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Pattern Formation in a Model of Acute Inßammation �

Kevin Penner•, Bard Ermentrout‚ , and David Swigon‚

Abstract. We seek to understand patterns that form due to acute in”ammation in the skin in the absence
of speci“c pathogenic stimuli. By incorporating inhibition (represented by an anti-in”ammatory
cytokine) into a classical Keller…Segel chemotaxis model, we create a novel model that produces
a variety of spatial patterns. We “nd that the dynamical instability in both homogeneous and
nonhomogeneous steady states arises only when the inhibitor dynamics are su�ciently slow. We
present simulation results that motivate the nonlinear analysis of the model and illustrate a variety of
interesting dynamic two-dimensional spatial patterns that form, including isolated traveling pulses,
rotating waves, and patterns that do not settle to a regular behavior.
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1. Introduction. In”ammation is the biological response of an organism to harmful stim-
uli that is required for proper functioning of the immune system, regeneration, and repair.
Dysregulation of in”ammation can lead to complex diseases such as sepsis, trauma, asthma, al-
lergy, autoimmune disorders, transplant rejection, cancer, neurodegenerative diseases, obesity,
and atherosclerosis. In”ammation is comprised of a series of complex interactions involving
multiple cell types and dozens of molecules, making causal interpretation of observed data
di�cult [ 38]. Mathematical modeling has emerged as a useful tool for easing this complexity
and constructing reduced models (see the reviews [7, 36, 35, 37] and references therein). For
example, Reynolds et al. [25] developed a multivariable model that involved the interactions
between neutrophils, pro- and anti-in”ammatory cytokines, pathogens, and damage associ-
ated with the in”ammatory response. More recently, Valeyev et al. [34] developed a model for
immune response in the skin and reduced it to a system of two activator-inhibitor di�erential
equations. Despite the increasing awareness of the need for mathematical modeling in this
area, there have been only a few models which incorporate spatial aspects in the modeling,
mostly in the context of rash development [13], wound healing [31, 27, 39, 2], or tumor growth
[1, 20, 5].

In this paper, we introduce a simpli“ed spatial model for the dynamics of in”ammation
that is intended as a model of rashes. We consider a system consisting of a “xed population
of immune cells (such as macrophages or neutrophils) and two types of signaling molecules: a
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630 K. PENNER, B. ERMENTROUT, AND D. SWIGON

chemokine that serves as a chemoattractant for the immune cells, and an anti-in”ammatory
cytokine which serves as an inhibitor. We assume that both molecules are produced by the
immune cells but the anti-in”ammatory cytokine dynamics follows a slower time scale than the
chemokine dynamics. This is typical in the innate immune response where anti-in”ammatory
cytokines are produced with some delay in order to allow the immune response to develop.
The immune cells are attracted to higher concentrations of the chemoattractant, so there
is a positive feedback between chemokine production and localization of the immune cells.
Simultaneously, but at a slower rate, the anti-in”ammatory cytokine produced by the immune
cells inhibits the production of both itself and the chemoattractant. We are not concerned
with the origin of a particular in”ammatory response, so we do not introduce pathogens or
other insults. One can view the model as the result of a runaway immune response, such as
in allergic rashes where the insult that initially activated the response was transient and has
already disappeared.

We seek to understand patterns that develop in the system. Traditionally, models of pat-
tern formation follow Turing•s work [ 33] on reaction-di�usion equations, where a homogeneous
steady state can become unstable and small perturbations can lead to stationary or dynamic
heterogeneous patterns. While pattern formation in reaction-di�usion systems has been stud-
ied extensively [9, 32, 11, 23], less attention has been paid to the systems with chemotaxis,
to which our model belongs. A review of chemotaxis models, including their biological mo-
tivations, existence and regularity of solutions, and descriptions of patterns, can be found
in [12]. The general model of chemotaxis by Keller and Segel [15, 16] is the most common
mathematical formulation of the chemotactic motion of microorganisms:

mt = ∇ · (k1(m, c)∇m− k2(m, c)∇c) ,(1)

ct = Dc∇2c− k3(c)c + mf (c).

Here,m is the density of some conserved species (in this paper, macrophages) andc is a chemo-
attracting chemical that is released by m. The “rst term in the dynamics of m represents
random undirected di�usion, and the second is a chemotactic term such thatm moves up the
gradient of c. The terms in the dynamics for c are respectively undirected di�usion, decay, and
production by m. The existence and regularity of solutions of the Keller…Segel model depends
on the chemotactic term k2. For many natural choices (i.e., k2(m, c) = m) the solutions
blow up in two dimensions. However, modi“cations can be introduced so that solutions exist
globally in time [12].

