicity is approximately conserved and converges to the cross helicity of the MHD equations, and
the model is proven to preserve the Alfvén waves, with the velocity converging to that of the MHD,
as δ1, δ2 tend to zero. We perform computational tests that verify the accuracy of the method and
compare the conserved quantities of the model to those of the averaged MHD.
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1. Introduction. Magnetically conducting fluids arise in important applications
including plasma physics, geophysics and astronomy. In many of these, turbulent
MHD (magnetohydrodynamics [2]) flows are typical. The difficulties of accurately
modeling and simulating turbulent flows are magnified many times over in the MHD
case. They are evinced by the more complex dynamics of the flow due to the coupling
of Navier-Stokes and Maxwell equations via the Lorenz force and Ohm’s law.

The flow of an electrically conducting fluid is affected by Lorentz forces, induced
by the interaction of electric currents and magnetic fields in the fluid. The Lorentz
forces can be used to control the flow and to attain specific engineering design goals
such as flow stabilization, suppression or delay of flow separation, reduction of near-
wall turbulence and skin friction, drag reduction and thrust generation. There is a
large body of literature dedicated to both experimental and theoretical investigations
on the influence of electromagnetic force on flows (see e.g., [23, 35, 36, 22, 52, 16,
53, 24, 46, 8]). The MHD equations are related to engineering problems such as
plasma confinement, controlled thermonuclear fusion, liquid-metal cooling of nuclear
reactors, electromagnetic casting of metals, MHD sea water propulsion. The MHD
effects arising from the macroscopic interaction of liquid metals with applied currents
and magnetic fields are exploited in metallurgical processes to control the flow of
metallic melts: the electromagnetic stirring of molten metals [37], electromagnetic
turbulence control in induction furnaces [54], electromagnetic damping of buoyancy-
driven flow during solidification [41], and the electromagnetic shaping of ingots in
continuous casting [43].

The turbulent flow of an electrically and magnetic conducting fluid and is more
complex than the turbulent flow of a nonconducting fluid and has more parameter
regimes. The invariants of 3D MHD are the total energy (velocity and magnetic field),
the magnetic and cross helicity (see [14, 28]). Although the kinetic helicity is a rugged
invariant for 3D Euler flows, it is not one for MHD systems, but still an important
quantity (see [39]). The magnetic helicity is not conserved when a mean magnetic field
is present, see e.g. [34, 47, 48, 7, 38]. Note that a strong alignment of the vorticity
with the Lorentz force or the velocity and the curl of the Lorentz force is likely to
produce a sizabile change in u ·(∇×u). Also, a flow that is instantaneously nonhelical
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and/or irrotational will not remain so if ∇× (j×B) has a non-zero projection on the
velocity.

The mathematical description of the problem proceeds as follows. Assuming the
fluid to be viscous and incompressible, the governing equations are the Navier-Stokes
and pre-Maxwell equations, coupled via the Lorentz force and Ohm’s law (see e.g.
[45]). Let Ω = (0, L)3 be the flow domain, and u(t, x), p(t, x), B(t, x) be the velocity,
pressure, and the magnetic field of the flow, drived by the velocity body force f and
magnetic field force curl g. Then u, p,B satisfy the MHD equations:

ut +∇ · (uuT )− 1
Re

∆u+
S

2
∇(B2)− S∇ · (BBT ) +∇p = f,

Bt +
1

Rem
curl(curlB) + curl (B × u) = curl g,

∇ · u = 0,∇ ·B = 0,

(1.1)

in Q = (0, T )× Ω, with the initial data:

u(0, x) = u0(x), B(0, x) = B0(x) in Ω, (1.2)

and with periodic boundary conditions (with zero mean):

Φ(t, x+ Lei) = Φ(t, x), i = 1, 2, 3,
∫

Ω

Φ(t, x)dx = 0, (1.3)

for Φ = u, u0, p, B,B0, f, g.
Here Re, Rem, and S are nondimensional constants that characterize the flow:

the Reynolds number, the magnetic Reynolds number and the coupling number, re-
spectively. For derivation of (1.1), physical interpretation and mathematical analysis,
see [12, 10, 26, 44, 21] and the references therein.

If aδ1 , aδ2 denote two local, spacing averaging operators that commute with the
differentiation, then averaging (1.1) gives the following non-closed equations for uδ1 ,
B
δ2
, pδ1 in (0, T )× Ω:

uδ1t +∇ · (uuT
δ1

)− 1
Re

∆uδ1 − S∇ · (BBT
δ1

) +∇
(S

2
B2

δ1 + pδ1
)

= f
δ1
,

B
δ2
t +

1
Rem

curl(curlB
δ2) +∇ · (BuT

δ2
)−∇ · (uBT

δ2
) = curl gδ2 ,

∇ · uδ2 = 0, ∇ ·Bδ2 = 0.

(1.4)

The usual closure problem which we study here arises because uuT
δ1 6= uδ1 uδ1 ,

BBT
δ1 6= B

δ1
B
δ1 , uBT

δ2 6= uδ1 BT
δ2

. To isolate the turbulence closure problem
from the difficult problem of wall laws for near wall turbulence, we study (1.1) hence

(1.4) subject to (1.3). The closure problem is to replace the tensors uuT
δ1

, BBT
δ1

,

uBT
δ2

with tensors T (uδ1 , uδ1), T (B
δ2
, B

δ2), T (uδ1 , B
δ2), respectively, depending

only on uδ1 , B
δ2 and not u,B. There are many closure models proposed in large

eddy simulation reflecting the centrality of closure in turbulence simulation. Calling
w, q,W the resulting approximations to uδ1 , pδ1 , B

δ2 , we are led to considering the
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following model

wt +∇ ·T (w,w)− 1
Re

∆w − ST (W,W ) +∇q = f
δ1

Wt +
1

Rem
curl(curlW ) +∇ ·T (w,W )−∇ ·T (W,w) = curl gδ2 ,

∇ · w = 0, ∇ ·W = 0.

(1.5)

With any reasonable averaging operator, the true averages uδ1 , B
δ2
, pδ1 are smoother

than u,B, p. We consider the simplest, accurate closure model that is exact on con-
stant flows (i.e., uδ1 = u,B

δ2 = B) is

uuT
δ1 ≈ uδ1 uT

δ1
δ1

=: T (uδ1 , uδ1),

BBT
δ1 ≈ Bδ2 BT

δ2
δ1

=: T (B
δ2
, B

δ2), (1.6)

uBT
δ2 ≈ uδ1 BT

δ2
δ2

=: T (uδ1 , B
δ2),

leading to

wt +∇ · (wwT
δ1

)− 1
Re

∆w − S∇ · (W WT
δ1

) +∇q = f
δ1
, (1.7a)

WT +
1

Rem
curl(curlW ) +∇ · (WwT

δ2
)−∇ · (wWT

δ2
) = curl gδ2 , (1.7b)

∇ · w = 0, ∇ ·W = 0, (1.7c)

subject to w(x, 0) = uδ10 (x),W (x, 0) = B
δ2
0 (x) and periodic boundary conditions (with

zero means).
The first to introduce a regularization of the 3D Navier-Stokes equations was

Leray [29], who proved that its solution converge to the weak solution of the 3D
NSE. Recently such analysis was done for numerous regularizations in [27]. For the
MHD turbulence, Linshiz and Titi [32] studied the NS-α regularization of the mo-
mentum equation, with no averaging of the other MHD system’s couple equations.
The Lagrangian-averaged magnetohydrodynamics-α model proposed in [19] is also
conserving the Alfvén waves.

