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Robustness of Solutions of the Inverse Problem for Linear Dynamical Systems
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Abstract. The problem of estimation of parameters of a dynamical system from discrete data can be formulated
as the problem of inverting the map from the parameters of the system to points along a correspond-
ing trajectory. In this work, we focus on linear systems and derive necessary and sufficient conditions
for single trajectory data to yield a matrix of parameters with specific dynamical properties. To ad-
dress the key issue of robustness, we establish conditions that ensure that the desired properties of
the solution to the inverse problem are maintained on an open neighborhood of the given data. We
then build from these results to find bounds on the uncertainty in the data that can be tolerated
without a change in the nature of the inverse problem. In particular, both analytical and numeri-
cal estimates are derived for the largest allowable uncertainty in the data for which the qualitative
features of the inverse problem solution, such as uniqueness or attractor properties, persist. We also
derive the conditions and bounds for the nonexistence of a real parameter matrix corresponding to
the given data, which can be utilized in modeling practice to prescribe a level of uncertainty under
which the linear model can be rejected as a representation of the data.

Key words. parameter estimation, identifiability, linear systems, inverse problem, uncertain data, matrix log-
arithm
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1. Introduction. A fundamental problem in modeling temporally evolving systems is the
determination of model parameter values from experimental observations collected at specific
time points. Since models can be viewed as forward mappings from sets of parameter values
to time-dependent states of model variables, the problem of parameter estimation is often
referred to as an inverse problem. Although parameter estimation has received significant
attention in the literature, certain fundamental questions about the inverse problem still
remain open. Solving the inverse problem becomes even more challenging in the presence
of uncertainty in experimental measurements, as may arise due to measurement errors and
fluctuations in system components. The overall goal of this work is to derive estimates of the
degree of uncertainty in data to which properties of the inverse problem, such as existence
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and uniqueness of solutions, are robust.
We start by addressing fundamental issues of existence and uniqueness of solutions to the

inverse problem based on a discrete collection of linearly independent data points assumed to
be known without uncertainty, before turning to the uncertain case. We focus our analysis
on linear models, which are prevalent in the study of many important applications includ-
ing pharmacokinetics, gene regulation, linear response theory for mechanical and electronic
systems, continuous time Markov chain probabilistic models, and near-equilibrium responses
of nonlinear systems [5, 12, 9, 2, 16]. In addition to their applicability, linear systems are
convenient because in the linear case, there is an explicit structure of the associated forward
solution map that can be exploited. Furthermore, we mostly consider data points that are
equally spaced in time, as may be obtained from experiments with regimented data collection
schedules and for which it may be possible to explicitly solve for the linear system parameter
matrix. Despite these advantages, the inverse problem is nontrivial because the solution to a
linear dynamical system depends nonlinearly on its parameters.

Specifically, in section 2, we begin by considering data with no uncertainty, where classical
results on matrix logarithms yield necessary and sufficient conditions for the data to specify a
unique parameter matrix A that solves the inverse problem. Contrary to our expectations, we
find that the existence of model parameters corresponding to given data is guaranteed only for
a restricted subset of potential data sets and that there is only a limited region in data space
that yields a unique set of parameters. Subsequently, we explore how uncertainty in the data
impacts the existence and uniqueness of A. In section 3, we provide conditions that ensure
that existence or uniqueness of the inverse problem solution is guaranteed to hold in an open
neighborhood of data. These steps prepare us for section 4, where we present the main results
of the paper, consisting of analytical and numerical estimates of the maximum uncertainty
in the data under which the properties of the inverse problem are certain to be preserved.
Examples for two-dimensional systems are shown in section 5, where we first define regions
in data space for which the solution to the inverse problem has various properties and then
illustrate bounds on the maximal permissible uncertainty for those properties. In section 6,
we explore an example of a larger-dimensional system by applying our results to a model of
gene regulation. In section 7, we briefly remark on the case of nonequally spaced data points,
and we address the cases of differing amounts of data in section 8. Finally, we conclude with
a discussion in section 9, which includes some comments on open directions and related work
in the past literature.

2. Definitions and preliminaries. As in [17], we consider a model defined as a finite-
dimensional linear dynamical system, which we denote as

(2.1)
9xptq “ Axptq,
xp0q “ b.

In (2.1), xptq P Rn is the state of the system at time t, the system parameters are the entries of
the coefficient matrix A P Rnˆn, and b P Rn is the initial condition. For clarity of exposition
we will refer to the entire matrix A as the parameter A. We shall define the parameter space
P as the set of all parameters A and initial conditions b.

For a fixed A, system (2.1) has a well-defined solution, or trajectory, given by xpt;A, bq “
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574 S. STANHOPE, J. E. RUBIN, AND D. SWIGON

Φptqb, where Φptq “ eAt is the principal matrix solution. The data representing the system
are a set of observations of the trajectory values. We assume that data for all of the state
variables are available, and we denote by D the data space consisting of a set of pn`1q-tuples
d “ px0, x1, x2, . . . , xnq of points xj P Rn; i.e., each such d will be referred to as a data set, and
each xj as a data point. Sampling the trajectory xpt;A, bq at equally spaced times (without
loss of generality ∆t “ 1) yields an element of D, namely a data set composed of the specific
data points xj “ xpj; A, bq P Rn, j “ 0, 1, . . . , n; nonuniformly spaced data are discussed in
section 7. We use solution map to refer to the map F : P Ñ D from parameter space to data
space, where P and D Ď Rnˆpn`1q, defined as F pA, bq “ px0, x1, x2, . . . , xnq for this choice of
txju sampled from xpt;A, bq. The inverse problem is then the problem of inverting the map
F to find F´1pdq (i.e., to find A, b such that F pA, bq “ d) for a given data set d. From the
definition of xj , we find that b “ x0, and thus, we focus on the problem of determining the
parameter A. If the data set d is obtained from experimental measurements or some other
outside source, then this problem may or may not have a solution.

We set out to derive necessary and sufficient conditions that a data set d P D must satisfy
so that there exists a unique real matrix A for which the dynamical system (2.1) produces
data d. These conditions define a subset of the data space on which the inverse map F´1

is well defined. Given a uniformly spaced data set d P D, one can attempt to solve the
inverse problem as follows: Denote by X0 and X1 the n ˆ n matrices rx0 | . . . |xn´1s and
rx1 | . . . |xns, respectively. The principal matrix solution provides a relation between the data
points; letting Φ :“ Φp1q “ eA, we have xj`1 “ Φxj , which implies that X1 “ ΦX0 and hence
Φ “ X1X

´1
0 . All that remains is to find A as the matrix logarithm of Φ. Thus, from an

operational standpoint, the map F´1 is a composition of two nonlinear maps: (i) the map
G : D Ñ Rnˆn defined by Gpdq “ Φ, which is defined (and continuous) at all points d such that
x0, . . . , xn´1 are linearly independent (i.e., wherever X´1

0 exists), and (ii) the matrix logarithm
map, denoted here as L : Rnˆn Ñ Rnˆn and defined as A “ LpeAq. Hence, F´1 “ rL ˝G, Is,
where L ˝ G operates on d to produce A and the identity I operates on x0 to produce b. In
view of the above, F´1 is well defined if (i) X0 is invertible, (ii) the matrix logarithm of Φ
exists, and (iii) the matrix logarithm of Φ is unique. The case when condition (i) fails was
studied extensively in our earlier work [17]; in that case the system (2.1) generating the data
d either does not exist or is not identifiable. Conditions (ii) and (iii) can be addressed with
the help of two theorems by Culver [8], which characterize the existence and uniqueness of a
real matrix logarithm.

Theorem 2.1 (Culver). Let Φ be a real square matrix. Then there exists a real solution A
to the equation Φ “ eA if and only if Φ is nonsingular and each Jordan block of Φ belonging
to a negative real eigenvalue occurs an even number of times.

Theorem 2.2 (Culver). Let Φ be a real square matrix. Then there exists a unique real
solution A to the equation Φ “ eA if and only if all of the eigenvalues of Φ are positive real
and no Jordan block of Φ appears more than once.

We note that even when a matrix logarithm exists, there are still issues with how to
compute it. Numerical methods for computing the logarithm of a matrix are discussed in
[10, 6, 1].
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3. Existence and uniqueness of the inverse in n dimensions. As will become clear
shortly, Theorems 2.1 and 2.2 identify matrices Φ that are not robust in the sense that they
form a set of zero measure. Since we aim to discuss the properties of inverse problem solutions
for uncertain data, such as data that are perturbed due to noise, it makes sense to determine
conditions that ensure that a given matrix Φ is inside an open set of matrices with particular
existence or uniqueness properties.

3.1. Inverse problems on open sets. We now state and prove three corollaries of The-
orems 2.1 and 2.2 that are useful for considering uncertain data and, as it turns out, avoid
the conditions on Jordan blocks that can become overly cumbersome for practical use in n
dimensions. The first corollary characterizes open sets of matrices that have real logarithms,
the second corollary characterizes open sets of matrices that have unique real logarithms, and
the third corollary characterizes open sets of matrices that do not have real logarithms.

