Problem 1: Which of the following matrices is unitarily similar to a diagonal matrix and why (or why not)?

\[
\begin{pmatrix}
1 & i \\
-i & 0
\end{pmatrix},
\begin{pmatrix}
1 & -1 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 1 \\
-1 & -1
\end{pmatrix},
\begin{pmatrix}
1 & 1 \\
0 & 2
\end{pmatrix}
\]

Problem 2: Given the space of \(P_n \) complex polynomials of degree less than \(n \) in the variable \(t \), with inner product

\[
\varphi(f, g) = \int_0^1 f(t)g(t)dt
\]

(a) Is the multiplication operator \(T \) which acts as \(Tf(t) = tf(t) \) a self-adjoint map from \(P_n \) to itself?

(b) Is the differentiation operator \(D \) a self-adjoint map from \(P_n \) to itself?

Problem 3: Let \(A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \). Find an orthogonal matrix \(Q \) such that \(Q^T AQ \) is diagonal.

Problem 4: Let \(V \) be a vector space endowed with two scalar products \((.,.)_1 \) and \((.,.)_2 \). Suppose that \((v,v)_1 = (v,v)_2 \) for every vector \(v \) in \(V \). Then \((v,w)_1 = (v,w)_2 \) for every pair of vectors \(v, w \) in \(V \).

Problem 5: Let \(X \) be a finitely-dimensional Euclidean space and \(T \) is a linear map on \(X \). Show that the range of \(T^* \) is the orthogonal complement of the nullspace of \(T \).

Problem 6: Let \(V \) be the real Euclidean space consisting of real-valued continuous functions on the interval \(-2 \leq t \leq 2\) with the scalar product

\[
(f, g) = \int_{-2}^{2} f(t)g(t)dt
\]

Let \(W \) be the subspace of odd functions. Find the orthogonal complement of \(W \).

Problem 7: Let \(V \) be a finite-dimensional real Euclidean space. A linear map \(T \) is said to be a reflection with respect to a plane \(S_u \), defined as the span of vectors orthogonal to a given vector \(u \) in \(V \), if \(T(u) = -u \) and \(T(w) = w \) for all \(w \) in \(S_u \).

(a) Show that \(T \) is given by

\[
T(v) = v - 2\frac{(v,u)}{(u,u)}u
\]

(b) Show that \(T \) is an isometry.

Problem 8: Let \(V \) be the space of all \(n \times n \) matrices over the reals. For \(A, B \) from \(V \) define \((A,B) = \text{tr}(B^TA)\).

(a) Show that \((.,.)\) is a scalar product on \(V \)

(b) Let \(E_{ij} \) be a matrix in \(V \) whose \(i \)-th row and \(j \)-th column entry is 1 and all other entries are 0. Show that the matrices \(E_{ij} \) \(i, j = 1, 2, ..., n \) form an orthonormal basis for \(V \).

(c) For \(A \) in \(V \) let \(f(A) = \sum_{i,j=1}^{n} (i + j)a_{ij} \) where \(a_{ij} \) \(i, j = 1, 2, ..., n \) are the elements of matrix \(A \). Find a matrix \(B \) such that \(f(A) = (A,B) \) for all \(A \) in \(V \) and show that \(B \) is unique.