In this report we show that the LES MHD model (1.7) has the mathematical
properties (conservation of kinetic energy, magnetic helicity, approximate conservation
of the cross helicity, preservation of Alfvén waves) expected of a model derived from
the MHD equations by an averaging operation.

The model considered can be developed for quite general averaging operators, see
e.g. [1, 42, 25, 9, 30, 31]. The choice of averaging operator in (1.7) is a differential
filter due to Germano [17]. Let the δ > 0 denote the averaging radius, related to the
finest computationally feasible mesh. (We use different lengthscales for the Navier-
Stokes and Maxwell equations, see e.g. [40] for the treatment of large eddy simulation
of stratified flows). Given φ ∈ L2

0(Ω), φ
δ ∈ H2(Ω) ∩ L2

0(Ω) is the unique solution of

Aδφ
δ

:= −δ2∆φ
δ

+ φ
δ

= φ in Ω, (1.8)

subject to periodic boundary conditions. Under periodic boundary conditions, this
averaging operator commutes with differentiation, and with this averaging operator,
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the model (1.6) has consistency O(δ2), i.e.,

uuT
δ1

= uδ1 uT
δ1

+O(δ12),

BBT
δ1

= B
δ2
BT

δ2
δ1

+O(δ22),

uBT
δ2

= uδ1 BT
δ2
δ2

+O(δ12 + δ2
2),

for smooth u,B. We prove that the model (1.7) has a unique, weak solution w,W
that converges in the appropriate sense w → u, W → B, as δ1, δ2 → 0.

In Section 2 we address the question of global existence and uniqueness of the
solution for the closed MHD model. Section 2.3 treats the limit consistency of the
model and verifiability. The conservation of the kinetic energy and helicity for the
approximate deconvolution model is presented in Section 3. Section 4 shows that
the model preserves the Alfén waves, with the velocity tending to the velocity of
Alfvén waves in the MHD, as the radii δ1, δ2 tend to zero. Finally, Section 5 presents
the computational results: we apply the LES-MHD model to the two-dimensional
Chorin’s problem and verify the predicted accuracy of the model. We also compare
the conserved quantities: plot the energy of the model vs. the energy of the averaged
MHD.

2. Well-posedness of the LES-MHD model.

2.1. Notations and preliminaries. We shall use the standard notations for
function spaces in the space periodic case (see [51]). Let Hm

p (Ω) denote the space of
functions (and their vector valued counterparts also) that are locally in Hm(R3), are
periodic of period L and have zero mean, i.e. satisfy (1.3). We recall the solenoidal
space D(Ω) = {φ ∈ C∞(Ω) : φ periodic with zero mean,∇ · φ = 0}, and the closures
of D(Ω) in the usual L2(Ω) and H1(Ω) norms:

H = {φ ∈ H0
2 (Ω),∇ · φ = 0 in D(Ω)′}2, V = {φ ∈ H1

2 (Ω),∇ · φ = 0 in D(Ω)′}2.

Definition 2.1. Let (u0
δ1 , B0

δ2) ∈ H, f
δ1
, curl gδ2 ∈ L2(0, T ;V ′). The mea-

surable functions w,W : [0, T ] × Ω → R3 are the weak solutions of (1.7) if w,W ∈
L2(0, T ;V ) ∩ L∞(0, T ;H), and w,W satisfy∫

Ω

w(t)φdx+
∫ t

0

∫
Ω

1
Re
∇w(τ)∇φ+ w(τ) · ∇w(τ)

δ1
φ− SW (τ) · ∇W (τ)

δ1
φdxdτ

=
∫

Ω

u0
δ1φdx+

∫ t

0

∫
Ω

f(τ)
δ1
φdxdτ, (2.1)∫

Ω

W (t)ψdx+
∫ t

0

∫
Ω

1
Rem

∇W (τ)∇ψ + w(τ) · ∇W (τ)
δ2
ψ −W (τ) · ∇w(τ)

δ2
ψ dxdτ

=
∫

Ω

B0
δ2
ψdx+

∫ t

0

∫
Ω

curl g(τ)
δ2
ψ dxdτ,

∀t ∈ [0, T ), φ, ψ ∈ D(Ω).
Also, it is easy to show that for any u, v ∈ H1(Ω) with ∇ · u = ∇ · v = 0, the

following identity holds

∇× (u× v) = v · ∇u− u · ∇v. (2.2)

4



2.2. Existence and uniqueness of a solution. The first result states that the
weak solution of the MHD LES model (1.7) exists globally in time, for large data and
general Re,Rem > 0 and that it satisfies an energy equality while initial data and the
source terms are smooth enough.

Theorem 2.2. Let δ1, δ2 > 0 be fixed. For any (u0
δ1 , B0

δ2) ∈ V and (f
δ1
, curl gδ2)

∈ L2(0, T ;H), there exists a unique weak solution w,W to (1.7). The weak solu-
tion also belongs to L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) and wt,Wt ∈ L2((0, T )× Ω).
Moreover, the following energy equality holds for t ∈ [0, T ]:

E (t) +
∫ t

0

ε(τ)dτ = E (0) +
∫ t

0

P(τ)dτ, (2.3)

where

E (t)=
δ1

2

2
‖∇w(t, ·)‖20 +

1
2
‖w(t, ·)‖20 +

δ2
2S

2
‖∇W (t, ·)‖20 +

S

2
‖W (t, ·)‖20,

ε(t)=
δ1

2

Re
‖∆w(t, ·)‖20+

1
Re
‖∇w(t, ·)‖20+

δ2
2S

Rem
‖∆W (t, ·)‖20+

S

Rem
‖∇W (t, ·)‖20, (2.4)

P(t)=(f(t), w(t)) + S(curl g(t),W (t)).

The proof, using the semigroup approach proposed in [6] for the Navier-Stokes equa-
tions, is given in the Appendix, along with a regularity result.

Remark 2.1. The pressure is recovered from the weak solution via the classical
DeRham theorem (see [29]).

2.3. Accuracy of the model. We address now the question of consistency, i.e.,
we show that when δ1, δ2 go to zero, the solution of the closed model (1.7) converges
to a weak solution of the MHD equations (1.1).

Theorem 2.3. For any two sequences δn1 , δ
n
2 → 0 as n → ∞, the corresponding

solution of (1.7) satisfies

(wδn
1
,Wδn

2
, qδn

1
)→ (u,B, p),

where (u,B, p) ∈ L∞(0, T ;H) ∩ L2(0, t;V ) × L
4
3 (0, T ;L2(Ω)) is a weak solution of

the MHD equations (1.1). The sequences {wδn
1
}n∈N, {Wδn

2
}n∈N converge strongly to

u,B in L
4
3 (0, T ;L2(Ω)) and weakly in L2(0, T ;H1(Ω)), respectively, while {qδn

1
}n∈N

converges weakly to p in L
4
3 (0, T ;L2(Ω)).

Proof. The proof follows that of Theorem 3.1 in [27], and is an easy consequence
of Theorem 2.4 and Proposition 2.6.