An important property of chemotaxis models is their ability to generate spatial patterns.
For example, Lubkin, Tyson, and Murray [19] use a chemotaxis model to study bacterial
pattern formation. The patterns are generally stationary or evolve to stationary limits through
transients. It has been found that the Keller…Segel model does support traveling waves in
special cases, for example, fork2(m, c) = m/c and Dc = 0 [16], or for k2(m, c) = −mcŠ p [14],
where p > 0. However, it can be shown that no bounded traveling waves exist ifDc > 0 and
k2(m, c) and its “rst derivatives are continuous in c on [0,∞) [28]. Traveling waves can be
generated by introducing growth and annihilation terms in the equation for m. In all known
cases, traveling waves in the Keller…Segel model do not have a peak in the chemoattractant
pro“le but are, instead, fronts.
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PATTERN FORMATION IN A MODEL OF ACUTE INFLAMMATION 631

Much of the work on pattern formation relies on numerical simulations, but there is also
analytical work focused on reaction-di�usion models. Linear and nonlinear analyses have given
many insights into the numerical results. In studying the selection mechanism for stripes or
spots in reaction-di�usion systems, Ermentrout [8] shows that the nonlinear terms of the
model are crucial in determining which pattern is achieved. Zhu and Murray [40] perform
extensive linear and nonlinear analyses of chemotaxis models in two dimensions. Not only do
they describe which conditions generate stripes or spots, but also they show the existence of
mixtures of the two patterns.

We are ultimately interested in self-supporting localized traveling waves, so we introduce a
third variable into the system. Our model is related to the receptor-binding model [18, 29, 30],
extending it by one additional variable to include the anti-in”ammatory cytokines. We present
a linear analysis of the homogeneous steady state. We “nd that a Turing instability occurs
for a large chemotactic coe�cient, while a Hopf instability occurs when the anti-in”ammatory
time scale is large. We analyze how the emergent patterns, ranging from stationary spots
to traveling waves to oscillations, change with parameters around the bifurcations. The key
implication of the presence of inhibitor is the existence of localized, self-supporting traveling
waves, i.e., waves that do not require an external gradient of the chemoattractant. We “nd
parameters that lead to the existence of traveling waves and present asymptotic traveling wave
analysis to verify simulation results. Finally, we present numerical simulations showing that
our model produces a wide range of dynamic behavior in both one and two spatial dimensions.

We see this work as building upon the rash theory developed in [13]. One of their main
observations is the prevalence of patterns composed of moving waves. These types of rashes
are referred to as Type II rashes, and a clinical example of these is erythema gyratum repens.
Conditions that indicate Type II pattern formation are negative feedback of the immune factor
(for us, macrophages) on its production and cubic-shaped nullclines for the chemoattractant.
We keep these observations in mind as we develop our model.

2. Model description. We consider the interaction of three species of the in”amma-
tory system, all measured as concentrations in space: in”ammatory cells (or macrophages,
for short), m; a chemokine, c; and an anti-in”ammatory cytokine, a. Macrophages detect
the chemokine signal and respond to it by moving up the chemical gradient. The anti-
in”ammatory cytokine inhibits the production of both itself and the chemokine. We assume
that the macrophages produce both signaling molecules with the same kinetics but thata has
slower dynamics. We also assume that the rate of attraction of the macrophages is reduced
as the concentration ofc increases, because the signal receptors of the cell become saturated
and the macrophages are unable to sense the gradient (see [12, pp. 192…193]). With these
assumptions, we have the following three-variable PDE problem:

mt = ∇ ·
(
Dm∇m− χm

(1 + αc)2
∇c

)
,

ct = Dc� c− c +
m

1 + βaρ
,(2)

at =
(
Dc� a− a +

m

1 + βaρ

)
1
τ
.
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632 K. PENNER, B. ERMENTROUT, AND D. SWIGON

Here Dm is the undirected di�usive migration of macrophages,χ is the maximal chemotac-
tic rate for the macrophages, andDc is the di�usion constant for both the pro- and anti-
in”ammatory cytokines. The parameters β and ρ modulate the inhibitory e�ect of anti-
in”ammatory cytokines. The term 1 /(1+ αc)2 captures the saturation of chemokine receptors
that results in a slowdown of chemoattraction as the concentration ofc increases, andα is the
associated parameter. All parameters are nonnegative, and we expectDc > Dm. For simplic-
ity, the production and decay of the chemokine and the anti-in”ammatory are given by the
same terms, but the anti-in”ammatory cytokine responds on a time scaleτ which we regard
as a parameter. The units ofc and a have been rescaled so that the uninhibited production
is one unit of c and a per one unit of m. The unit of time is equal to the decay rate of c.