Corollary 3.1 (to Theorem 2.1). Let Φ˚ be an nˆ n real matrix. The following statements
are equivalent:

(a) There exists an open set U Ă Rnˆn containing Φ˚ such that for any Φ P U the equation
Φ “ eA has an nˆ n real solution A.

(b) Φ˚ has only positive real or complex eigenvalues.

Proof. Suppose that Φ˚ P Rnˆn has only positive real or complex eigenvalues. Then con-
dition (a) follows immediately by Theorem 2.1 and the continuous dependence of eigenvalues
on matrix entries.

For the converse, suppose that Φ˚ P Rnˆn has a real matrix logarithm, i.e., Φ˚ “ eA,
where A is nˆ n real matrix. By Theorem 2.1, either Φ˚ satisfies (b), or Φ˚ has at least one
negative eigenvalue and the corresponding Jordan block occurs an even number of times. We
now show that the second alternative contradicts the existence of the open set U . To this end,
let Φ˚ “ QJQ´1, where

(3.1) J “

»

—

–

J1 0

0 J2

. . .

fi

ffi

fl

is a Jordan canonical form of Φ˚, with J1 a Jordan block corresponding to a negative eigen-
value. Let B “ QKQ´1, where

K “

„

aI 0

0 0



,

with a P R and I the identity matrix of the same size as J1. Then for every sufficiently small
nonzero a, Φ˚`B has a negative eigenvalue for which the corresponding Jordan block occurs
exactly once and hence there is no real A such that Φ˚ `B “ eA.

Corollary 3.2 (to Theorem 2.2). Let Φ˚ be an nˆ n real matrix. The following statements
are equivalent:

(a) There exists an open set U Ă Rnˆn containing Φ˚ such that for any Φ in U the equation
Φ “ eA has a unique nˆ n real solution A.

D
ow

nl
oa

de
d 

09
/0

7/
17

 to
 1

36
.1

42
.1

24
.1

95
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

576 S. STANHOPE, J. E. RUBIN, AND D. SWIGON

(b) Φ˚ has n distinct positive real eigenvalues.

Proof. The proof is similar to the previous one. Condition (b) implies condition (a) based
on Theorem 2.2 and continuity of eigenvalues. For the converse, suppose that Φ˚ P Rnˆn
has a unique real matrix logarithm, i.e., there is a unique A P Rnˆn such that Φ˚ “ eA,
and Φ˚ is in the interior of an open set of such matrices. By Theorem 2.2, Φ˚ has positive
real eigenvalues, and no Jordan block appears more than once. There can be more than one
Jordan block for the same eigenvalue, but those Jordan blocks must be of different sizes. We
can write Φ˚ “ QJQ´1, where J is the Jordan canonical form of Φ˚ as defined in (3.1) and
Ji are ordered in size from largest to smallest such that no two Ji are the same.

Suppose now that the largest Jordan block, J1, is not a 1 ˆ 1 matrix. Let pJptq be the
characteristic polynomial of J , i.e., pJptq “

śk
i“1pλi ´ tq

di , where λi are all real positive, k is
the number of Jordan blocks, di is the dimension of block i, and d1 ě 2. Let B “ QKQ´1,
where K is an nˆ n matrix with all zero entries except K12 “ a, K21 “ ´a. Then, for every
a ą 0, Ĵ “ J `K has entries Ĵ12 “ 1` a, Ĵ21 “ ´a, which implies that Ĵ has characteristic
polynomial

pĴptq “
“

pλ1 ´ tq
2 ` ap1` aq

‰

pλ1 ´ tq
d1´2

k
ź

i“2

pλi ´ tq
di

with two complex roots. It follows that Φ˚ ` B “ eA does not have a unique real solution
A for a ą 0, which contradicts the assumption that A is unique for each Φ in an open set
containing Φ˚. Thus, all Jordan blocks Ji are of size 1, and furthermore, since no two Ji can
be the same, Φ˚ has n distinct eigenvalues.

Statements similar to Corollaries 3.1 and 3.2 can be made to establish the existence of
open sets of matrices with other properties. An example follows.

Corollary 3.3 (to Theorem 2.1). Let Φ˚ be an nˆ n real matrix. The following statements
are equivalent:

(a) There exists an open set U Ă Rnˆn containing Φ˚ such that for each Φ P U the
equation Φ “ eA does not have an nˆ n real solution A.

(b) Φ˚ has at least one negative eigenvalue of odd multiplicity.

Proof. Suppose that Φ˚ P Rnˆn has at least one negative eigenvalue of odd multiplicity.
Then, there is at least one Jordan block associated to it that occurs an odd number of times,
and hence, by Theorem 2.1, there is no A P Rnˆn such that Φ˚ “ eA. Moreover, there exists
an open neighborhood of Φ˚ for which there remains at least one negative eigenvalue of odd
multiplicity.1

For the converse, suppose that there exists an open set U Ă Rnˆn containing Φ˚ such that
for each Φ P U the equation Φ “ eA does not have an n ˆ n real solution A. Since Φ˚ “ eA

has no real solution, by Theorem 2.1, Φ˚ is singular, or there is a negative eigenvalue of Φ˚

which belongs to a Jordan block that appears an odd number of times, or both are true.

1A perturbation may split any negative eigenvalue of odd multiplicity into a collection of distinct negative
eigenvalues and/or complex pairs, with the sum of all multiplicities equal to that of the original eigenvalue. At
least one multiplicity in that sum must be odd for the result to be odd.
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If Φ˚ is singular with no Jordan block associated to a negative eigenvalue occurring an
odd number of times, then in every neighborhood of Φ˚ there exists a Φ which is nonsingular
with the same condition on Jordan blocks, and Φ “ eA will have a real solution A. This
contradicts the existence of U .

Thus, there is at least one negative eigenvalue of Φ˚ for which a Jordan block repeats an
odd number of times. Denote these negative eigenvalues by λ1, . . . , λr, r ě 1. Let mλi be the
multiplicity of λi.

Suppose that all mλi are even. Let Φ˚ “ QJQ´1, where J is the Jordan canonical form
of Φ˚ as defined in (3.1), let Jλ11 , Jλ12 , . . . , Jλ1k denote all of the Jordan blocks associated to λ1

(the blocks may have the same size), and denote by J1 the block-diagonal matrix composed
of Jλ11 , Jλ12 , . . . , Jλ1k .

For i “ 1, . . . , k define W λ1
i to be a block-diagonal matrix of the same dimension as Jλ1i

composed of repeated blocks K, where

K “

„

0 a
´a 0



for some a ą 0. If the dimension of Jλ1i is even and equal to 2s, then W λ1
i is composed of

exactly s blocks K, the characteristic polynomial of Jλ1i `W
λ1
i is pptq “ rpλ1´ tq

2`ap1`aqss,

and since a ą 0, Jλ1i `W λ1
i has only complex eigenvalues.

If the dimension of Jλ1i is odd and equal to 2s ` 1, then W λ1
i contains s blocks K and a

zero block of size one, the characteristic polynomial of Jλ1i `W λ1
i is pptq “ rpλ1 ´ tq

2 ` ap1`

aqsspλ1´ tq, and since a ą 0, Jλ1i `W λ1
i has s complex conjugate pairs of eigenvalues and one

real negative eigenvalue λ1.
Define the mλ1 ˆmλ1 matrix,

C1 “

»

—

–

W λ1
1

. . .

W λ1
k

fi

ffi

fl

.

Since mλ1 is even, the number of odd sized blocks is even; therefore for every a ą 0, the
matrix J1`C1 has an even number of size one Jordan blocks corresponding to eigenvalue λ1,
and all other eigenvalues of J1 ` C1 are complex.

By repeating this process for λ2, . . . , λr, we can construct the matrix

F “

»

—

—

—

–

C1

. . .

Cr
0

fi

ffi

ffi

ffi

fl

.

Let B “ QFQ´1. Then it follows that for every a ą 0, all negative eigenvalues of Φ˚ ` B
will have Jordan blocks that repeat an even number of times. If Φ˚ is nonsingular, then
Φ˚`B “ eA has real solution A for every a ą 0. If Φ˚ is singular, then Φ˚`B`aI “ eA has
real solution A for every a ą 0 sufficiently small. In either case, this implication contradicts
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the existence of the open set U . Thus it must be that some mλi is odd, and therefore, Φ˚ has
at least one negative eigenvalue of odd multiplicity.

For a given d such that the associated matrix Φ has n distinct positive eigenvalues, Corol-
lary 3.1 (3.2, or 3.3, respectively) gives an open set U Ă Rnˆn on which the matrix logarithm
exists (exists and is unique, or does not exist, respectively). By the continuity of G at d,
G´1pUq (the preimage of U) is an open set in D containing d such that every data set in
G´1pUq is generated by a real A (a unique real A, or no real A, respectively). Consequently,
we can now summarize the existence and uniqueness results on open sets.

Theorem 3.4. Suppose that the data d “ px0, x1, x2q are such that X0 is invertible and
Φ “ X1X

´1
0 has

(a) only positive real or complex eigenvalues,
(b) distinct positive real eigenvalues, or
(c) at least one negative eigenvalue of odd multiplicity.