Let τu, τB , τBu denote the model’s consistency errors

τu = uδ1uδ1 − uu, τB = B
δ2
B
δ2 −BB, τBu = B

δ2
uδ1 −Bu, (2.5)

where u,B is a solution of the MHD equations obtained as a limit of a subsequence of
the sequence wδ1 ,Wδ2 . We prove that ‖uδ1−w‖L∞(0,T ;L2(Q)), ‖B

δ2−W‖L∞(0,T ;L2(Q))

are bounded by ‖τu‖L2(QT ), ‖τB‖L2(QT ), ‖τBu‖L2(QT ).
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Theorem 2.4. Under the assumption (u,B) ∈ L4(0, T ;V ), the errors e = uδ1 −
w, E = B

δ2 −W satisfy

‖e(t)‖20 + S‖E(t)‖20 +
∫ t

0

(
1

Re
‖∇e(s)‖20 +

S

Rem
‖curlE(s)‖20

)
ds

≤ CΦ(t)
∫ t

0

(
Re‖τu(s) + SτB(s)‖20 + Rem‖τBu(s)− τBuT (s)‖20

)
ds,

(2.6)

where Φ(t) = exp
{

Re3
∫ t

0
‖∇u‖40ds,Rem

3
∫ t

0
‖∇u‖40ds+ RemRe2

∫ t
0
‖∇B‖40

}
.

Proof. The errors e, E satisfy the following momentum equation

et +∇ · (uδ1uδ1 − ww
δ1

)− 1
Re

∆e+ S∇ · (Bδ2Bδ2 −WW
δ1

) +∇(pδ1 − q)

= ∇ · (τ δ1u + Sτ δ1B ),

Et +
1

Rem
curl curlE +∇ · (Bδ2uδ1 −Ww

δ2

)−∇ · (uδ1Bδ2 − wW
δ2

)

= ∇ · (τ δ2Bu − τ
δ2
Bu

T ),

along with the corresponding conservation of mass equation and homogeneous bound-
ary conditions. Taking the inner product with Aδ1e, SAδ2E, respectively, we obtain
after some calculation that

d

dt

(
‖e‖20 + S‖E‖20 + δ2

1‖∇e‖20 + Sδ2
2‖curlE‖20

)
+

1
Re
‖∇e‖20 +

S

Rem
‖curl E‖20 +

δ2
1

Re
‖∆e‖20 +

δ2
2S

Rem
‖curl curlE‖20

≤
∫

Ω

(
− e · ∇uδ1e− S∇ · (EBδ2)e− S∇ · (Euδ1)E + Se · ∇Bδ2E

)
dx

+ Re‖τu + SτB‖20 + Rem‖τBu − τBuT ‖20
≤ C

(
‖∇e‖3/20 ‖e‖

1/2
0 ‖∇uδ1‖0 + 2S‖E‖1/20 ‖∇E‖

1/2
0 ‖∇B

δ2‖0‖∇e‖0

+ S‖E‖1/20 ‖∇E‖
3/2
0 ‖∇uδ1‖0

)
+ Re‖τu + SτB‖20 + Rem‖τBu − τBuT ‖20.

Using Young’s and Gronwall’s inequality we deduce

‖e(t)‖20 + S‖E(t)‖20 +
∫ t

0

(
1

Re
‖∇e(s)‖20 +

S

Rem
‖curlE(s)‖20

)
ds

≤ CΨ(t)
∫ t

0

(
Re‖τu(s) + SτB(s)‖20 + Rem‖τBu(s)− τBuT (s)‖20

)
ds,

where

Ψ(t) = exp
{

Re3

∫ t

0

‖∇uδ1‖40ds,Rem
3

∫ t

0

‖∇uδ1‖40ds+ RemRe2

∫ t

0

‖∇Bδ2‖40ds
}
.

The use of the stability bounds ‖∇uδ1‖0 ≤ ‖∇u‖0, ‖∇Bδ2‖0 ≤ ‖∇B‖0 concludes the
proof.

6



Finally we give bounds on the consistency errors (2.5) as δ1, δ2 → 0 in L1((0, T )×
Ω) and L2((0, T )× Ω).

Proposition 2.5. Assuming (f, curl g) ∈ L2(0, T ;V ′), then

‖τu‖L1(0,T ;L1(Ω)) ≤ 23/2δ1T
1/2Re1/2C (T ),

‖τB‖L1(0,T ;L1(Ω)) ≤ 23/2δ2T
1/2 Rem

1/2

S
C (T ), (2.7)

‖τBu‖L1(0,T ;L1(Ω)) ≤ 21/2T 1/2 1
S

(δ1Re1/2 + δ2Rem
1/2)C (T ),

where

C (T ) =
(
‖u0‖20 + S‖B0‖20 + Re‖f‖2L2(0,T ;H−1(Ω)) +

Rem

S
‖curl g‖2L2(0,T ;H−1(Ω))

)
.

Proof. Using the stability bounds we have

‖τu‖L1(0,T ;L1(Ω)) ≤ ‖u+ uδ1‖L2(0,T ;L2(Ω))‖uδ1 − u‖L2(0,T ;L2(Ω))

≤ 2‖u‖L2(0,T ;L2(Ω))

√
2δ1‖∇u‖L2(0,T ;L2(Ω)).

Similarly

‖τB‖L1(0,T ;L1(Ω)) ≤ ‖B +B
δ2‖L2(0,T ;L2(Ω))‖B

δ2 −B‖L2(0,T ;L2(Ω))

≤ 2‖B‖L2(0,T ;L2(Ω))

√
2δ2‖∇B‖L2(0,T ;L2(Ω)),

‖τBu‖L1(0,T ;L1(Ω)) ≤ ‖B
δ2 −B‖L2(Q)‖uδ1‖L2(Q) + ‖B‖L2(Q)‖uδ1 − u‖L2(Q)

≤
√

2δ2‖∇B‖L2(Q)‖u‖L2(Q) +
√

2δ1‖∇u‖L2(Q)‖B‖L2(Q).

The classical energy estimates for the MHD system (1.1) will yield now (2.7).

Assuming more regularity on (u,B) leads to the sharper bounds on the consistency
errors.

Remark 2.2. Let (u,B) ∈ L2(0, T ;H2(Ω)). Then

‖τu‖L1(0,T ;L1(Ω)) ≤ Cδ2
1 ,

‖τB‖L1(0,T ;L1(Ω)) ≤ Cδ2
2 ,

‖τBu‖L1(0,T ;L1(Ω)) ≤ C(δ2
1 + δ2

2),

where C = C(T,Re,Rem, ‖(u,B)‖L2(0,T ;L2(Ω)), ‖(u,B)‖L2(0,T ;H2(Ω))).
Proof. The result is obtained as in the proof of Proposition 2.5, using the bounds

‖uδ1 − u‖L2(0,T ;L2(Ω)) ≤ δ2
1‖∆u‖L2(0,T ;L2(Ω)),

‖Bδ2 −B‖L2(0,T ;L2(Ω)) ≤ δ2
2‖∆B‖L2(0,T ;L2(Ω)),

which follow from (1.8).

Next we estimate the L2-norms of the consistency errors τu, τB , τBu, which were
used in Theorem 2.4 to estimate the filtering errors e, E.

