Problem 1: Which of the following matrices is unitarily similar to a diagonal matrix and why (or why not)?

\[
\begin{pmatrix}
1 & i \\
-i & 0
\end{pmatrix},
\begin{pmatrix}
1 & -1 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 1 \\
-1 & -1
\end{pmatrix},
\begin{pmatrix}
1 & 1 \\
0 & 2
\end{pmatrix}
\]

Problem 2: Given the space of \(P_n \) complex polynomials of degree less than \(n \) in the variable \(t \), with inner product

\[
\varphi(f, g) = \int_0^1 f(t) \overline{g(t)} \, dt
\]

(a) Is the multiplication operator \(T \) which acts as \(Tf(t) = tf(t) \) a self-adjoint map from \(P_n \) to itself?

(b) Is the differentiation operator \(D \) a self-adjoint map from \(P_n \) to itself?

Problem 3: Let \(O \) be \(3 \times 3 \) orthogonal matrix with determinant 1. Show that it represents a rotation about some line in \(\mathbb{R}^3 \). Find this line and the angle of rotation.

Problem 4: Let \(A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \). Find an orthogonal matrix \(Q \) such that \(Q^T AQ \) is diagonal.

Problem 5: Let \(V \) be a vector space endowed with two scalar products \((.,.)_1 \) and \((.,.)_2 \). Suppose that \((v,v)_1 = (v,v)_2 \) for every vector \(v \) in \(V \). Then \((v,w)_1 = (v,w)_2 \) for every pair of vectors \(v, w \) in \(V \).

Problem 6: Let \(X \) be a finitely-dimensional Euclidean space and \(T \) is a linear map on \(X \). Show that the range of \(T^* \) is the orthogonal complement of the nullspace of \(T \).

Problem 7: Let \(V \) be the real Euclidean space consisting of real-valued continuous functions on the interval \(-2 \leq t \leq 2 \) with the scalar product

\[
(f, g) = \int_{-2}^{2} f(t) g(t) \, dt
\]

Let \(W \) be the subspace of odd functions. Find the orthogonal complement of \(W \).

Problem 8: Let \(X \) be a finitely-dimensional real Euclidean space and let \(B \) be a linear map such that \((Bx,x) \geq 0 \) for all \(x \) in \(V \).

(a) Show that \((Bx,x) = 0 \) implies \((Bx,y) + (x,By) = 0 \) for all \(y \) in \(V \).

(b) Deduce from (a) that the nullspace of \(B \) equals the nullspace of \(B^* \) and hence that the nullspace and range of \(B \) are orthogonal.
Problem 9: Let V be a finite-dimensional real Euclidean space. A linear map T is said to be a reflection with respect to a plane S_u, defined as the span of vectors orthogonal to a given vector u in V, if $T(u) = -u$ and $T(w) = w$ for all w in S_u.

(a) Show that T is given by

$$T(v) = v - 2 \frac{(v,u)}{(u,u)} u$$

(b) Show that T is an isometry.

Problem 10: Let V be the space of all $n \times n$ matrices over the reals. For A, B from V define $(A, B) = \text{tr}(B^T A)$.

(a) Show that (\cdot, \cdot) is a scalar product on V.

(b) Let E_{ij} be a matrix in V whose i-th row and j-th column entry is 1 and all other entries are 0. Show that the matrices E_{ij}, $i, j = 1, 2, \ldots, n$ form an orthonormal basis for V.

(c) For A in V let $f(A) = \sum_{i,j=1}^n (i + j)a_{ij}$ where a_{ij}, $i, j = 1, 2, \ldots, n$ are the elements of matrix A. Find a matrix B such that $f(A) = (A, B)$ for all A in V and show that B is unique.