Then there is an open set U Ă D containing d such that for every d˚ P U , the problem
F pA, bq “ d˚ has, respectively,

(a) a real solution,
(b) a unique real solution, or
(c) no real solution.

4. Analysis of uncertainty in the determination and characterization of the inverse.
Realistic data are never exact but are subject to uncertainty caused by measurement error,
fluctuation in experimental conditions, or variability in experimental subjects. A natural
question arises as to how large an uncertainty in the data can be tolerated without altering
the properties of the solution to the inverse problem. Several scenarios are of interest, such
as the following:

‚ The data imply that the inverse system has a stable node. What is the largest un-
certainty in the data that ensures the maintained stability of the equilibrium for the
inverse system? What is the largest uncertainty that maintains the node property?

‚ The data imply that the inverse system has oscillations (damped or undamped). What
is the largest uncertainty that maintains the oscillatory property of the system?

‚ The inverse does not exist for given data. What is the largest uncertainty for which
we can still rule out the linear model?

The theory developed in section 3 implies that all of the above criteria can be formulated as
conditions on the eigenvalues of the perturbed fundamental matrix. For example, a system
with a stable node still has a stable node under perturbation if and only if the eigenvalues of
the perturbed fundamental matrix remain real, positive, distinct, and smaller than 1. Thus,
in principle, we could construct direct algebraic constraints on the data similar to those given
in the supplemental material (M106246 supplement.pdf [local/web 3.70MB]) to define regions
of the data space in which data correspond to systems with specific dynamical properties;
however, these quickly become prohibitively complex as the problem dimension increases. We
will therefore focus instead on the scenario where a specific data set d is given, and derive
two types of bounds on the maximal perturbation of d for which a particular property of the
system is conserved: lower bounds εU, such that a property associated with d is guaranteed to
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hold for all d̂ with ‖d̂´ d‖ ă εU, and upper bounds εU, such that there is guaranteed to exist
a d̂ with ‖d̂´ d‖ “ εU such that the property does not hold at d̂.

Note that any affine transformation of the data preserves the eigenvalue structure and
hence the existence, uniqueness, and stability of the system with respect to the inverse prob-
lem. Thus, the data can be varied in a coordinated fashion to an arbitrary extent without
affecting qualitative properties of the inverse. Here, however, we focus on finding limits on
uncorrelated perturbations of the data. Let

Cpd, εq “
n
ą

i“0

cpxi, εq,

where cpz, εq is a hypercube in Rn with center z P Rn and side length 2ε, i.e., where cpz, εq “
tz̃ P Rn|max1ďjďn|z̃j ´ zj | ă εu for zi denoting the components of the vector z. The definition
of the neighborhood Cpd, εq is chosen so that the parameter ε controls the maximum pertur-
bation ∆x0,∆x1, . . . ,∆xn in any component of the data x0, x1, . . . , xn; i.e., d̃ P Cpd, εq if and
only if maxi,j |p∆xiqj | ă ε, where |p∆xiqj | “ px̃iqj ´ pxiqj . Neighborhood Cpd, εq of the data
set d P D will be called permissible for some qualitative property of the inverse of d (such as
existence, uniqueness, stability, and so on) if and only if that qualitative property is shared by
inverses of all data sets d̃ P Cpd, εq. The value ε ą 0 is called the maximal permissible uncer-
tainty for some qualitative property of the inverse of d if and only if Cpd, εq is a permissible
neighborhood of d for that property and Cpd, ε̃q is not a permissible neighborhood for that
property for all ε̃ ą ε.

We begin with an analytical and numerical description of the maximal permissible un-
certainty for existence and uniqueness of the inverse F´1pdq of d. The extension to other
properties will be described in section 4.4. We derive both lower and upper analytical bounds
on maximal permissible uncertainty, describe a numerical procedure for computing the bounds,
and then compare the estimates with direct numerical results for several examples.

4.1. Analytical lower bound. Consider a fixed data set d “ px0, x1, x2, . . . , xnq P D such
that the associated matrix Φ “ X1X

´1
0 “ rx1 | . . . |xnsrx0 | . . . |xn´1s

´1 has n distinct posi-
tive eigenvalues. Thus, rA, bs “ F´1pdq is unique and there is a neighborhood of d for which
uniqueness persists. For any perturbed data set d̃ “ px̃0, x̃1, x̃2, . . . , x̃nq P D with x̃i “ xi`∆xi,
define the perturbed data matrices X̃0 “ X0 ` ∆X0 “ rx0 | . . . |xn´1s ` r∆x0 | . . . |∆xn´1s

and X̃1 “ X1 ` ∆X1 (analogously). Let Φ̃ “ X̃1X̃
´1
0 be the fundamental matrix of the

perturbed data.
Let εU be the maximal permissible uncertainty in the data d to ensure the existence of a

unique inverse. By definition, for any perturbation of the data with maxi,j |p∆xiqj | ă εU the
matrix Φ̃ has a unique logarithm A, and for any ε̂ ą εU there exists a perturbation of the data
with εU ă maxi,j |p∆xiqj | ă ε̂ such that Φ̃ does not have a unique logarithm.

A lower bound εU on εU can be obtained by the following result, where ‖¨‖ denotes a matrix
norm that is either the maximum row sum norm ‖¨‖8 or the maximum column sum norm
‖¨‖1, defined as

‖A‖8 “ max
1ďiďn

n
ÿ

j“1

|aij |, ‖A‖1 “ max
1ďjďn

n
ÿ

i“1

|aij |.
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580 S. STANHOPE, J. E. RUBIN, AND D. SWIGON

Theorem 4.1. Let d P D be such that Φ has n distinct positive eigenvalues λ1, . . . , λn. Let
m1 “

1
2 mini‰j |λi´λj |, m2 “ min1ďiďntλiu ą 0, and δU “ mintm1,m2u. If ε ą 0 is such that

ε ď εU :“ fpδU, dq, where

(4.1) fpδ, dq “
δ

n pδ ` 1` ‖Λ‖q ‖S´1‖‖X´1
0 S‖

,

Φ “ SΛS´1, and Λ “ diagpλ1, . . . , λnq, then for any d̃ P Cpd, εq, Φ̃ has n distinct positive

eigenvalues, and hence the equation eÃ “ Φ̃ has a unique solution Ã.

The proof of Theorem 4.1 utilizes several preliminary results that we now present. The
first result and its proof make use of Theorems 6.1.1 (Gershgorin disc theorem) and 6.3.2 in
[13] and the proofs presented therein.

Lemma 4.2. Let Φ P Rnˆn be diagonalizable with Φ “ SΛS´1 and Λ “ diagpλ1, . . . , λnq.
Let E P Rnˆn. If λ̃ is an eigenvalue of Φ` E, then λ̃ P D, where

D “
n
ď

i“1

Di, Di “ tz P C : |z ´ λi| ď ‖S´1ES‖u.

Furthermore, if λi are all distinct and the discs Di are pairwise disjoint, then each Di contains
exactly one eigenvalue of Φ` E.

Proof. By similarity, Φ ` E has the same eigenvalues as Λ ` S´1ES. Denote by ẽij the
elements of S´1ES. Then, by the Gershgorin disc theorem, the eigenvalues of Λ`S´1ES are
contained in the union of the discs

Qi “

#

z P C : |z ´ pλi ` ẽiiq| ď
n
ÿ

j“1
j‰i

|ẽij |

+

.

Clearly, each disc Qi is contained in the disc

Pi “

#

z P C : |z ´ λi| ď
n
ÿ

j“1

|ẽij |

+

.

Furthermore, in view of

n
ÿ

j“1

|ẽij | ď max
1ďiďn

n
ÿ

j“1

|ẽij | “ ‖S´1ES‖8,

each disc Pi is contained in the disc

Di “ tz P C : |z ´ λi| ď ‖S´1ES‖8u.

Thus, if λ̃ is an eigenvalue of Φ` E, then λ̃ P Qi Ď Pi Ď Di for some i, and therefore λ̃ P D.
The argument for the norm ‖¨‖1 is constructed in a similar fashion by replacing row sums
with column sums in the relations above.

If λi are all distinct and the sets Di are pairwise disjoint, then the discs Qi are pairwise
disjoint, and the Gershgorin disc theorem implies that there is exactly one eigenvalue of Φ`E
in each Qi and hence each Di.
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Lemma 4.3. Suppose the eigenvalues λ1, . . . , λn of Φ are real, positive, and distinct. Let
Φ “ SΛS´1 with Λ “ diagpλ1, . . . , λnq, and let m1 “

1
2 mini‰j |λi ´ λj |, m2 “ min1ďiďntλiu,

and δ “ mintm1,m2u. If ‖S´1ES‖ ă δ, then the eigenvalues of Φ`E are real, positive, and
distinct.