Proposition 2.6. If the solution u,B of (1.1) satisfies

(u,B) ∈ L4((0, T )× Ω) ∩ L2(0, T ;H2(Ω)),
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then the model consistency errors satisfy the following bound

‖τu‖L2(Q) ≤ Cδ1, ‖τB‖L2(Q) ≤ Cδ2, ‖τBu‖L2(Q) ≤ C(δ1 + δ2),

where C = C(‖(u,B)‖L4((0,T )×Ω), ‖(u,B)‖L2(0,T ;H2(Ω))).
Proof. As in the proof of Proposition 2.5, using the stability bounds we have

‖τu‖L2(Q) ≤ 2‖u‖L4(Q)‖uδ1 − u‖L4(Q)

≤ 23/2‖u‖L4(Q)

(∫ T

0

‖uδ1 − u‖L2(Ω)‖∇(uδ1 − u)‖3L2(Ω)dt
)1/4

≤ 23/2‖u‖L4(Q)

(∫ T

0

4δ4
1‖∇u‖L2(Ω)‖∆u‖3L2(Ω)dt

)1/4

≤ 4δ1‖u‖L4(Q)‖u‖L2(0,T ;H1(Ω))‖u‖L2(0,T ;H2(Ω)).

Similarly we deduce

‖τB‖L2(Q) ≤ 4δ2‖B‖L4(Q)‖B‖L2(0,T ;H1(Ω))‖B‖L2(0,T ;H2(Ω)),

and

‖τBu‖L2(Q) ≤ ‖u‖L4(Q)‖B
δ2 −B‖L4(Q) + ‖B‖L4(Q)‖uδ2 − u‖L4(Q)

≤ 2δ2‖u‖L4(Q)‖B‖L2(0,T ;H1(Ω))‖B‖L2(0,T ;H2(Ω))

+ 2δ1‖B‖L4(Q)‖u‖L2(0,T ;H1(Ω))‖u‖L2(0,T ;H2(Ω)).

As in Remark 2.2, assuming extra regularity on (u,B) leads to the sharper bounds.
Remark 2.3. Let

(u,B) ∈ L4((0, T )× Ω) ∩ L4(0, T ;H2(Ω)).

Then

‖τu‖L2(Q) ≤ Cδ2
1 , ‖τB‖L2(Q) ≤ Cδ2

2 , ‖τBu‖L2(Q) ≤ C(δ2
1 + δ2

2),

where C = C(‖(u,B)‖L4((0,T )×Ω), ‖(u,B)‖L4(0,T ;H2(Ω))).

3. Conservation laws. It is well known that kinetic energy and helicity are
critical in the organization of the flow. We prove now that the model (1.7) inherits
some of the original properties of the 3D MHD equations (1.1), namely it conserves
the kinetic energy, magnetic helicity and approximates the cross helicity.

The energy E = 1
2

∫
Ω

(u(x) · u(x) + SB(x) · B(x))dx, the cross helicity HC =
1
2

∫
Ω

(u(x) · B(x))dx and the magnetic helicity HM = 1
2

∫
Ω

(A(x) · B(x))dx (where A
is the vector potential, B = ∇ × A) are the three invariants of the MHD equations
(1.1) (see e.g., [14]) in the absence of kinematic viscosity and magnetic diffusivity
( 1

Re = 1
Rem

= 0). Let introduce the characteristic quantities of the model

ELES =
1
2

[(Aδ1w,w) + S(Aδ2W,W )],

HC,LES =
1
2

(Aδ1w,Aδ2W ),

HM,LES =
1
2

(Aδ2W,A
δ2), where Aδ2 = A−1

δ2
A.
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This section is devoted to proving that these quantities are conserved by (1.7) with
the periodic boundary conditions and 1

Re = 1
Rem

= 0. Also, note that

ELES → E, HC,LES → HC , HM,LES → HM , as δ1,2 → 0.

Theorem 3.1. The following conservation laws hold, ∀T > 0

ELES(T ) = ELES(0), (3.1a)

HC,LES(T ) = HC,LES(0) + C(T ) max
i=1,2

δ2
i , (3.1b)

HM,LES(T ) = HM,LES(0). (3.1c)

Proof. Consider (1.7) with 1
Re = 1

Rem
= 0. Multiplying (1.7a), (1.7b) by Aδ1w

and SAδ2W , respectively, and using the identity

((∇× v)× u,w) = (u · ∇v, w)− (w · ∇v, u). (3.2)

we obtain
1
2
d

dt
[(Aδ1w,w) + S(Aδ2W,W )] = S(W · ∇W,w)− S(w · ∇W,W ) + S(W · ∇w,W ),

which by (1.7c) yields (3.1a):

1
2
d

dt
[(Aδ1w,w) + S(Aδ2W,W )] = 0. (3.3)

To prove (3.1b), multiply (1.7a), (1.7b) by Aδ1W and Aδ2w, respectively, and use
the identity (u · ∇v, w) = −(u · ∇w, v) to get

(
∂Aδ1w

∂t
,W ) + (

∂Aδ2W

∂t
,w) = 0. (3.4)

Recall that from (1.8) we have

w = Aδ1w + δ2
1∆w, W = Aδ2W + δ2

2∆W. (3.5)

Then (3.4) gives

(
∂Aδ1w

∂t
,Aδ2W ) + (

∂Aδ2W

∂t
,Aδ1w) = (

∂Aδ1w

∂t
, δ2

2∆W ) + (
∂Aδ2W

∂t
, δ2

1∆w). (3.6)

Hence,

d

dt
(Aδ1w,Aδ2W ) = δ2

2(
∂Aδ1w

∂t
,∆W ) + δ2

1(
∂Aδ2W

∂t
,∆w), (3.7)

which proves (3.1b).
Next, we multiply (1.7b) by Aδ2Aδ2 , and integrating over Ω

1
2
d

dt
(∇×Aδ2Aδ2 ,Aδ2) + (w · ∇W,Aδ2)− (W · ∇w,Aδ2) = 0. (3.8)

Since the cross-product of two vectors is orthogonal to each of them,

((∇× Aδ2)× w,∇× Aδ2) = 0,

it follows from (3.9) and (3.2) that

(w · ∇Aδ2 ,∇× Aδ2) = ((∇× Aδ2) · ∇Aδ2 , w). (3.9)

Since W = ∇× Aδ2 , we obtain from (3.8) and (3.9) that (3.1c) holds.
9



4. Alfvén waves. In this section we prove that our model possesses a very
important property of the MHD, namely the ability of the magnetic field to transmit
transverse inertial waves - Alfvén waves. We follow the argument typically used to
prove the existence of Alfvén waves in MHD, see, e.g., [13].

Using the density ρ and permeability µ, we write the equations of the model (1.7)
in the form

wt +∇ · (wwT
δ1

) +∇pδ1 =
1
ρµ

(∇×W )×W
δ1 − ν∇× (∇× w), (4.1a)

∂W

∂t
= ∇× (w ×W )

δ2 − η∇× (∇×W ), (4.1b)

∇ · w = 0, ∇ ·W = 0, (4.1c)

where ν = 1
Re , η = 1

Rem
.