System (2) is an extension of the model (M2a) in [12]. When τ = 1, the variables c and
a obey the same dynamics, and the model reduces to a two-variable Keller…Segel-type model
(1). Receptor saturation in the chemotactic term results in bounded solutions and prevents a
blow-up. In principle, the anti-in”ammatory cytokines could also inhibit the chemotaxis, but
we do not consider that e�ect here.

We assume that the spatial domain of interest � is either one- or two-dimensional and that
there is no ”ux of macrophages or chemokines across the boundary; i.e.,∇m = ∇c = ∇a = 0
on ∂� . For “nite domains and for simulations,

M :=
∫
Ω
m(x, t) dx.

In the one-dimensional case, when we look for traveling waves, we assume that there is a
homogeneous solution with a “xeddensity of macrophages at each point. Since the domain is
in“nite, there are, in that particular case, in“nitely many macrophages.

3. Stability of homogeneous states. We start by analyzing the homogeneous steady
state solution (m, c, a) = ( m0, a0, c0) of (2), where m0 is the total macrophage populationM
divided by the size of the domain. In this state, the second and third equations of (2) are
identical and c0 = a0 = m0/(1 + βaρ0), which has a unique positive solutiona0 in terms of m0

for all ρ, β ≥ 0. In particular, if ρ = 1, then

a0 =
−1 +

√
1 + 4βm0

2β
.

For convenience, we parameterize the homogeneous solution bya0 instead of m0; i.e.,

(3) (m0, c0, a0) = ( a0(1 + βaρ0), a0, a0).

The total macrophage population is conserved in this model, which means that the value of
m0 is set if we “x the total population of m. However, because of this conservation, the total
population of m can be any positive value, so the value ofm0 can take on any value at steady
state. Sincea0 and m0 are related in a 1:1 manner, we will parameterize the steady states by
a0, as this results in simpler notation. In all the simulations, we have “xed the total number
of macrophages (the integral ofm(x, t) over the domain) and varied the other parameters.
We want to emphasize that m0 (so a0 = c0) can be any value, and this choice “xes the total
population of macrophages.
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PATTERN FORMATION IN A MODEL OF ACUTE INFLAMMATION 633

Linearization of the system (2) about (3) yields

(4)
∂

∂t

⎡
⎣mc
a

⎤
⎦ =

⎡
⎢⎣Dm

Šχa0(1+βaρ0)
(1+αa0)2

0
0 Dc 0
0 0 Dc

τ

⎤
⎥⎦ �

⎡
⎣mc
a

⎤
⎦+

⎡
⎢⎢⎣

0 0 0
1

1+βaρ0
−1 Šβρaρ0

1+βaρ0
1

τ(1+βaρ0)
0 − 1

τ

(
1+β(1+ρ)aρ0

1+βaρ0

)
⎤
⎥⎥⎦
⎡
⎣mc
a

⎤
⎦ .

The Laplacian on a bounded domain � has a discrete set of eigenfunctions �k with asso-
ciated eigenvalues−k2 which are determined by the shape of the domain and the boundary
conditions. For example, in a one-dimensional domain of lengthL with no-”ux boundary
conditions, the eigenfunctions are of the form �n(x) = cos(πnx/L), and the eigenvalues are
−k2n = −π2n2/L2. In a two-dimensional square domain with periodic boundary conditions
the eigenfunctions are products of sine and cosine functions. We look for solutions of the
form ( �m, �c, �a)(x, t) = eλt� k(x). With this substitution, linear stability analysis reduces to the
eigenvalue problem:

(5) λ

⎡
⎣ �m

�c
�a

⎤
⎦ = A(k)

⎡
⎣ �m

�c
�a

⎤
⎦ ,

where

(6) A(k) =

⎡
⎢⎢⎢⎣
−k2Dm

k2χa0(1+βaρ0)
(1+αa0)2

0
1

1+βaρ0
−1− k2Dc

Šβρaρ0
1+βaρ0

1
τ(1+βaρ0)

0 − 1
τ

(
1+β(1+ρ)aρ0

1+βaρ0
+ k2Dc

)
⎤
⎥⎥⎥⎦ .