Proof. Suppose the eigenvalues λ1, . . . , λn of Φ are real, positive, and distinct. Then Φ is
diagonalizable as Φ “ SΛS´1 with Λ “ diagpλ1, . . . , λnq. Let Ri be the disc

Ri “ tz P C : |z ´ λi| ď m1u,

and let Di be defined as in the statement of Lemma 4.2. Since ‖S´1ES‖ ă δ ď m1, it
follows that Di Ď Ri. The sets Ri are pairwise disjoint by the definition of m1, so the
sets Di are pairwise disjoint, and by Lemma 4.2, each Di contains exactly one eigenvalue
of Φ ` E. The center of Di is λi P R, so if Di were to contain a complex eigenvalue of
Φ ` E, it would also contain its conjugate, which is a contradiction. Thus, the eigenvalues
of Φ` E are real and distinct. Furthermore, the inequality ‖S´1ES‖ ă δ ď m2 implies that
Di Ď tz P C : |z ´ λi| ď m2u Ď tz P C : Repzq ą 0u, and hence the eigenvalues of Φ ` E are
all positive.

Thus, to guarantee that the eigenvalues λ̃1, . . . , λ̃n of Φ̃ “ Φ ` E are real, positive, and
distinct, it suffices to choose the perturbation matrix E such that ‖S´1ES‖ ă δ. Theorem 4.1
provides a lower bound on the largest allowable perturbation of the data points such that this
condition holds.

Proof of Theorem 4.1. Let d̃ P Cpd, εq, and let Φ̃ be the associated fundamental matrix as
previously defined. Let E “ X̃1X̃

´1
0 ´ X1X

´1
0 . Applying the definitions of X̃0, X̃1, and the

relation X1 “ ΦX0 and multiplying on the right by pX0 `∆X0q yields

EpX0 `∆X0q “ pX1 `∆X1q ´ ΦpX0 `∆X0q.

Next, we distribute the E on the left-hand side, rearrange, multiply both sides by X´1
0 , and

use the definition of Φ to obtain

E “ p∆X1 ´ Φ∆X0qX
´1
0 ´ E∆X0X

´1
0

and hence
S´1ES “ S´1p∆X1 ´ Φ∆X0qX

´1
0 S ´ S´1ESS´1∆X0X

´1
0 S.

By taking the norm of both sides of the last equation, using the matrix norm property on
the right-hand side, and reordering the terms, we can find the following bound on ‖S´1ES‖,
provided that ‖S´1∆X0X

´1
0 S‖ ă 1:

‖S´1ES‖ ď ‖S´1p∆X1 ´ Φ∆X0qX
´1
0 S‖

1´ ‖S´1∆X0X
´1
0 S‖

.

After introducing ‖S´1∆X‖ :“ maxt‖S´1∆X0‖, ‖S´1∆X1‖u and using the decomposition
Φ “ SΛS´1, we obtain the following bound on ‖S´1ES‖ in terms of ‖S´1∆X‖ (provided
that ‖S´1∆X‖‖X´1

0 S‖ ă 1):

(4.2) ‖S´1ES‖ ď ‖S´1∆X‖p1` ‖Λ‖q‖X´1
0 S‖

1´ ‖S´1∆X‖‖X´1
0 S‖

.
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582 S. STANHOPE, J. E. RUBIN, AND D. SWIGON

Now, let

q “
δU

p1` ‖Λ‖q
` 1, ε̂ “ n‖S´1‖ε,

and let ε be defined as in the statement of the theorem. It follows from ε ď εU that ε̂ ď q´1

q‖X´1
0 S‖

or, equivalently, 1
q ď 1´ ε̂‖X´1

0 S‖. The condition d̃ P Cpd, εq implies that |p∆xiqj | ă ε for all

i P t1, . . . , nu, j P t0, . . . , nu, and so ‖S´1∆X‖ ď ‖S´1‖‖∆X‖ ď ε̂ (which holds for both ‖¨‖1

and ‖¨‖8q. Thus,

(4.3)
1

q
ă 1´ ‖S´1∆X‖‖X´1

0 S‖.

Substitution of (4.3) into inequality (4.2) can be used to conclude that ‖S´1ES‖ ă δU. By
Lemma 4.3, Φ̃ has n distinct positive eigenvalues.

In the special case where the first n data points x0, . . . , xn´1 are fixed, we can obtain a
tighter bound on the size of ∆xn. We look for the largest uncertainty ε of the final data
point xn so that for any x̃n P cpxn, εq, d̃ “ px0, . . . , xn´1, x̃nq gives an associated Φ̃ with n
distinct positive eigenvalues. Fixing the first n data points implies that ∆X0 “ 0 and hence
E “ ∆X1X

´1
0 .

Theorem 4.4. Let d P D be such that Φ has n distinct positive eigenvalues λ1, . . . , λn. Let
m1 “

1
2 mini‰j |λi´λj |, m2 “ min1ďiďntλiu ą 0, and δU “ mintm1,m2u. If ε ą 0 is such that

ε ă max

"

δU

‖S´1‖8‖X´1
0 S‖8

,
δU

n‖S´1‖1‖X´1
0 S‖1

*

,

then for any d̃ “ px0, . . . , xn´1, x̃nq, where x̃n P cpxn, εq, the associated matrix Φ̃ has n distinct

positive eigenvalues and hence the equation eÃ “ Φ̃ has a unique solution Ã.

Proof. Given fixed x0, . . . , xn´1 and x̃n P cpxn, εq, we have ‖∆X1‖8 “ ‖r0 ¨ ¨ ¨ 0 ∆xns‖8 “
max1ďjďn|p∆xnqj | ă ε and ‖∆X1‖1 ă nε. If ‖X´1

0 S‖8 ă n‖X´1
0 S‖1, then

‖S´1ES‖8 ď ‖S´1∆X1‖8‖X´1
0 S‖8 ă ε‖S´1‖8‖X´1

0 S‖8 ă δU.

In the opposite case,

‖S´1ES‖1 ď ‖S´1∆X1‖1‖X´1
0 S‖1 ă nε‖S´1‖1‖X´1

0 S‖1 ă δU.

In both cases, by Lemma 4.3, Φ̃ “ Φ` E has n distinct positive eigenvalues.

4.2. Analytical upper bound. To construct an upper bound on εU, we need only provide
a technique for constructing a perturbation ∆x0,∆x1, . . . ,∆xn for which the corresponding
matrix Φ̃ does not have n distinct real positive eigenvalues. Naively, for any specified diagonal
form Λ̃ of Φ̃, we can choose an arbitrary set of eigenvectors S̃, compute Φ̃ “ S̃Λ̃S̃´1, choose
the first data point x̃0, compute the remaining data points as x̃k “ Φ̃kx̃0, and compute the
error ε “ maxi,j |p∆xjqi|. This procedure can be used to provide a valid upper bound on
εU, but the resulting bound will be too large to be useful. Instead, we suggest the following
approach.
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Let Φ̂ be the matrix similar to Φ that has the form of a companion matrix, i.e.,

Φ̂ “ PΦP´1 “

»

—

—

—

—

—

–

0 0 . . . 0 y1

1 0 . . . 0 y2

0 1 . . . 0 y3
...

. . .
...

0 0 . . . 1 yn

fi

ffi

ffi

ffi

ffi

ffi

fl

.

One can think of Φ̂ as the fundamental matrix for a trajectory for which the data set d̂
is composed of the vectors of the standard basis of Rn, together with the data vector y “
py1, y2, . . . , ynq

T ; i.e., Φ̂ “ Gpd̂q for d̂ “ pe1, e2, e3, . . . , en, yq. The matrix P defines the affine
transformation that takes the data d into the standard (normalized) data d̂, i.e., P : Rn Ñ Rn,
where Pxj “ ej`1, Pxn “ y. This implies that P “ X´1

0 and Φ̂ “ X´1
0 X1.2

The vector y (the last column of Φ̂) is uniquely determined by the eigenvalues of Φ.

Likewise, we can specify ỹ of the companion matrix ˆ̃Φ “ pX̃0q
´1Φ̃X̃0 by prescribing the

eigenvalues of Φ̃. The vector ỹ satisfies the relation

ỹ “ pX̃0q
´1x̃n “ pX0 `∆X0q

´1pxn `∆xnq,

which, using xn “ X0y, implies a formula for the perturbation of xn in terms of ỹ and the
perturbation of all other data points:

(4.4) ∆xn “ ∆X0ỹ `X0pỹ ´ yq.