Assume a uniform, steady magnetic field W0, perturbed by a small velocity field
w. We denote the perturbations in current density and magnetic field by jmodel and
Wp, with

∇×Wp = µjmodel. (4.2)

Also, the vorticity of the model is

ωmodel = ∇× w. (4.3)

Since w · ∇w is quadratic in the small quantity w, it can be neglected in the
Navier-Stokes equation (4.1a), and therefore

∂w

∂t
+∇pδ1 =

1
ρµ

(∇×Wp)×W0
δ1 − ν∇× (∇× w). (4.4)

The leading order terms in the induction equation (4.1b) are

∂Wp

∂t
= ∇× (w ×W0)

δ2 − η∇× (∇×Wp). (4.5)

Using (4.2), we rewrite (4.4) as

∂w

∂t
+∇pδ1 =

1
ρ
jmodel ×W0

δ1 + ν∆w. (4.6)

Taking the curl of (4.6), using the identity (2.2) and ∇W0 = 0, we obtain from (4.3)
that

∂ωmodel
∂t

=
1
ρ
W0 · ∇jmodel

δ1 + ν∆ωmodel. (4.7)

Similarly, taking curl of (4.5) and using (4.2),(4.3) yields

µ
∂jmodel
∂t

= W0 · ∇ωmodel
δ2 + ηµ∆jmodel. (4.8)

We now eliminate jmodel from (4.7) by taking the time derivative of (4.7) and substi-
tuting for ∂jmodel

∂t using (4.8). This yields

∂2ωmodel
∂t2

=
1
ρ
W0 · ∇

( 1
µ
W0 · ∇ωmodel

δ2 + η∆jmodel
)δ1

+ ν∆
∂ωmodel
∂t

. (4.9)
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The linearity of A−1
δ1

implies

∂2ωmodel
∂t2

=
1
ρµ
W0 · ∇(W0 · ∇ωmodel

δ2)
δ1

+
η

ρ
W0 · ∇(∆jmodel)

δ1+ ν∆
∂ωmodel
∂t

. (4.10)

To eliminate the term containing ∆jmodel from (4.10), we take the Laplacian of (4.7):

∆
∂ωmodel
∂t

=
1
ρ
W0 · ∇(∆jmodel)

δ1 + ν∆2ωmodel. (4.11)

Then from (4.10)-(4.11) we obatin

∂2ωmodel
∂t2

=
1
ρµ
W0 · ∇(W0 · ∇ωmodel

δ2)
δ1

+ (η + ν)∆
∂ωmodel
∂t

− ην∆2ωmodel. (4.12)

Next we look for plane-wave solutions of the form

ωmodel ∼ ω0e
i(k·x−θt), (4.13)

where k is the wavenumber. It follows from (4.13) that

∂ωmodel
∂t

= −iθωmodel,
∂2ωmodel
∂t2

= −θ2ωmodel,

∆
∂ωmodel
∂t

= iθk2ωmodel, ∆2(ωmodel) = k4ωmodel.

The substitution of (4.13) into the wave equation (4.12) gives

−θ2ωmodel =
1
ρµ
W0 · ∇(W0 · ∇ωmodel

δ2)
δ1

+ (η + ν)iθk2ωmodel− ηνk4ωmodel. (4.14)

Note that by (1.8) we have

W0 · ∇ωmodel
δ2 = W0 · ∇ωmodel +O(δ2

2),

W0 · ∇(W0 · ∇ωmodel
δ2)

δ1

= (W0 · ∇)2ωmodel +O(δ2
1) +O(δ2

2),

therefore

−θ2ωmodel =
1
ρµ

(W0 · ∇)2ωmodel + (η + ν)iθk2ωmodel (4.15)

− ηνk4ωmodel +O(δ2
1 + δ2

2).

It follows from (4.13) that

(W0 · ∇)2ωmodel = −W 2
0 k

2
||ωmodel, (4.16)

where k|| is the component of k parallel to W0, which by (4.15) implies

−θ2 = −
W 2

0 k
2
||

ρµ
+ (η + ν)iθk2 − ηνk4 +O(δ2

1 + δ2
2).

Solving this quadratic equation for θ gives the dispersion relationship

θ = − (η + ν)k2

2
i±
(√W 2

0 k
2
||

ρµ
− (ν − η)2k4

4
+O(δ2

1 + δ2
2)
)
.
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Hence, for a perfect fluid (ν = η = 0) we obtain

θ = ±ṽak||,
ṽa = va +O(δ2

1 + δ2
2),

where va is the Alfvén velocity W0/
√
ρµ.

When ν = 0 and η is small (i.e. for high Rem) we have

θ = ±ṽak|| −
ηk2

2
i,

which represents a transverse wave with a group velocity equal to ±va +O(δ2
1 + δ2

2).
In conclusion, model (1.7) preserves the Alfvén waves and the group velocity of

the waves ṽa tends to the true Alfvén velocity va as the radii tend to zero.

5. Computational results. In this section we present computational results
for the LES-MHD model. We look at the two-dimensional Chorin’s model (circular
motion in a square) of electrically conducting fluid with the magnetic field directed
along the diagonal and increasing in time. We compare the solution obtained by
the LES-MHD model to the average of the known true solution. The convergence
rates are presented; we also compare the energy of the model to the energy of the
averaged MHD. We take the filtering widths δ1 = δ2 = h to verify the acclaimed
second order accuracy of the model; this is also a typical choice of filtering widths in
real life applications.

Consider the MHD flow in Ω = (0.5, 1.5)× (0.5, 1.5). The Reynolds number and
magnetic Reynolds number are Re = 105, Rem = 105, the final time is T = 1/4, and
the averaging radii are δ1 = δ2 = h.

Take

f =

(
1
2π sin(2πx)e−4π2t/Re − xe2t

1
2π sin(2πy)e−4π2t/Re − ye2t

)
,

∇×g=

(
et(x−(cosπx sinπy+πx sinπx sinπy+πy cosπx cosπy)e−2π2t/Re)
et(−y−(sinπx cosπy+πx cosπx cosπy+πy sinπx sinπy)e−2π2t/Re)

)
.

The solution to this problem is

u =

(
− cos(πx) sin(πy)e−2π2t/Re

sin(πx) cos(πy)e−2π2t/Re

)
,

p = −1
2

(cos(2πx) + cos(2πy))e−4π2t/Re,

B =
(
xe
−ye

)
.

Hence, although the theoretical results were obtained only for the periodic bound-
ary conditions, we apply the LES-MHD model to the problem with Dirichlet boundary
conditions.

The results presented were obtained by using the software FreeFEM + +. The
velocity and magnetic field are sought in the finite element space of piecewise quadratic
polynomials, and the pressure in the space of piecewise linears. In order to draw
conclusions about the convergence rate, we take the time step ∆t = h2. We compare
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Table 5.1
Approximating the average solution, Re = 105, Rem = 105.

h ‖w − ū‖L2(0,T ;L2(Ω)) rate ‖W − B̄‖L2(0,T ;L2(Ω)) rate
1/4 0.0247837 0.0253257
1/8 0.0245241 0.0152 0.0268628 -0.085
1/16 0.0131042 0.9042 0.0132399 1.0207
1/32 0.00434599 1.5923 0.00412013 1.6841
1/64 0.00120907 1.8458 0.001116 1.8844

the solutions (w,W ), obtained by the model, to the average of the true solution
(ū, B̄). The second order accuracy in approximating the the averaged solution (ū, B̄)
is expected, according to the Theorem 2.4 and Remark 2.3.

Hence, the computational results verify the claimed accuracy of the model.
Since the flow is not ideal (nonzero power input, nonzero viscosity/magnetic diffu-

sivity, non-periodic boundary conditions), the energy is not conserved. But we expect
the energy of the model to approximate the energy of the averaged MHD.

Indeed, Figure 5.1 shows that the graph of the model’s energy is hardly distin-
guishable from that of the averaged MHD.