As in the classical Turing analysis of reaction-di�usion systems, if, for a givenk, there is an
eigenvalueλ of A(k) with a positive real part, then there is a spatially periodic perturbation
of the homogeneous state (3) with wavelength 2π/k that grows exponentially in time, making
the system unstable. If�(λ) < 0 for all eigenvaluesλ of A(k) for all k, then the homogeneous
state (3) is stable. On a domain of “nite size with periodic or no-”ux boundary conditions
the range of possible values ofk is limited, but the same principle applies.

3.1. The application of Gershgorin theory. The Gershgorin circle theorem provides a
set of necessary conditions for instability of the system. The Gershgorin discs for the rows
i = 1 ,2,3 of the matrix A(k) are

i = 1 : |λ + k2Dm| ≤ k2χa0(1 + βaρ0)
(1 + αa0)2

,(7)

i = 2 : |λ + 1 + k2Dc| ≤ 1,

i = 3 :

∣∣∣∣λ +
1
τ

(
1 + β(1 + ρ)aρ0

1 + βaρ0
+ k2Dc

)∣∣∣∣ ≤ 1
τ (1 + βaρ0)

.

The centers of all the discs lie on the negative part of the real axis. If any of the discs contains
0 in its interior, then the matrix A(k) may have eigenvalues with positive real part. If 0 lies
outside of each of the discs, then all eigenvalues ofA(k) have negative real parts.

D
ow

nl
oa

de
d 

11
/0

6/
12

 to
 1

36
.1

42
.1

24
.7

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



634 K. PENNER, B. ERMENTROUT, AND D. SWIGON

With ρ = 1 (as used in our numerical simulations) the discs fori = 2 ,3 do not contain 0
for any values of the parameters, but fori = 1 the disc will contain 0 if and only if

(8)
χa0(1 + βaρ0)
Dm(1 + αa0)2

> 1.

This condition implies that if a0 (and, correspondingly, m0) is small, pattern formation
is not possible. Likewise, small magnitude ofχ/Dm, corresponding to weak chemoattraction,
also prevents pattern forming instabilities. In the special case ofρ = 1, ( 8) implies the
following necessary condition for instability:

(9)
χ

Dm
> min

a>0

(1 + αa)2

a(1 + βa)
=
{

4(α− β) if α > 2β,
α2/β if α ≤ 2β.

3.2. The application of RouthÐHurwitz theory. We simplify the notation of the matrix
A(k) in ( 5) by setting

(10) A(k) =

⎡
⎣−u p 0

q −r −s
v 0 −w

⎤
⎦ ,

wherep, q, r, s, u, v, and w are all positive. The eigenvalues of (10) are the roots of

0 = λ3 + ( u + r + w)λ2 + ( ur + nw + rw − pq)λ + ( urw + pvs− pqw)

= λ3 + Nλ2 + Pλ + Q.(11)

Routh…Hurwitz theory implies that the steady state is linearly stable if and only if
1. N > 0,
2. Q > 0, and
3. R := NP −Q > 0.

Here the “rst condition is satis“ed for all choices of parameters, but the second or third
conditions may fail because of the presence of negative terms inQ and R. Note that A(0) has a
zero eigenvalue which corresponds to the fact that for anya0 (i.e., for any “xed m0) the system
has a uniform steady state. (See the discussion at the beginning of this section;a0 determines
m0, which, in turn, determines the total population of macrophages, a conserved quantity in
this paper.) As we are interested in pattern forming instabilities, we look for conditions for
which there are nonzero values ofk such that the second or third Routh…Hurwitz condition is
violated. When Q = 0 for a nonzero value ofk, A(k) has a zero eigenvalue corresponding to
bifurcation into stationary spatial patterns. When R = 0, A(k) has two imaginary conjugate
eigenvalues corresponding to bifurcation into spatio-temporal patterns, such as breathers or
traveling waves.

