NAME: ______________________________________

Show all your work, justify your results.
Number and sign every page.

Problem 1 (15 points): Suppose that \(x \) and \(y \) are vectors in a linear space \(V \) and \(M \subset V \) is a subspace. Let \(K \) be the space spanned by \(M \) and \(x \), and let \(H \) be the space spanned by \(M \) and \(y \). Show that if \(x \in H \) and \(x \notin M \) then \(y \in K \).

Problem 2 (15 points): Let \(X \) be a finite-dimensional linear space and \{\(x_1, \ldots, x_n \)\} be a basis of \(X \). Let \(Y \) be a vector space over the same field and \{\(y_1, \ldots, y_n \)\} be any vectors in \(Y \).

(a) Show that there is a unique linear map \(T : X \to Y \) such that \(Tx_j = y_j \), \(j = 1, \ldots, n \).

(b) Show that if \{\(y_1, \ldots, y_n \)\} are linearly independent then \(T \) is invertible.

Problem 3 (15 points): Let \(A, B \) be complex square matrices. Show that if the minimal polynomial of \(A \) is equal to the characteristic polynomial of \(B \), and the minimal polynomial of \(B \) is equal to the characteristic polynomial of \(A \), then \(A \) and \(B \) are similar.

Problem 4 (15 points): Find the characteristic polynomial, minimal polynomial and Jordan canonical form for the matrix
\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & -1 & 0 \\
0 & 2 & -1
\end{bmatrix}
\]

Problem 5 (20 points): (True or false.) Give proofs of true statements and matrix counterexamples for false statements.

(a) If all eigenvalues of \(A \) are 0 then \(A = 0 \).

(b) Every invertible matrix is diagonalizable.

(c) If \(N \) is nilpotent with \(N^3 = 0 \) then \(I + N \) has a square root (i.e., there is a matrix \(M \) such that \(M^2 = I + N \).)

(d) If \(A \) commutes with \(B \) and \(B \) commutes with \(C \) then \(C \) commutes with \(A \).

(e) If \(A \) is anti self-adjoint then \(e^A \) is unitary.

Problem 6 (20 points): Show that \(T \) is a self-adjoint map on a complex Euclidean space \(X \) if and only if \((Tx, x) \) is real for all \(x \) from \(X \).