This formula provides a linear constraint on the perturbation of the data in terms of the
imposed eigenvalue properties (as represented by vector ỹ) that does not require the knowledge
of the eigenvector matrix S. Let Cpd, ε̃q be the smallest neighborhood of d that contains a
data set d̃ corresponding to a companion matrix defined by ỹ. In view of (4.4), the problem of
finding ε̃ can be reformulated as a linear programming problem of minimizing ε while satisfying
the constraints

wi “
n´1
ÿ

j“0

p∆xjqiỹj`1 ´ p∆xnqi, 1 ď i ď n,(4.5)

´ε ď p∆xjqi ď ε, 1 ď i ď n, 0 ď j ď n,(4.6)

where w “ X0py ´ ỹq. Note that the constraints (4.5) and inequalities (4.6) separate into
n distinct problems for each individual i. For each i, the domain defined by inequalities
(4.6) is a hypercube, and the constraint in (4.5) is a hyperplane in ∆X. The smallest εi
corresponds to the situation in which the surface of the hypercube (but not its interior) and
the hyperplane will have one or more points in common. One such point will occur at a vertex

2The supplemental material (M106246 supplement.pdf [local/web 3.70MB]) includes a discussion on how
the companion matrix formulation can also be used to define a region of data on which the inverse map F´1

is well defined.
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of the hypercube due to its geometry. At this vertex, |p∆xjqi| “ εi, and hence (4.5) reduces to

wi “ εi

˜

n´1
ÿ

j“0

pδjqiỹj`1 ´ pδnqi

¸

,

where |pδjqi| “ |p∆xjqi{εi| “ 1. It follows that

|εi| ě
|wi|

‖ỹ‖1 ` 1
,

where the equality is attained (and hence εi is minimized) at the vertex for which pδjqi “
sgnpyj`1wiq and pδnqi “ ´sgnwi. Now that we found the minimum εi for each i, we can define
the solution of the linear programming problem (4.5)–(4.6) as ε “ maxi εi:

(4.7) ε̃ “
max1ďiďn|wi|

‖ỹ‖1 ` 1
“

‖X0py ´ ỹq‖8
‖ỹ‖1 ` 1

.

Equation (4.7) provides an upper bound εU on εU for any appropriate choice of ỹ; this approach
does not provide an explicit formula for the minimizer of the linear programming problem,
however.

If one desires an analytical upper bound together with an explicit formula for the pertur-
bations ∆xi that realize this bound, one can use the inequality

(4.8) εU ď min
∆X0

max
0ďjďn

t‖∆xj‖8u ď min
∆X0

maxt‖∆X0‖, ‖∆X0ỹ `X0pỹ ´ yq‖u,

where the matrix norm ‖¨‖ can be either ‖¨‖8 or ‖¨‖1. Two crude estimates of (4.8) can
be obtained by putting ∆X0 “ 0, which implies εU ď ‖X0pỹ ´ yq‖, or by choosing ∆X0

such that ∆X0ỹ ` X0pỹ ´ yq “ 0 (for example, as ∆X0 “ X0py ´ ỹqỹT {‖ỹ‖2
2), which yields

εU ď ‖X0py ´ ỹqỹT ‖{‖ỹ‖2
2. A more refined approximation is then provided by the following

convex interpolation of the two crude estimates: ∆X0 “ αwỹT , with 0 ď α ď ‖ỹ‖´2
2 , and

w “ X0py ´ ỹq. An optimum in (4.8) is reached when

‖∆X0‖ “ ‖∆X0ỹ `X0pỹ ´ yq‖,

which implies
α‖wỹT ‖ “ ‖w‖p1´ α‖ỹ‖2

2q

and hence

α “
‖w‖

‖wỹT ‖` ‖w‖‖ỹ‖2
2

.

An upper bound on εU (distinct from (4.7)) is therefore provided by the quantity

(4.9) εU “
‖X0py ´ ỹq‖‖X0py ´ ỹqỹ

T ‖
‖X0py ´ ỹqỹT ‖` ‖X0py ´ ỹq‖‖ỹ‖2

2

.

The upper bound estimates given above, whether they are obtained as a solution of the
linear programming problem (4.7) or using (4.9), depend on the choice of ỹ, i.e., the choice of
eigenvalues of the perturbed matrix Φ̃. One can refine these bounds by further optimization
over all appropriate values of those eigenvalues.
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4.3. Numerical bound. In addition to finding analytical upper and lower bounds on the
uncertainty of the data using the techniques described above, one can also take a numerical
approach to estimating εU. For simplicity in representing the set Cpd, εq graphically, we will
focus our discussion on the case of a two-dimensional system; however, the approach can be
extended to n dimensions.

Fix d “ px0, x1, x2q P pR
2q3. To estimate εU, we will discretize the surface of Cpd, εq and

examine whether each grid point yields a unique inverse. By gradually increasing ε we can
find the bound as the largest value of ε for which a grid point fails to give a unique inverse. In
practice, we surround each data point xj with a collection Mj of points equally spaced along
the edge of a square with center point xj and side length 2ε (see Figure 1). Depending on the
desired precision, we choose Mj to consist of 8, 16, or 32 grid points. Then, we pair any point
p0 P M0 with any points p1 P M1 and p2 P M2 to define the matrix Φ “ rp1 | p2srp0 | p1s

´1.
In accordance with Theorem 2.2, the eigenvalues of Φ will determine whether the solution to
Φ “ eA is unique.

Coordinate 1

C
oo

rd
in

at
e 

2

x
j

ε

ε

Figure 1. Grid Mj surrounding a sample data point.

4.4. Analytical bounds for additional properties. Using the results we have obtained so
far, we can derive upper and lower bounds on the uncertainty in data that preserves additional
qualitative properties of the solution to the inverse problem, as long as these properties can
be defined as conditions on the eigenvalues of the matrix Φ. For example, let d P D be such
that Φ has n distinct real eigenvalues λ1, . . . , λn satisfying 0 ă λj ă 1, j “ 1, . . . , n. Then,
the associated matrix A (with Φ “ eA) has n distinct negative eigenvalues, and hence the
equilibrium is a stable node. Let εSN define the maximal permissible uncertainty in the data
d under which the equilibrium remains a stable node. A lower bound on εSN can be obtained
using the same argument as in Theorem 4.1, except with the bound on maximum perturbation
of eigenvalues, δU, replaced by the quantity δSN that guarantees that the perturbed eigenvalues
remain real, distinct, and between 0 and 1. Below we present, without proofs, analytical lower
bound statements analogous to Theorem 4.1 for the cases of a stable node and a stable system,
as well as for the case in which we require no solution to exist. We leave it to the reader to
derive upper bounds using the line of reasoning presented in section 4.2.

Theorem 4.5. Let d P D be such that Φ has n distinct positive eigenvalues λ1, . . . , λn
satisfying 0 ă λj ă 1, j “ 1, . . . , n. Let m1 “

1
2 mini‰j |λi ´ λj |, m2 “ min1ďjďntλju,

m3 “ min1ďjďnt1´ λju, and δSN “ mintm1,m2,m3u. If ε ą 0 is such that ε ď εSN “ fpδSN, dq
with f defined as in (4.1), then for any d̃ P Cpd, εq, Φ̃ has n distinct positive eigenvalues λ̃j
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with 0 ă λ̃j ă 1, j “ 1, . . . , n, and hence the equation eÃ “ Φ̃ has a unique matrix solution Ã
for which the origin of (2.1) is a stable node.

To guarantee stability of the equilibrium with respect to all inverse problem solutions
without demanding uniqueness of a solution, we require that d P D be such that the eigenvalues
of Φ are not real negative and satisfy 0 ă |λj | ă 1, j “ 1, . . . , n. Then, the associated matrix
A (with Φ “ eA) has (possibly complex) eigenvalues with negative real part, and thus the
equilibrium at the origin is stable. Let εS define the maximal permissible uncertainty in the
data d such that the equilibrium remains stable. A lower bound on εS is obtained in the
following result.

Theorem 4.6. Let d P D be such that the eigenvalues of Φ are not real negative and satisfy
0 ă |λj | ă 1, j “ 1, . . . , n. Let m1 “ min1ďjďnt1 ´ |λj |u, m2 “ minj |λj | for all j such that
Repλjq ą 0, m3 “ minj |Impλjq| for all j such that Repλjq ă 0, and δS “ mintm1,m2,m3u.
If ε ą 0 is such that ε ď εS “ fpδS, dq with f defined as in (4.1), then for any d̃ P Cpd, εq,
the eigenvalues of Φ̃ satisfy 0 ă |λ̃j | ă 1, j “ 1, . . . , n, and are not real negative. Hence the

equation eÃ “ Φ̃ has a solution Ã, and every such solution has all eigenvalues with negative
real part.

Finally, it is interesting to consider the case of nonexistence of an inverse. In particular,
given data d for which a real inverse A does not exist, i.e., data that do not represent the
trajectory of any real linear system, what is the greatest amount of uncertainty for which
nonexistence of a real solution persists, and hence a linear model should not be considered as
a possible mechanism underlying the observed uncertain data? Let d P D be such that Φ has
at least one negative real eigenvalue of odd multiplicity, which implies that there is no real
matrix A such that Φ “ eA. Let εDNE define the maximal permissible uncertainty in the data
d under which the inverse problem will be guaranteed to remain without a real solution. A
lower bound on εDNE is obtained in the following result.

Theorem 4.7. Let d P D be such that Φ has at least one negative real eigenvalue of odd
multiplicity. Let the collection of such eigenvalues be denoted by λ1, . . . , λk, where λk is the
closest to zero. Let m1 “ max1ďiďkpminjpj‰iq

1
2 |λj´λi|q, m2 “ |λk|, and δDNE “ mintm1,m2u.

If ε ą 0 is such that ε ď εDNE “ fpδDNE, dq with f defined as in (4.1), then for any d̃ P Cpd, εq,

Φ̃ has at least one negative eigenvalue of odd multiplicity, and hence the equation eÃ “ Φ̃ has
no real solution.

5. Examples for two-dimensional systems. In the case of two-dimensional linear systems,
one can represent several of the previous results in a more explicit fashion and extend the
stability results to encompass various classifications of the equilibrium. We present these
extensions here, along with several numerical examples that can be conveniently depicted in
the phase plane.

