Problem 1: (a) Use the adjoint formula to compute the inverse of the following matrix:
\[
\begin{bmatrix}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{bmatrix}
\]
(b) Use Cramer’s rule to solve the following system over the field of rational numbers:
\[
\begin{align*}
3x - 2y &= 7 \\
3y - 2z &= 6 \\
3z - 2x &= -1
\end{align*}
\]

Problem 2: Show that if the \(n \times n \) matrix \((I - AB)\) is invertible then \((I - BA)\) is invertible.

Problem 3: Let \(V \) be a finite dimensional linear space and let \(T \in L(V,V) \). Given a subspace \(W \) of \(V \), set \(T^{-1}(W) = \{x \in V : Tx \in W\} \).
(a) Show that \(T^{-1}(W) \) is a subspace of \(V \).
(b) Show that \(\dim T^{-1}(W) \leq \dim N_T + \dim W \), where \(N_T \) is the nullspace of \(T \).
(c) If \(S \in L(V,V) \), show that \(\text{rank } ST \geq \text{rank } T + \text{rank } S - \dim V \).

Problem 4: An \(n \times n \) matrix \(A \) is skew-symmetric if \(A^T = -A \). Let \(A \) be a skew-symmetric \(n \times n \) matrix with real entries and with \(n \) odd.
(a) Show that \(\det A = 0 \).
(b) Show that all the eigenvalues of \(A \) are pure imaginary.

Problem 5: Find all eigenvectors and eigenvalues of the backward shift operator \(T \in L(\mathbb{C}^\infty, \mathbb{C}^\infty) \) defined by \(T(x_1, x_2, x_3, \ldots) = (x_2, x_3, \ldots) \).

Problem 6: Suppose that \(S, T \in L(V,V) \) where \(V \) is finite dimensional
(a) Show that if \(\dim R_T = k \), then \(T \) has at most \(k + 1 \) distinct eigenvalues.
(b) Show that \(ST \) and \(TS \) have the same eigenvalues.
(c) Show that if every vector in \(V \) is an eigenvector of \(T \) then \(T = aI \).

Problem 7: Show that \(n \times n \) complex matrix \(A \) is never similar to \(A + I \).