Problem: Let X, Y and Z be subspaces of a linear vector space (not necessarily finite-dimensional). Show that
\[(X \cap Y) + (X \cap Z) = X \cap (Y + (X \cap Z)) \]

Solution: In order to show that \((X \cap Y) + (X \cap Z) = X \cap (Y + (X \cap Z)) \) we need to show that (i) \((X \cap Y) + (X \cap Z) \subseteq X \cap (Y + (X \cap Z)) \) and (ii) \((X \cap Y) + (X \cap Z) \supseteq X \cap (Y + (X \cap Z)) \).

Proof of (i): By definition, for any \(x \in (X \cap Y) + (X \cap Z) \) there exist \(y \in X \cap Y \) and \(z \in X \cap Z \) such that \(x = y + z \). As both \(y \) and \(z \) are in \(X \), we have \(x \in X \). Furthermore, as \(y \in Y \), we also have \(x \in (X \cap Y) \). Thus \(x \in X \cap (Y + (X \cap Z)) \).

Proof of (ii): If \(x \in X \cap (Y + (X \cap Z)) \) then \(x \in X \). Also, we have \(x = y + z \) with \(y \in Y \) and \(z \in X \cap Z \). As both \(y \) and \(z \) are in \(X \), so is \(y \). Thus, \(y \in X \cap Y \) and hence \(x \in (X \cap Y) + (X \cap Z) \).