5.1. Regions of existence and uniqueness of the inverse. The criteria in Theorems
2.1 and 2.2 are based on the Jordan structure of Φ, which for real 2 ˆ 2 matrices can only
take a few different forms and hence can be analyzed completely. Utilizing the relationship
between the eigenvalues of a matrix and its trace and determinant, the criteria for existence
and uniqueness of the matrix logarithm of Φ can be fully characterized by conditions on the
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trace and determinant of Φ which, in turn, can be expressed as conditions on the data from
which Φ is constructed. For notational simplicity, let D “ det Φ and T “ tr Φ.

The analysis is based on the following straightforward corollaries of Culver’s theorems.

Corollary 5.1. Let Φ P R2ˆ2. There exists A P R2ˆ2 such that Φ “ eA if and only if D ‰ 0
and any of the following holds:

(a) D ą 0, T ą 0, and T 2 ě 4D,
(b) T 2 ă 4D,
(c) Φ “ λI, with λ ă 0.

Corollary 5.2. Let Φ P R2ˆ2. There exists a unique A P R2ˆ2 such that Φ “ eA if and only
if T ą 0, T 2 ě 4D ą 0, and Φ ‰ λI for all λ P R.

In two dimensions, the matrix Φ is constructed from the uniformly spaced data d “
px0, x1, x2q P D, as Φ “ X1X

´1
0 . The determinant and trace of Φ are then given by D “

detX1{detX0 and T “ detrx0|x2s{detX0. The conditions defined in Corollaries 5.1 and 5.2
thus define regions in six-dimensional data space in which the inverse A exists or exists and
is unique.

Once we know that a real matrix A exists, additional conditions on the data may be found
that define certain important properties of the system. The classification of the equilibrium
point at the origin is easily determined by eigenvalues of A (as found in any standard textbook
on theory of systems of linear ODEs) and hence can also be transformed into conditions on
T and D.

Theorem 5.3. The equilibrium point x “ 0 of system (2.1) with matrix A P R2ˆ2 is
(a) a stable node if T ą 0, T 2 ą 4D ą 0, and 1 ą D ą T ´ 1;
(b) an unstable node if T ą 0 and T 2 ą 4D ą 4pT ´ 1q;
(c) a saddle if T ´ 1 ą D ą 0;
(d) a stable spiral if T 2 ă 4D ă 4;
(e) an unstable spiral if T 2 ă 4D and D ą 1;
(f) a center if D “ 1 and T 2 ă 4.

Figure 2(a) graphically summarizes the results of Corollaries 5.1 and 5.2 and Theorem
5.3 in the T, D plane. The region where A is unique contains all of the systems where the
equilibrium point is a saddle or node (marked in blue), and the region corresponding to a
nonunique A contains all of the systems where the equilibrium point is a spiral or a center
(marked in black). The label DNE indicates that in this region, the matrix logarithm results
in complex matrices A, whereas we are only interested in data resulting from systems with
real parameters (A P R2ˆ2). (Note that the diagram differs from that presented in standard
textbooks for 2 ˆ 2 linear systems because here T and D refer to the trace and determinant
of Φ “ eA and not the trace and determinant of A.)

Just like Corollaries 5.1 and 5.2, Theorem 5.3 defines regions in six-dimensional data space
in which the inverse solution has various stability properties. By fixing two of the data points,
one can visualize two-dimensional cross sections of these regions defined by conditions on the
third data point. Figure 2(b) shows the outcomes associated with different regions where x2

can be located, given example locations of x0 and x1.
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Figure 2. (a) Properties of the inverse problem solution depicted in terms of conditions on D “ det Φ and
T “ tr Φ. Uniqueness of the solution to the inverse problem holds in the regions labeled in blue, and existence
holds in the regions labeled in black. (b) Conditions on the position of x2 to give various properties when x0
and x1 are fixed. In both figures, solid lines form boundaries between regions; dashed lines do not.

5.2. Bounds on maximal permissible uncertainty. In this section we will illustrate the
dependence of the maximal permissible uncertainty on the data and the property being main-
tained.

Example 5.4 (differences between analytical bounds and numerical estimates of maximal per-
missible uncertainty). Let d “ px0, x1, x2q “ pp10, 2qT , p6.065,´4.44qT , p7,´10qT q, which are
points that are equally spaced in time on a trajectory of the system (2.1) with

A “

„

´0.6724 ´0.7201
´0.8610 ´0.0244



.

Since Φ “ eA has two distinct positive eigenvalues, A is the unique matrix that yields
the data d. For this data set, the direct numerical estimate of the maximum permissible
uncertainty for uniqueness is ε̃U “ 1.075. The analytical lower bounds on εU are substantially
smaller than the numerical bound, namely ε8U “ 0.083 and ε1U “ 0.149 (where ε8U is found by
applying the norm ‖¨‖8 and ε1U by using the norm ‖¨‖1 in Theorem 4.1).

The analytical upper bound depends on the choice of eigenvalues for the perturbed ma-
trix Φ̃. Using (4.9) and choosing a perturbed matrix with one zero eigenvalue and the second
eigenvalue equal to the average of eigenvalues of Φ yields the upper bound εU “ 1.245. Opti-
mization over the value of the second eigenvalue yields a better estimate εU “ 1.078, which is
essentially identical to the numerical upper bound. Choosing a perturbed matrix with identi-
cal eigenvalues equal to the average of eigenvalues of Φ leads to εU “ 1.841, and optimization
over the position of the double eigenvalue gives the upper bound εU “ 1.570. Using the linear
programming estimate of (4.7) gives the same bounds as the zero eigenvalue choice of per-
turbation. Choosing a perturbed matrix with identical eigenvalues equal to the average of
eigenvalues of Φ and solving (4.9) yields εU “ 1.224, and optimization over the position of the
double eigenvalue gives εU “ 1.140. A summary of the optimal bounds is given in the second
column of Table 1.
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Table 1
Best estimates of εX, X P tSN, U, S, DNEu, for Example 5.5.

Property (X) Stable node (SN) Unique (U) Stable (S) Nonexistence (DNE)

x2 p3.68,´3.46q p7,´10q p3.1,´5.5q p3, 6q

ε̃X numerical estimate 0.216 1.075 0.519 3.055
εX by Theorem 4.1 0.059 0.149 0.207 0.609

εX by (4.7) 0.217˚ 1.078: 0.519; 3.059#

εX by (4.9) 0.251˚ 1.078: 0.665; 3.683:

˚λ1 “ λ2, :λ1 “ 0, ;λ2 “ 1, #λ2 Ñ8.
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Figure 3. (a) Regions where particular properties hold when x0 and x1 are fixed, based on Theorem 5.3.
Various x2 are selected, and estimates of the maximal permissible uncertainty εX are then computed. (b) Squares
depict the numerically obtained bounds on the uncertainty allowed to preserve stable node (red), stability (cyan),
uniqueness (blue), and nonexistence (green) properties. Coordinates of x2 and numerical values of the bounds
are listed in Table 1.

Example 5.5 (dependence of maximal permissible uncertainty on x2). As in Example 5.4,
let x0 “ p10, 2qT , x1 “ p6.065,´4.44qT . Theorem 5.3 defines regions in R2 that specify the
nature of the equilibrium based on the location of the last data point x2. The boundaries of
the regions are shown in Figure 3(a). We select a sample point x2 from each labeled region,
and in each case, we compute various estimates of the maximal permissible uncertainty ε
to preserve the corresponding property. We depict each uncertainty by outlining in Figure
3(b) the square-shaped sets cpx0, εq, cpx1, εq, and cpx2, εq in the phase plane R2, which can be
interpreted as follows: Given any x̃0 P cpx0, εq, x̃1 P cpx1, εq, and x̃2 P cpx2, εq, the matrix A
that yields the data d “ px̃0, x̃1, x̃2q has the appropriate property. Table 1 summarizes the
location of x2, the property being preserved, and the best estimate of ε in each case. As can
be seen in Figure 3, it appears that the proximity of x2 to the boundary of the region in which
the desired property holds impacts the size of the resulting ε.
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Figure 4. (a) Numerical estimates ε̃U “ ε̃SN (red) and ε̃S (cyan) for data depicted. (b) Stable node trajectory
(red) that passes through the data d at equally spaced time points, and stable spiral trajectory (blue) through
perturbed data d̃ “ px0, x1, p3.1,´4.3qT q, where d̃ P Cpd, ε̃Sq but d̃ R Cpd, ε̃Uq.

