Problem 1: True or False? If \(x \) and \(y \) are non-zero vectors in a finite-dimensional complex Euclidean space, then a necessary and sufficient condition that there exist a positive map \(A \) such that \(Ax = y \) is that \((x, y) > 0\).

Problem 2: Show that for a positive complex matrix \(A \), \(\|Ax\| = \max_{y \in \mathbb{C}^n} (Ax, y) \) and hence \(\|A\| = \max_{y \in \mathbb{C}^n} (Ax, y) \).

Problem 3: True or False? If matrix \(A \) obeys \(A \geq 0 \) then \((Ax, y)^2 \leq (Ay, y) \).

Problem 4: Give an example of a square complex matrix that does not have a square root.

Problem 5: Show that if \(A \) and \(B \) are positive square complex matrices and if \(A^2 \) and \(B^2 \) are unitarily similar, then \(A \) and \(B \) are unitarily similar.

Problem 6: (a) Show that any matrix \(A \geq 0 \) can be written as a polynomial in \(A^2 \).
(b) Show that if \(B \) commutes with \(A^2 \) then it commutes with \(A \).
(c) Show that if \(A \) is normal then its polar factors \(R \) (nonnegative) and \(U \) (unitary) commute.

Problem 7: Show that a square complex matrix \(A \) is diagonalizable if and only if there is a positive matrix \(P \) such that \(P^{-1} AP \) is normal.