We shall limit our analysis to a variation of two parameters while keeping the others
“xed. The maximum degree of chemotaxis,χ, and the time scale of the dynamics of anti-
in”ammatory cytokines, τ , are convenient parameters to vary since they have no e�ect on the
homogeneous equilibrium state and a�ect only stability. The following results can be easily
obtained using a symbolic algebra package such as MAPLE or Mathematica.
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PATTERN FORMATION IN A MODEL OF ACUTE INFLAMMATION 635

Let us denote K := k2 and write R(K), Q(K) to emphasize the dependence of these
coe�cients on the wave number. We “nd that the formula for Q(K) can be factored to a
product of linear terms of which two are positive for all K > 0, and if χ > χT , where

(12) χT =
Dm(1 + αa0)2

a0

(
1 + ρ− ρ

1 + βaρ0

)
,

then Q(K) has precisely one positive root,

(13) K � =
χa0

DmDc(1 + αa0)2
− 1 + β(1 + ρ)aρ0

Dc(1 + βaρ0)
,

such that Q(K) < 0 for 0 < K < K � . Note that as a0 → 0 (i.e., asm0 → 0), χT approaches
in“nity. For a domain of size L the admissible values ofK are bounded from below byπ2/L2,
and therefore the instability occurs at a value ofχ that is larger than χT . Thus, χT is the
smallest value ofχ for which Q(K) < 0 at some positive value ofK (i.e., the Turing bifurcation
value).

We now turn our attention to R(K). For τ near zero

R(K) ∼ B(K)
τ2

+ O

(
1
τ

)
,

whereB(K) > 0 for all K. For τ su�ciently small, R > 0 for all K. We conclude that to get
an instability due to the anti-in”ammatory cytokine, we need to have τ large enough. Let
χH (τ ) be, at a given τ , the smallest value ofχ at which R(K) < 0 for some positiveK (i.e.,
the Hopf bifurcation value). We write R(K) = b0 + b1K + b2K

2 + b3K
3. The coe�cients bj

depend on bothχ and τ. Both b0 and b3 are positive for all values ofτ, χ, so that the key
to obtaining instability is that b1 and/or b2 must become negative. From Descartes• rule of
signs, there can be at most two positive roots, and then, only if one or the other or both of
b1,2 are negative. Thus, we studyb1,2. As with all quantities studied so far, these are linear
decreasing functions ofχ, and if χ = 0, both are positive. We “nd that for each τ there are
valuesχi(τ ) such that bi < 0 if χ > χi(τ ):

χ1(τ ) =
Dm(1 + αa0)2

a0

(
τ2 + B11τ + B12

τ (τ + B13)

)
,

χ2(τ ) =
Dm(1 + αa0)2(2Dc + Dm)

a0(Dm + Dc)
+

B21

τ
+

B22

τ2
.

Thus, χH (τ ) = min( χ1(τ ), χ2(τ )) . Since Bij are strictly positive expressions of the other
parameters, both χi are decreasing functions ofτ. In the limit as τ → ∞, χH → χ1(∞) =
Dm(1 + αa0)2/a0. As χT > χ1(∞), for su�ciently slow dynamics for the anti-in”ammatory
cytokine, there are values ofχ for which Q(K) > 0 for all K > 0 but R(K) < 0 for someK.

We can obtain a bifurcation diagram in terms of the parametersχ, τ by “xing the remain-
ing parameters. For the choice

(14)
[
Dm Dc α β m0 ρ

]
=
[
0.45 1 0.5 0.4 10 1

]
,
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636 K. PENNER, B. ERMENTROUT, AND D. SWIGON
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Figure 1. (A) Graphs of Turing and Hopf bifurcation curves χT (dashed) and χH (solid) at different values
of m0. Parameters are as in (14) and m0 = 10 (blue curves), 20 (red), or 40 (green). (B) Schematic diagram
showing regions of stability determined by a pair of Turing and Hopf bifurcation curves. (C) Graphs of K-specific
Turing and Hopf bifurcation curves, χT (K) (dashed) and χH (K) (solid), for m0 = 10 and K = 1 /16, 1/4, 1, 2
(red, green, cyan, blue). The intersections of χT (K) and χH(K) are Takens–Bogdanov points (dotted black
curve).