Example 5.6 (dependence of maximal permissible uncertainty on the choice of solution prop-
erty). Consider the data set d with x0, x1 as in Examples 5.4 and 5.5 and with fixed x2 “

p3.6,´4.3qT , corresponding to a dynamical system with a stable node at the origin. The
maximal permissible uncertainty of the data depends on which property we require to be pre-
served. In this case we can choose among uniqueness, the stable node property, and stability.
If we want to guarantee a unique solution to the inverse problem, we find that ε̃U “ 0.072.
This is quite small due to the proximity of x2 to the border of the stable spiral region where
A is nonunique, as seen in Figure 4(a). Note that cpx2, ε̃Uq does not extend all the way out
to the boundary of the stable spiral region, because these boundary lines are derived with
x0 and x1 fixed, but we allow uncertainty in all three data points. For preservation of the
stable node property, we observe that in this case ε̃SN “ ε̃U; however, this relation does not
hold universally. It would not be true, for example, if x2 were located within the stable node
region but closer to the saddle region where A is unique. If we want to ensure that the data
lie on a trajectory that converges to the origin (i.e., preserve the stability of the system), we
find that the maximal permissible uncertainty is ε̃S “ 0.647, which is significantly larger than
ε̃U. Thus we can guarantee stability for larger uncertainty in the data than what is needed to
preserve the uniqueness of solutions. Figure 4(a) depicts the data in the phase plane and the
numerically computed maximal permissible uncertainties for the uniqueness, stable node, and
stability properties. Within the set Cpd, ε̃Sq, any choice of data will lie on a stable trajectory;
however, the uniqueness of the inverse problem may not be preserved. In Figure 4(b) we
illustrate two different data sets contained in Cpd, ε̃Sq: one data set on a stable node trajec-
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tory (red), corresponding to a unique A, and a second data set belonging to a stable spiral
trajectory (blue), where A is not unique.

6. Application to a model of gene regulation. Holter et al. [12] use linear dynamical
models to describe the time evolution of gene expression levels in various biological systems.
They first deduce characteristic modes of the gene expression data using the singular value
decomposition and then derive a discrete time transition matrix to model the time evolution of
the system. One system they present describes the dynamics of six groups of genes involved in
sporulation. The original measurements of expression levels of 1116 genes, collected in irregu-
lar intervals over a period of 12 hours, were ordered to obtain similar expression patterns and
divided into six groups to reflect the time of first induction or repression [7]. The translation
matrix N reported in [12] describes the transition between levels Cptq and Cpt`∆tq, where
∆t “ 1.

For the purpose of illustrating the implications of our results on the interpretation of
the sporulation model of Holter et al. [12], we have transformed the irregularly spaced data
into equally spaced data (with an interval of 2 hours) and performed uncertainty analysis.
The transformed data are shown in Figure 5, and the trajectories of the model are shown in
Figure 6, upper left panel (unstable spiral).
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Figure 5. Data for the sporulation gene dynamics model of [12]. Error bars indicate the upper bound on
maximum permissible uncertainty for spiral behavior. Data points are connected by dotted lines to guide the eye.

The matrix A corresponding to the dynamical system has eigenvalues ´0.1840˘ 0.5117i,
0.0500 ˘ 0.4420i, 0.0264 ˘ 0.1954i and hence has a four-dimensional unstable manifold with
spiral dynamics and a two-dimensional stable manifold with spiral dynamics. We have used
the methods presented in this work to characterize the maximum permissible uncertainty that
preserves either the unstable spiral behavior of the model, the spiral property of the model,
or the existence of the inverse, labeled as εUnSp, εSp, or εE, respectively. The results are shown
in Table 2. The upper bound estimates are not sharp since they have not been optimized over
all possible choices of ỹ.
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Figure 6. Trajectories of models obtained by perturbing the last data point of the sporulation gene dynamics
model and computing the corresponding parameter matrix A. The five unperturbed data points (identical in each
panel) are marked with circles. The perturbed data point is labeled with a star; these points differ across panels
and lead to different properties of the inverse problem solution, including nonexistence of a real parameter
matrix for the data in the lower right panel. Within each panel, each color represents a different variable
of the system, while the same variables share the same color across panels. See the supplemental material
(M106246 supplement.pdf [local/web 3.70MB]) for an expanded view of the trajectories.

Table 2
Best estimates of εX for sporulation model.

Property (X) Unstable spiral (UnSp) Spiral (Sp) Existence (E)

ε̃X numerical estimate 9.5ˆ 10´4 0.0017 0.0015
εX by Theorem 4.1 2.52ˆ 10´5 1.53ˆ 10´4 1.31ˆ 10´4

εX by (4.7) 0.0037 0.0301 0.0111
εX by (4.9) 0.0145 0.0654 0.0329

The uncertainty εUnSp is, not surprisingly, rather small, since the unstable eigenvalues of A
are close to zero, and any perturbation of the data that results in those eigenvalues crossing
the imaginary axis will stabilize the system. Surprisingly, εSp is also small, as indicated by
the error bars in Figure 5. Once the upper bound is reached, there exist data for which the
corresponding matrix has eigenvalues with positive real part and no imaginary component.
Finally, εE appears to be larger than εUnSp but potentially smaller than εSp, which indicates thatD
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the loss of existence of a real inverse can be induced by a smaller perturbation than can the loss
of oscillatory behavior. The effects of selected perturbations of the data on the trajectory of
the system can be seen in Figure 6. Note that when the equilibrium is a stable node, although
the trajectories appear to diverge, they do approach 0 after an excursion to no more than
350 on the vertical axis (see Figure 3.1 of the supplemental material M106246 supplement.pdf
[local/web 3.70MB]).

7. Remark on nonuniform spacing of data. In the results presented so far we have
assumed that the data available about the system (2.1) are spaced uniformly in time, i.e.,
that d contains the data points x0, x1, x2, . . . , xn P Rn, where xj “ xpj;A, bq “ eAjb. In this
section we shall make a few remarks on how the results can be extended to the case in which
data are spaced nonuniformly, with the restriction that the sampling times are still integer
multiples of some ∆t, assumed without loss of generality to be equal to 1. Such situations
occur frequently for medical data, which are usually collected more frequently during the early
course of a disease and less frequently during recovery.

The following lemma relates the eigenvalues of Φ “ eA to the data d “ pxj0 , xj1 , xj2 , . . . , xjnq.

Lemma 7.1. Assume that for i “ 0, . . . , n, xji “ Φjib, where ji are integers such that
0 “ j0 ă j1 ă ¨ ¨ ¨ ă jn. Let X0 “ rxj0 | . . . |xjn´1s, and assume that X0 is invertible and Φ is
nonsingular. Let y “ X´1

0 xjn be a vector with entries y1, y2, . . . , yn. Then λ is an eigenvalue
of Φ only if λ is a root of the polynomial

(7.1) λjn ´ ynλ
jn´1 ´ ¨ ¨ ¨ ´ y2λ

j1 ´ y1 “ 0.

Proof. Since y “ X´1
0 xjn , it follows that xjn “ X0y, i.e.,

(7.2) Φjnb “
n´1
ÿ

i“0

yi`1Φjib.

The assumption that X0 is invertible is equivalent to the statement that the vectors txjiu
n´1
i“0

are not confined to a proper subspace of Rn, and hence, if xji “ Φjib “ eAjib, b is not confined
to a proper Φ-invariant subspace of Rn. Thus b, when decomposed in the basis of ordinary
and generalized eigenvectors of Φ, has a nonzero component along the ordinary or generalized
eigenvector for every eigenvalue of Φ. Let v be the eigenvector corresponding to the eigenvalue
λ of Φ. If b has a nonzero component along v, then (7.2) implies that

λjnv “
n´1
ÿ

i“0

yi`1λ
jiv,

which proves the statement. If the component of b along v is zero, but b has a nonzero
component along u such that pA´ λIqk´1u ‰ 0 and pA´ λIqku “ 0, then (7.2) implies that

λjn`ku “
n´1
ÿ

i“0

yi`1λ
ji`ku,

which for nonzero λ reduces to the previous case.
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Lemma 7.1 can be employed in solving the inverse problem as follows: First, the vector y
is computed from the data d “ pxj0 , xj1 , xj2 , . . . , xjnq. Second, all roots of the polynomial (7.1)
are found using numerical techniques. Third, a combination of n distinct roots is chosen from
the collection of roots. Fourth, the companion matrix Φ̂ of Φ is formed from the chosen roots,
and a set of vectors zji , i “ 0, 1, . . . , n´1 is computed by taking z0 “ e1 and zji`1 “ Φ̂ji`1´jizji .

Finally, the matrix Φ is found as Φ “ P´1Φ̂P , where P is the (unique) n ˆ n matrix such
that Pxji “ zji for i “ 0, 1, . . . , n´ 1.

The procedure outlined above can find any matrix Φ that is robust, in the sense of Corol-
laries (3.1)–(3.3). The condition that X0 be invertible (i.e., b not be confined to a proper
Φ-invariant subspace) is essential for identifiability of A, as we have already observed in [17]
for the special case of ji “ i. If the indices ji differ by more than 1, then the polynomial (7.1)
has more roots than the matrix Φ has eigenvalues. Arbitrary combinations of such roots will
lead to different alternative matrices Φ and hence to nonuniqueness of solutions of the inverse
problem. By an appropriate choice of the roots that make up the eigenvalues of Φ, one may
be able to control the properties of the matrix Φ and, in turn, the existence, uniqueness, and
stability properties of the parameter matrix A of the system (2.1).