0 0.05 0.1 0.15 0.2 0.25
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

 

 
Energy of Averaged MHD
Energy of LES!MHD model

Fig. 5.1. LES-MHD Energy vs. averaged MHD

6. Appendix. We use the semigroup approach, based on the machinery of non-
linear differential equations of accretive type in Banach spaces.

We define the operator A ∈ L (V, V ′) by setting

〈A (w1,W1), (w2,W2)〉 =
∫

Ω

(
1

Re
∇w1 · ∇w2 +

S

Rem
curlW1curlW2

)
dx, (6.1)

for all (wi,Wi) ∈ V . The operator A is an unbounded operator on H, with the
domain D(A ) = {(w,W ) ∈ V ; (∆w,∆W ) ∈ H} and we denote again by A its
restriction to H.
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We define also a continuous tri-linear form B0 on V × V × V by setting

B0((w1,W1), (w2,W2), (w3,W3)) =
∫

Ω

(
∇ · (w2wT1

δ1
)w3 (6.2)

−S∇ · (W2WT
1

δ1
)w3 +∇ · (W2wT1

δ2
)W3 −∇ · (w2WT

1

δ2
)W3

)
dx

and a continuous bilinear operator B(·) : V → V with

〈B(w1,W1), (w2,W2)〉 = B0((w1,W1), (w1,W1), (w2,W2))

for all (wi,Wi) ∈ V .
The following properties of the trilinear form B0 hold (see [33, 44, 20, 15])

B0((w1,W1), (w2,W2), (Aδ1w2, SAδ2W2)) = 0,
B0((w1,W1), (w2,W2), (Aδ1w3, SAδ2W3))

= −B0((w1,W1), (w3,W3), (Aδ1w2, SAδ2W2)),
(6.3)

for all (wi,Wi) ∈ V . Also

|B0((w1,W1), (w2,W2), (w3,W3))| (6.4)

≤ C‖(w1,W1)‖m1‖(w2,W2)‖m2+1‖(w3
δ1 ,W3

δ2)‖m3

for all (w1,W1) ∈ Hm1(Ω), (w2,W2) ∈ Hm2+1(Ω), (w3,W3) ∈ Hm3(Ω) and

m1 +m2 +m3 ≥
d

2
, if mi 6=

d

2
for all i = 1, . . . , d,

m1 +m2 +m3 >
d

2
, if mi =

d

2
for any of i = 1, . . . , d.

In terms of V,H,A ,B(·) we can rewrite (1.7) as

d

dt
(w,W ) + A (w,W )(t) + B((w,W )(t)) = (f

δ1
, curl gδ2), t ∈ (0, T ),

(w,W )(0) = (uδ10 , B
δ2
0 ),

(6.5)

where (f , curl g) = P (f, curl g), and P : L2(Ω)→ H is the Hodge projection.

Let us define the modified nonlinearity BN (·) : V → V by setting

BN (w,W ) =

{
B(w,W ) if ‖(w,W )‖1 ≤ N,(

N
‖(w,W )‖1

)2

B(w,W ) if ‖(w,W )‖1 > N.
(6.6)

By (6.4) we have for the case of ‖(w1,W1)‖1, ‖(w2,W2)‖1 ≤ N

|〈BN (w1,W1)−BN (w2,W2), (w1 − w2,W1 −W2)〉|
= |B0((w1 − w2,W1 −W2), (w1,W1), (w1 − w2,W1 −W2)|

+ B0((w2,W2), (w1 − w2,W1 −W2), (w1 − w2,W1 −W2)|

≤ C‖(w1 − w2,W1 −W2)‖1/2‖(w1,W1)‖1‖(w1 − w2
δ1 ,W1 −W2

δ2)‖1

≤ ν

2
‖(w1 − w2,W1 −W2)‖21 + CN‖(w1 − w2,W1 −W2)‖20,
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where ν = inf{1/Re, S/Rem}.
In the case of ‖(wi,Wi)‖1 > N we have

|〈BN (w1,W1)−BN (w2,W2), (w1 − w2,W1 −W2)〉|

=
N2

‖(w1,W1)‖21
B0((w1 − w2,W1 −W2), (w1,W1), (w1 − w2,W1 −W2))

+
(

N2

‖(w1,W1)‖21
− N2

‖(w2,W2)‖21

)
B0((w2,W2), (w2,W2), (w1 − w2,W1 −W2))

≤ CN‖(w1 − w2,W1 −W2)‖3/21 ‖(w1 − w2,W1 −W2)‖1/20

+ CN‖(w1 − w2,W1 −W2)‖21
≤ ν

2
‖(w1 − w2,W1 −W2)‖21 + CN‖(w1 − w2,W1 −W2)‖20.

For the case of ‖(w1,W1)‖1 > N, ‖(w2,W2)‖1 ≤ N (similar estimates are obtained
when ‖(w1,W1)‖1 ≤ N, ‖(w2,W2)‖1 > N) we have

|〈BN (w1,W1)−BN (w2,W2), (w1 − w2,W1 −W2)〉|

=
N2

‖(w1,W1)‖21
B0((w1 − w2,W1 −W2), (w1,W1), (w1 − w2,W1 −W2))

−
(

1− N2

‖(w1,W1)‖21

)
B0((w2,W2), (w2,W2), (w1 − w2,W1 −W2))

≤ CN‖(w1 − w2,W1 −W2)‖3/21 ‖(w1 − w2,W1 −W2)‖1/20

+ CN‖(w1−w2,W1−W2)‖1‖(w1−w2,W1−W2)‖1/2
≤ ν

2
‖(w1 − w2,W1 −W2)‖21 + CN‖(w1 − w2,W1 −W2)‖20.

Combining all the cases above we conclude that

|〈BN (w1,W1)−BN (w2,W2), (w1 − w2,W1 −W2)〉| (6.7)

≤ ν

2
‖(w1 − w2,W1 −W2)‖21 + CN‖(w1 − w2,W1 −W2)‖20.

The operator BN is continuous from V to V ′. Indeed, as above we have (using (6.4)
with m1 = 1,m2 = 0,m3 = 1 )

|〈BN (w1,W1)−BN (w2,W2), (w3,W3)〉| (6.8)
≤ |B0 ((w1 − w2,W1 −W2), (w1,W1), (w3,W3))|

+ |B0 ((w2,W2), (w1 − w2,W1 −W2), (w3,W3))|
≤ CN‖(w1 − w2,W1 −W2)‖1‖(w3,W3)‖1.

Now consider the operator ΓN : D(ΓN )→ H defined by

ΓN = A + BN , D(ΓN ) = D(A ).

Here we used (6.4) with m1 = 1,m2 = 1/2,m3 = 0 and interpolation results (see e.g.
[18, 50, 15]) to show that

‖BN (w,W )‖0 ≤ C‖(w,W )‖3/21 ‖A (w,W )‖1/20 ≤ CN ‖A (w,W )‖1/20 . (6.9)
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Lemma 6.1. There exists αN > 0 such that ΓN + αNI is m-accretive (maximal
monotone) in H ×H.

Proof. By (6.7) we have that

((ΓN + λ)(w1,W1)− (ΓN + λ)(w2,W2), (w1 − w2,W1 −W2)) (6.10)

≥ ν

2
‖(w1 − w2,W1 −W2)‖21, for all (wi,Wi) ∈ D(ΓN ),

for λ ≥ CN . Next we consider the operator

FN (w,W ) = A (w,W ) + BN (w,W ) + αN (w,W ), for all (w,W ) ∈ D(FN ),

with

D(FN ) = {(w,W ) ∈ V ; A (w,W ) + BN (w,W ) ∈ H}.