the curves χT and χH (τ ) are shown as black curves in Figure1(A). For each “xed value of
τ , if χ is aboveχT (the dashed line), then there is a band of wave numbersK corresponding
to Turing instability. If χ is aboveχH (which we “nd to be equal to χ1 for this choice of
parameters), then there is another band of wave numbers for which an oscillatory perturbation
with exponentially increasing amplitude takes place, corresponding to Hopf bifurcation into
oscillations or traveling waves. For small τ , χT < χH , while for larger τ , the inequality is
reversed. Both the Turing and Hopf bifurcation curves depend onm0; χT increases withm0

and χH shifts upward and to the right (see Figure 1(A)). However, the intersection of these
curves shifts to the left, so that for a larger value ofm0, we require a smaller value ofτ to
guarantee the onset of a Hopf bifurcation instead of a Turing bifurcation. Increasingβ has a
similar e�ect. Figure 1(B) qualitatively summarizes the stability in the two-parameter plane.

The graphs shown in Figure1(C) are envelope curves that separate a region of stability for
all K from a region where instability occurs at some value ofK. In order to analyze the point
of intersection of the Turing and Hopf bifurcation curves, we need to focus on bifurcations
at a speci“c value of K. Let χT (K) and χH (K) be, respectively, the smallest values ofχ
at which Turing and Hopf bifurcations occur at “xed K. Figure 1(C) shows such curves for
various values ofK. At the intersections of the correspondingχT (K) and χH (K) curves we
“nd Takens…Bogdanov bifurcation points with double zero eigenvalue. The crossing of TuringD
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PATTERN FORMATION IN A MODEL OF ACUTE INFLAMMATION 637

and Hopf bifurcation curves has been found to give rise to interesting spatio-temporal patterns
in many systems [26, 21].

4. Numerical simulations in one spatial dimension. In order to see what happens beyond
the linear stability region, we simulated system (2) in a one-dimensional periodic domain
using the method of lines. We used a 200 point spatial grid for a domain of length 100,
i.e., (mi, ci, ai)(t) = ( m, c, a)( i� x, t), i = 0 , . . . ,200, with � x = 0 .5, and discretized (2) in the
spatial domain with a “nite-di�erence scheme that conserved the total number of macrophages:

d

dt
mi =

Dm

� x2
(mj+1 − 2mj + mjŠ 1) − (fj+1 + fj)(cj+1 − cj) − (fj + fjŠ 1)(cj − cjŠ 1)

2� x2
,(15)

d

dt
ci =

Dc

� x2
(cj+1 − 2cj + cjŠ 1) − cj +

mi

1 + βapj
,(16)

d

dt
ai =

(
Dc

� x2
(aj+1 − 2aj + ajŠ 1) − aj +

mi

1 + βapj

)
1
τ
,(17)

wherei = 0 , . . . ,199,fi = χmi

(1+αci)2
, and periodic conditions imply (m200+j , c200+j , a200+j)(t) =

(mj, cj , aj)(t) for j = −1,0 (di�erent discretizations led to the same types of bifurcations).
We explored how solutions change with parameters in the four areas of the bifurcation

diagram shown in blue in Figure 1(A). For initial conditions we use m(x,0) = m0 = 10,
a(x,0) = 5, and c(x,0) = 5 + ξ(x), where ξ(x) is a uniformly distributed random variable in
(−0.1,0.1). For all the simulations in this section, we used the parameters (14). We used the
sti� integrator, CVODE, included in the XPPAUT software package.

Figure 2 shows the results for four pairs of (τ, χ) taken from di�erent regions of the
diagram (Figure 1(A) blue), as de“ned in Figure 1(B). Panel (A) corresponds to (χ, τ ) =
(1.75,10), which lies in the region of Turing instability and shows an expected stationary
pattern of bumps. Panel (B) corresponds to (χ, τ ) = (2 .5,30), which lies in the region of
both Turing and Hopf instability, where both Q and R are negative for some values ofK
(not necessarily the same). The local stability analysis makes no predictions, but we again
observe a stationary pattern. The lower panels show the behavior for largeτ. In panel (C),
(χ, τ ) = (1 .5,100), which is in the region of Hopf instability. As predicted by the linear
analysis, small amplitude spatially periodic structure with time-periodic oscillations appears.
Finally, for ( χ, τ ) = (2 ,100), the parameters are again in the region of both Turing and Hopf
instability, and in this case the pattern has the form of traveling bumps.