8. Remark on data size. Since in this paper we are primarily concerned with the invert-
ibility of the solution map, we have naturally assumed that the parameter and data spaces
are of the same dimension. This is a limitation from a practical point of view since in realistic
scenarios the relation between the number of parameters and the size of the data may not be
under control. We will briefly address here three such scenarios.

Scenario 1: If the number of time points at which data are collected is smaller than
n`1, then dimpDq ă dimpPq, and it is clear that the parameter matrix cannot be completely
determined from the data. Surprisingly, just one missing time point results in a complete
loss of information about the eigenvalues of the solution matrix Φ. This follows from the
companion formulation Φ̂ “ X´1

0 X1, introduced in section 4.2. Since Φ̂ is determined by the
eigenvalues of Φ, for any choice of such eigenvalues, i.e., for any choice of Φ̂, there exists xn
such that the data set d “ px0, x1, x2, . . . , xnq is compatible with Φ̂, namely xn “ X0y. In
other words, the knowledge of X0, i.e., the knowledge of the first n data points x0, x1, . . . , xn´1

for an n-dimensional linear dynamical system, does not provide any information about the
eigenvalues of that system. Thus, we cannot deduce from just n or fewer data points whether
the observed n-dimensional linear system is stable or unstable, whether its fixed point is
a node or spiral or saddle, or even whether the data are generated by a system with a real
parameter matrix. Figure 6 illustrates this point by showing trajectories of a linear dynamical
system (2.1) from Holter et al. [12] that all share an identical matrix X0 but differ widely in
dynamical properties. The same observation can be made about similar cases in which any
one of the n` 1 data points x0, x1, x2, . . . , xn is missing.

Scenario 2: If the data is collected at m ě n ` 1 equally spaced time points, say t “
0, 1, 2, . . . ,m, but not all the variables are observed, then one can also encounter situations
with dimpDq ‰ dimpPq. In this case one may be able recover from the data the eigenvalues
of the matrix Φ, but not the trajectories of the unobserved variables. To this end, note that,
just like above, xn “ X0y “ rx0|x1| . . . |xn´1sy and hence the data obey for any j and any
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variable i the linear difference equation

(8.1) pxj`nqi “ ynpxj`n´1qi ` ¨ ¨ ¨ ` y2pxj`1qi ` y1pxjqi.

Furthermore, recall that the kth data point is related to the initial condition as xk “ Φkb,
and suppose further that Φ is diagonalizable with distinct eigenvalues, Φ “ SΛS´1, where
the eigenvectors si are scaled so that b “

ř

j sj (we here implicitly assume that the initial
condition has components along every eigenvector, and hence the system is identifiable from
the full trajectory). Then, for all i, pxkqi “

ř

jpsjqiλ
k
j . Standard techniques for solving linear

difference equations imply that by collecting 2n` 1 consecutive data px0qi, . . . , px2nqi for any
single variable i, one can recover the entries of the vector y from which one can find the
eigenvalues λ1, . . . , λn and, subsequently, solve for ps1qi, . . . , psnqi. If data for other variables
are known, then more entries of the matrix S can be recovered. Incidentally, one can use (8.1)
to predict the future trajectory of the ith variable without the knowledge of the behavior of
any other variables.

Scenario 3: If the data are collected at m ą n` 1 time points, say t “ 0, 1, 2, . . . ,m, and
all variables are observed, then dimpDq ą dimpPq. If all of the data lie on a single trajectory,
then one can use any collection of consecutive n`1 data points to recover Φ and subsequently
A. If the data do not all lie on a single trajectory, possibly due to a measurement error,
then the equation rx1|x2| . . . |xms “ Φrx0|x1| . . . |xm´1s is not satisfied. The usual approach
is then to find Φ and b that “best” represent the available data. There are many ways to do
this, depending on the information one has about the measurement error: (i) Find Φ that
minimizes }X1 ´ΦX0} for some norm of choice; (ii) find y that minimizes }xj`n ´Xjy}; (iii)
find Φ, b that minimize

ř

k }xk ´ Φkb},
a

ř

k }xk ´ Φkb}2, or maxk }xk ´ Φkb}; or (iv) define
Φ as the average of Φj “ Xj`1X

´1
j . For example, the quantity }X1 ´ ΦX0}F (where } ¨ }F

denotes the Frobenius norm) is minimized by Φ “ X1X
`
0 , where X`0 denotes the Moore–

Penrose pseudoinverse of the matrix X0 [14, 4, 15]. The study of the uncertainty of inverse
problem solutions in this case requires a separate treatment in which all methods described
above would be analyzed and compared.

9. Discussion. We have analyzed the inverse problem for linear dynamical systems, i.e.,
the problem of finding the value of the parameter matrix for which a linear system generates
a given discrete data set consisting of points equally spaced in time on a single trajectory.
Our results establish regions in data space that give solutions with particular properties, such
as uniqueness or stability, and give bounds on the maximal allowable uncertainty in the data
set that can be tolerated while maintaining these characteristics.

Three types of bounds on uncertainties are presented: analytical lower bounds, below
which properties are guaranteed to hold for all perturbations of data; analytical upper bounds,
which provide proven perturbations of data for which properties are guaranteed to be lost; and
numerical bounds, derived from direct sampling of data points. Our results indicate that the
upper bounds, when optimized over all potential eigenvalues, provide excellent agreement with
the numerical estimates. The numerical methods are hypothetically applicable to systems of
arbitrary size; however, the combinatorial problem of pairing together all possible data points
along grid points can pose a challenge as the dimension of the system increases. Similarly,
the computation of the analytical upper bound (via (4.7) or (4.9)) requires optimization that
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becomes computationally expensive for larger systems. Although the analytical lower bound
significantly underestimates the maximal permissible uncertainty, it provides a bound that
is immediately accessible for systems of higher dimension, without increased computation.
Since we focused on the derivation of these bounds, the question of how these bounds scale
with system size remains open for future investigation. Furthermore, in this work, we have
considered only random perturbations of the data matrix Φ. Due to the special construction
of the matrix Φ, it may be possible to improve the analytical lower bound by considering
structured matrix perturbations. Many results have been established concerning the bounds
on eigenvalues for structured perturbations of matrices [13, 11] that may prove useful in this
effort.

This paper can be considered as an extension of our earlier work on identifiability of linear
and linear-in-parameters dynamical systems from a single trajectory [17]. In that study, we
assumed that a trajectory, or a collection of data representing the trajectory, of a dynamical
model was given and asked whether there was a unique choice of parameter matrix for which
that model could generate the given data. We showed that for a linear initial value problem
with coefficient matrix A and initial condition b, uniqueness requires that tb, Ab, . . . , An´1bu
are linearly independent, and this condition can be translated into a condition on the geometric
structure of the observed trajectory. For linear-in-parameters systems 9x “ Afpxq we found a
similar geometrical condition that guarantees identifiability of A.

A variety of earlier works considered identification of linear systems or parameter matrices
from discrete data. Allen and Pruess proposed a method for approximating A in system
(2.1) from a discrete collection of data points [3]. Their approach begins by defining an
approximating function for the data (e.g., a cubic spline approximation), and they use equally
spaced points along this curve to compute a matrix Â that approximates the true parameter
matrix A. A key distinction between their work and the initial analysis presented here is
that they use points on an approximation of the trajectory, while we assume that the data
represent exact points on the actual trajectory; their results also do not treat uncertainty in
data.

In other past work, Singer and Spilerman investigated the problem of identifying the
matrix Q in the Markov model P 1 “ QP , where P and Q are n ˆ n matrices [16]. They
derive conditions for P “ eQ to have a unique solution. Their results are consistent with
the findings of Culver, but with additional constraints to account for the requirement that
the model be a continuous time Markov structure. They additionally comment on the case
of identifying Q from noisy observations and suggest exploring in a neighborhood of P to
detect nonuniqueness of the matrix logarithm through observations on the eigenvalues of the
matrices in this neighborhood.

It is of interest to note that much work has been done in determining the maximal allowable
uncertainty in the parameter matrix A such that the solution to (2.1) remains stable [11]. This
well-known bound is called the stability radius. In our investigation of the inverse problem,
εS has an analogous meaning, but we quantify the uncertainty in the data space rather than
in parameter space.

Our results also include bounds on regions of data space where the inverse problem cannot
be solved. The utility of such results is that they can provide an approach for model rejec-
tion. That is, suppose we have a data set d acquired from measurements of some physical
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phenomenon that we believe can be modeled with a linear system of differential equations.
Perhaps it is known that the measurement error for any data point xi is approximately given
by ε. If we find that there is no real matrix A that yields the collected data d and further find
that εDNE ą ε, then we can conclude with certainty that the data cannot come from a system
that can be modeled with a linear system of differential equations, and thus we can reject the
linear model.

Our work is also related to the important problem of determining identifiability in pa-
rameter estimation, which seeks a way to explicitly define sets in parameter space on which
a model is identifiable. The connection to identifiability is apparent if we consider the set
in parameter space defined by F´1pCpd, εUqq. On this set we have that F´1pd1q ‰ F´1pd2q

implies d1 ‰ d2 P Cpd, εUq, which is to say that two distinct parameter sets must yield distinct
data. So, F´1pCpd, εUqq defines a set in parameter space on which the model is identifiable.
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