By (6.8) and (6.10) we see that FN is monotone, coercive and continuous from V to
V ′. We infer that FN is maximal monotone from V to V ′ and the restriction to H is
maximal monotone on H with the domain D(FN ) ⊇ D(A ) (see e.g. [11, 4]).
Moreover, we have D(FN ) = D(A ). For this we use the perturbation theorem for
nonlinear m-accretive operators and split FN into a continuous and a ω-m-accretive
operator on H

F 1
N = (1− ε

2
)A , D(F 1

N ) = D(A ),

F 2
N =

ε

2
A + BN (·) + αNI, D(F 2

N ) = {(w,W ) ∈ V, F 2
N (w,W ) ∈ H}.

As seen above by (6.9) we have∥∥F 2
N (w,W )

∥∥
0
≤ ε

2
‖A (w,W )‖0 + ‖BN (w,W )‖0 + αN‖(w,W )‖0

≤ ε‖A (w,W )‖0 + αN‖(w,W )‖0 +
C2
N

2ε
, for all (w,W ) ∈ D(F 1

N ) = D(A ),

where 0 < ε < 1.
Since F 1

N+F 2
N = ΓN+αNI we infer that ΓN+αNI with domain D(A ) is m-accretive

in H as claimed.
Proof. [Proof of Theorem 2.2] As a consequence of Lemma 6.1 (see, e.g., [4, 5]) we

have that for (u0
δ1 , B0

δ2) ∈ D(A ) and (f
δ1
, curl gδ2) ∈W 1,1([0, T ], H) the equation

d

dt
(w,W ) + A (w,W )(t) + BN ((w,W )(t)) = (f

δ1
, curl gδ2), t ∈ (0, T ),

(w,W )(0) = (u0
δ1 , B0

δ2),
(6.11)

has a unique strong solution (wN ,WN ) ∈W 1,∞([0, T ];H) ∩ L∞(0, T ;D(A )).
By a density argument (see, e.g., [5, 33]) it can be shown that if (u0

δ1 , B0
δ2) ∈

H and (f
δ1
, curl gδ2) ∈ L2(0, T, V ′) then there exist absolute continuous functions

(wN ,WN ) : [0, T ] → V ′ that satisfy (wN ,WN ) ∈ C([0, T ];H) ∩ L2(0, T : V ) ∩
W 1,2([0, T ], V ′) and (6.11) a.e. in (0, T ), where d/dt is considered in the strong
topology of V ′.

First, we show that D(A ) is dense in H. Indeed, if (w,W ) ∈ H we set (wε,Wε) =
(I + εΓN )−1(w,W ), where I is the unity operator in H. Multiplying the equation

(wε,Wε) + εΓN (wε,Wε) = (w,W )
16



by (wε,Wε) it follows by (6.3), (6.7) that

‖(wε,Wε)‖20 + 2εν‖(wε,Wε)‖21 ≤ ‖(w,W )‖20
and by (6.6)

‖(wε − w,Wε −W )‖−1 = ε‖Γε(wε,Wε)‖−1 ≤ εN‖(wε,Wε)‖1/20 ‖(wε,Wε)‖1/21 .

Hence, {(wε,Wε)} is bounded in H and (wε,Wε)→ (w,W ) in V ′ as ε→ 0. Therefore,
(wε,Wε) ⇀ (w,W ) in H as ε→ 0, which implies that D(ΓN ) is dense in H.

Secondly, let (u0
δ1 , B0

δ2) ∈ H and (f
δ1
, curl gδ2) ∈ L2(0, T, V ′). Then there are

sequences {(u0
δ1
n , B0

δ2
n )} ⊂ D(ΓN ), {(f δ1n , curl gδ2n )} ⊂W 1,1([0, T ];H) such that

(u0
δ1
n , B0

δ2
n )→ (u0

δ1 , B0
δ2) in H,

(f
δ1
n , curl gδ2n )→ (f

δ1
, curl gδ2) in L2(0, T ;V ′),

as n→∞. Let (wnN ,W
n
N ) ∈W 1,∞([0, T ];H) be the solution to problem (6.11) where

(w,W )(0) = (u0
δ1
n , B0

δ2
n ) and (f

δ1
, curl gδ2) = (f

δ1
n , curl gδ2n ). By (6.10) we have

d

dt
‖(wnN − wmN ,Wn

N −Wm
N )‖20 +

ν

2
‖(wnN − wmN ,Wn

N −Wm
N )‖21

≤ 2CN‖(wnN − wmN ,Wn
N −Wm

N )‖20 +
2
ν
‖(f δ1n − f

δ1
m , curl(gδ2n − gδ2m))‖2−1,

for a.e. t ∈ (0, T ). By the Gronwall inequality we obtain

‖(wnN − wmN ,Wn
N −Wm

N )(t)‖20 ≤ e2CN t‖(u0
δ1
n − u0

δ1
m , B0

δ2
n −B0

δ2
m)‖20

+
2e2CN t

ν

∫ t

0

‖(f δ1n − f
δ1
m , curl(gδ2n − gδ2m))(τ)‖2−1dτ.

Hence

(wN (t),WN (t)) = lim
n→∞

(wnN (t),Wn
N (t))

exists in H uniformly in t on [0, T ]. Similarly we obtain

‖wnN (t)‖20 + ‖Wn
N (t)‖20 +

∫ t

0

(
1

Re
(‖∇wnN (s)‖20 +

S

Rem
(‖curlWn

N (s)‖20
)
ds

≤ CN
[
‖u0

δ1
n ‖20 + ‖B0

δ2
n ‖20 +

∫ t

0

(
‖f δ1n (s)‖2−1 + ‖curl gδ2n (s)‖2−1

)
ds

]
,

and ∫ T

0

∥∥∥∥ ddt (wnN ,Wn
N )(t)

∥∥∥∥2

−1

dt

≤ CN
[
‖u0

δ1
n ‖20 + ‖B0

δ2
n ‖20 +

∫ t

0

(
‖f δ1n (s)‖2−1 + ‖curl gδ2n (s)‖2−1

)
ds

]
.

Hence on a sequence we have

(wnN ,W
n
N )→ (wN ,WN ) weakly in L2(0, T ;V ),

d

dt
(wnN ,W

n
N )→ d

dt
(wN ,WN ) weakly in L2(0, T ;V ′),
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where d(wN ,WN )/dt is considered in the sense of V ′-valued distributions on (0, T ).
We proved that (wN ,WN ) ∈ C([0, T ];H) ∩ L2(0, T ;V ) ∩W 1,2([0, T ];V ′).

It remains to prove that (wN ,WN ) satisfies the equation (6.11) a.e. on (0, T ).
Let (w,W ) ∈ V be arbitrary but fixed. We multiply the equation

d

dt
(wnN ,W

n
N ) + ΓN (wnN ,W

n
N ) = (f

δ1
n , curl gδ2n ), a.e. t ∈ (0, T ),

by (wnN − w,Wn
N −W ), integrate on (s, t) and get

1
2

(
‖(wnN (t),Wn

N (t))− (w,W )‖20 − ‖(wnN (s),Wn
N (s))− (w,W )‖20

)
≤
∫ t

s

〈(f δ1n (τ), curl gδ2n (τ))− ΓN (w,W ), (wnN (τ),Wn
N (τ))− (w,W )〉dτ.

