Problem 1: Show that if vectors x_1, x_2, \ldots, x_n are linearly independent, so are vectors $x_1 - x_2, x_2 - x_3, \ldots, x_{n-1} - x_n, x_n$.

Problem 2: Show that the linear space K^∞ (i.e., set of sequences (a_1, a_2, \ldots) of numbers from field K) is infinitely dimensional.

Problem 3: Let Y be the subspace of \mathbb{R}^5 defined by

$$Y = \{(a_1, a_2, a_3, a_4, a_5) \in \mathbb{R}^5 : a_1 = 3a_2, a_3 + a_4 = 0\}$$

Find a basis of Y.

Problem 4: Suppose that (p_1, p_2, \ldots, p_m) are polynomials in P_m over the field of complex numbers such that $p_i(2) = 0$ for each i. Show that (p_1, p_2, \ldots, p_m) are linearly dependent.

Problem 5: Show that if Y and Z are subspaces of X and if every vector in X belongs to either Y or Z (or both) then either $Y = X$ or $Z = X$ (or both).

Problem 6:

a) Is the set \mathbb{R} a finite-dimensional linear space over the field \mathbb{Q}?

b) What is the dimension of the set \mathbb{C} over the field of real numbers. Justify your answers.

Problem 7: Find two bases in \mathbb{C}^4 such that the only vectors common to both are $(0, 0, 1, 1)$ and $(1, 1, 0, 0)$. (Do not forget to show that your “bases” are indeed bases.)

Problem 8: Show that if y and z are linear functions on linear space X such that $y(x) = 0$ whenever $z(x) = 0$ then there exists a scalar k such that $y = kz$ (i.e., $y(x) = kz(x)$ for all x.)

Problem 9: Which of the following y are linear functions on P? Justify.

a) $y(x) = \int_0^1 t^2x(t)dt$

b) $y(x) = \frac{dx}{dt}$

c) $y(x) = x(-2) + \int_0^1 x(t^2)dt$

d) $y(x) = \max_{-1 \leq t \leq 1} \{x(t)\}$

Problem 10: Define a non-zero linear function y on \mathbb{C}^3 such that if $x_1 = (1,1,1)$ and $x_2 = (1,1,-1)$ then $y(x_1) = y(x_2) = 0$.