Math 2371 – Spring 2009
Practice Problems IV

Problem 1: Let \(A \) be a linear map on a finite-dimensional complex Euclidean space. Show that if \(A + A^* > 0 \) then
(a) \(A \) is invertible and \(A^{-1} + (A^{-1})^* > 0 \).
(b) Eigenvalues of \(A \) have positive real parts.

Problem 2: (a) Find 2x2 matrices \(A \) and \(B \) such that \(0 < A < B \) such that \(AB + BA \) is not positive.
(b) Find 2x2 matrices \(A \) and \(B \) such that \(0 < A < B \) such that \(A^2 \) is not less than \(B^2 \).

Problem 3: Show that if \(A \) is positive selfadjoint, then so is \(A, A^T, A^* \), and \(A^{-1} \).

Problem 4: Let \(A \) be a positive selfadjoint \(n \times n \) matrix.
(a) Show that \(a_{ii}a_{jj} > |a_{ij}|^2 \) for all \(i, j = 1, 2, \ldots, n \).
(b) What can you conclude about \(A \) if one of its diagonal entries is zero?
(c) Show that the largest entry of \(A \) is on the diagonal.

Problem 5: Show that the following special matrices are positive (if you need hints, see HJ, p.401, Problems 16, 17, 18)
(a) \(A = [a_{ij}] \) where \(a_{ij} = 1/(i + j - 1) \)
(b) \(A = [a_{ij}] \) where \(a_{ij} = 1/(i + j) \)
(c) \(A = [a_{ij}] \) where \(a_{ij} = \min\{i, j\} \)

Problem 6: Let \(A = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} \). Compute \(\sqrt{A} \). Find an orthogonal matrix \(Q \) such that \(QAQ^T \) is diagonal.

Problem 7: Suppose \(A \) is nonnegative selfadjoint \(n \times n \) matrix and rank \(A = r < n \). Show that \(A \) has \(r \times r \) positive principal submatrix.

Problem 8: If \(A \) and \(B \) are positive, show that the block matrix \(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \) is positive.

Problem 9: Let \(A \) be \(n \times n \) real symmetric positive matrix and \(b \) a real vector. Define \(\phi(x) = (x, Ax) - 2(b, x) \). Show that real vector \(z \) obeys \(Az = b \) if and only if \(\phi(z) \leq \phi(x) \) for all \(x \).