After we let n→∞ we get〈
(wN (t),WN (t))− (wN (s),WN (s))

t− s
, (wN (s),WN (s))− (w,W )

〉
(6.12)

≤ 1
t− s

∫ t

s

〈(f δ1(τ), curl gδ2(τ))− ΓN (w,W ), (wN (τ),WN (τ))− (w,W )〉dτ.

Let t0 denote a point at which (wN ,WN ) is differentiable and

(f
δ1(t0), curl gδ2(t0)) = lim

h→0

1
h

∫ t0+h

t0

(f
δ1(h), curl gδ2(h))dh.

Then by (6.12) we have〈
d(wN ,WN )

dt
(t0)− (f

δ1
, curl gδ2)(t0) + ΓN (w,W ), (wN ,WN )(t0)− (w,W )

〉
≤ 0.

Since (w,W ) is arbitrary in V and ΓN is maximal monotone in V × V ′ we conclude
that

d(wN ,WN )
dt

(t0) + ΓN (wN ,WN )(t0) = (f
δ1
, curl gδ2)(t0).

If we multiply (6.11) by (Aδ1wN , SAδ2WN ), use (6.3) and integrate in time we
obtain

1
2
(
‖wN (t)‖20 + S‖WN (t)‖20

)
+
δ1

2

2
‖∇wN (t)‖20 +

δ2
2S

2
‖curlWN (t)‖20

+
∫ t

0

(
1

Re
(‖∇wN (s)‖20 + δ1

2‖∆wN (s)‖20)

+
S

Rem
(‖curlWN (s)‖20 + δ2

2‖curl curlWN (s)‖20)
)
ds

=
1
2

(
‖u0

δ1‖20 + S‖B0
δ2‖20

)
+
δ1

2

2
‖∇u0

δ1‖20 +
δ2

2S

2
‖curlB0

δ2‖20

+
∫ t

0

(
‖fδ1(s)‖−1‖wN (s)‖1 + S‖curl gδ2(s)‖−1‖WN (s)‖1

)
ds.
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Using the Cauchy-Schwarz and Gronwall inequalities this implies

‖(wN ,WN )(t)‖1 ≤ Cδ1,δ2 for all t ∈ (0, T ),

where Cδ1,δ2 is independent of N . In particular, for N sufficiently large it follows from
(6.6) that BN = B and (wN ,WN ) = (w,W ) is a solution to (1.7).

In the following we prove the uniqueness of the weak solution. Let (w1,W1) and
(w2,W2) be two solutions of the system (6.5) and set ϕ = w1 − w2, Φ = B1 − B2.
Thus (ϕ,Φ) is a solution to the problem

d

dt
(ϕ,Φ) + A (ϕ,Φ)(t) = −B((w1,W1)(t)) + B((w2,W2)(t)), t ∈ (0, T ),

(ϕ,Φ)(0) = (0, 0).

We take (Aδ1ϕ, SAδ2Φ) as test function, integrate in space, use the incompressibility
condition (6.3) and the estimate (6.4) to get

1
2
d

dt

(
‖ϕ‖20 + δ1

2‖∇ϕ‖20 + S‖Φ‖20 + Sδ2
2‖∇Φ‖20

)
+

1
Re
(
‖∇ϕ‖20 + δ2

1‖∆ϕ‖20
)

+
S

Rem

(
‖∇Φ‖20 + δ2

2‖∆Φ‖20
)

= B0((ϕ,Φ), (w1,W1), (Aδ1ϕ, SAδ2Φ))

≤ C‖(w1,W1)‖0‖(ϕ,Φ)‖1/20 ‖(∇ϕ,∇Φ)‖3/20

≤ Cδ1,δ2‖(w1,W1)‖0
(
‖ϕ‖20 + δ1

2‖∇ϕ‖20 + S‖Φ‖20 + Sδ2
2‖∇Φ‖20

)
.

Applying the Gronwall’s lemma we deduce that (ϕ,Φ) vanishes for all t ∈ [0, T ], and
hence the uniqueness of the solution.

6.1. Regularity.
Theorem 6.2. Let m ∈ N, (u0, B0) ∈ V ∩ Hm−1(Ω) and (f, curl g) ∈ L2(0, T ;

Hm−1(Ω)). Then there exists a unique solution w,W, q to the equation (1.7) such that

(w,W ) ∈ L∞(0, T ;Hm+1(Ω)) ∩ L2(0, T ;Hm+2(Ω)),

q ∈ L2(0, T ;Hm(Ω)).

Proof. The result is already proved when m = 0 in Theorem 2.2. For any m ∈ N∗,
we assume that

(w,W ) ∈ L∞(0, T ;Hm(Ω)) ∩ L2(0, T ;Hm+1(Ω)) (6.13)

so it remains to prove

(Dmw,DmW ) ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

where Dm denotes any partial derivative of total order m. We take the mth derivative
of (1.7) and have

(Dmw)t −
1

Re
∆(Dmw) +Dm(w · ∇w)

δ1 − SDm(W · ∇W )
δ1 = Dmf

δ1
,

(DmW )t +
1

Rem
∇×∇× (DmW ) +Dm(w · ∇W )

δ2 −Dm(W · ∇w)
δ2 = ∇×Dmg

δ2
,

∇ · (Dmw) = 0,∇ · (DmW ) = 0,

Dmw(0, ·) = Dmu0
δ1 , DmW (0, ·) = DmB0

δ2
,
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with periodic boundary conditions and zero mean, and the initial conditions with zero
divergence and mean. Taking Aδ1D

mw,Aδ1D
mW as test functions we obtain

1
2
d

dt

(
‖Dmw‖20 + δ1

2‖∇Dmw‖20 + S‖DmW‖20 + Sδ2
2‖∇DmW‖20

)
(6.14)

+
1

Re
(
‖∇Dmw‖20 + δ2

1‖∆Dmw‖20
)

+
1

Rem

(
‖∇DmW‖20 + δ2

2‖∆DmW‖20
)

=
∫

Ω

(DmfDmw +∇× gDmW ) dx−X ,

where

X =
∫

Ω

(
Dm(w ·∇w)−SDm(W ·∇W )

)
Dmw +

(
Dm(w ·∇W )−Dm(W ·∇w)

)
DmWdx.

Now we apply (6.4) and use the induction assumption (6.13)

X =
∑
|α|≤m

(
m
α

) 3∑
i,j=1

∫
Ω

DαwiD
m−αDiwjD

mwj − SDαWiD
m−αDiWjD

mwj

−DαwiD
m−αDiWjD

mWj −DαWiD
m−αDiwjD

mWj

≤ ‖w‖3/2m+1‖w‖
1/2
m+2‖w‖m + ‖W‖3/2m+1‖W‖

1/2
m+2‖w‖m

+ ‖w‖m+1‖W‖1/2m+1‖W‖
1/2
m+2‖W‖m + ‖W‖3/2m+1‖W‖

1/2
m+2‖W‖m.

Integrating (6.14) on (0, T ), using the Cauchy-Schwarz and Hölder inequalities, and
the assumption (6.13) we obtain the desired result for w,W . We conclude the proof
mentioning that the regularity of the pressure term q is obtained via classical methods,
see e.g. [49, 3].
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