To provide further insight into how patterns evolve as τ varies we present two further
sets of simulations. In the “rst set, shown in Figure 3, we start with a low value of τ and
a stationary spatially inhomogeneous pattern of bumps found forχ = 2 . We then change
τ , always using the values at the end of the previous simulation as the initial data for the
next simulation. We see that asτ increases to 52, some of the stationary peaks lose stability
to symmetric oscillatory •breathers.Ž As τ further increases to 55, some of the bumps have
merged together, and the depth of oscillatory modulation in one of the bumps is even greater.
At τ = 65, the thinner modulated stripe breaks into a sequence of localized traveling waves
moving in either direction that merge with the largest bump, which then becomes stationary.
Apparently the presence of modulation in this region ofτ values depends on the size of the
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τ=30, χ=2.5

τ=100, χ=1.5 τ=100, χ=2

t=9000

t=9000

t=11000

t=11000

1 200 1

11

200

200200

A B

C D
τ=10,  χ=1.75

Figure 2. Time evolution of m as given by (2) with parameters (14) and different pairs of τ, χ. Here, as
in Figures 3, 4, and 10, the graphs represent plots of m(x, t) with x on the horizontal axis and time increasing
from top to bottom. The spectral color code ranges from blue (minimum of m) to red (maximum of m, 0…40in
(A), (B), (D), and 0…20in (C) ). Only the final segment of the trajectory is shown, after the effects of initial
conditions have subsided.

bump. The pattern then becomes unstable forτ = 75 and again produces a breather bump
which now oscillates in a nonsymmetric mode. Atτ = 84, the wide modulated bump breaks
up into a number of localized traveling waves of various sizes and velocities that move in
opposite directions and pass through each other without change in •massŽ (amount ofm) or
velocity. In the “gure this shows up as a spatio-temporal net-like pattern. At τ = 90 the sizes
and velocities of the traveling bumps equalize, leaving a network-like pattern. The pattern
persists for very largeτ until it terminates into periodic wave-trains corresponding to bumps
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τ=300E F G

BA C D

H

τ=30 τ=52 τ=55 τ=65

τ=75 τ=84 τ=90

Figure 3. Time evolution of m on a domain with periodic boundary conditions as τ is increased in a
stepwise fashion (parameters (14) with χ = 2 ). Except for τ = 65 and 84, time shown is 9000–11000. For
τ = 65 , 84, time shown is 0–11000. Please see the corresponding movie 83408 01.mp4 [local/ web 7.89MB].

of di�erent widths traveling with equal velocities in the same direction. These persist for all
su�ciently large τ.

In Figure 4 we start with χ = 2 .5, τ = 300, and a solitary traveling wave. We then
decreaseτ since smaller values ofτ appear to discourage traveling waves. Atτ = 250, we
see that the traveling wave persists, but it is now periodically modulated. Further decrease
to τ = 100 leads to a breakup of the traveling wave into smaller waves moving in opposite
directions, similar to the spatio-temporal net-like pattern seen in Figure 3 with τ = 85…90.
By τ = 65, the traveling waves coalesce into a single oscillating bump, which stabilizes to a
stationary bump by τ = 25.

5. Large amplitude analysis. The simulations in the previous section reveal a variety of
complex spatio-temporal patterns made up of stationary and traveling waves that are either
steady or modulated by periodic perturbations. We look for these types of solutions in the
full equations (2).

5.1. Stationary solutions. We look for time-independent solutions to (2) in one spatial
dimension with ρ = 1 and with either periodic or no-”ux boundary conditions at the boundary
of a “nite domain of length L. Consider, “rst, the equation for m:

0 =
(
Dmmx − χm

(1 + αc)2
cx

)
x

.

Here mx means the derivative ofm with respect to x. We integrate this equation once to
obtain

k0 = Dmmx − χm

(1 + αc)2
cx.
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τ=25

C

FD

A

t=9000 E

t=9000 B

t=11000

t=11000

τ=300 τ=250 τ=100

τ=65 τ=50

Figure 4. Similar to Figure 3, but, here, time evolution of traveling waves as τ decreases (parameters (14)
with χ = 2 .5). Starting with the traveling wave for τ = 300 in (A) , we change τ and then plot the last 2000 time
steps. As we change τ , we use the end of the previous simulation as initial conditions for the next simulation.
For small enough τ (panel (F) ), all that exists is a stable stationary pattern.

No-”ux boundary conditions are equivalent to setting k0 = 0 . If periodic boundary conditions
are imposed, then the homogeneity of the equation implies that we can translate the solution
so that the peak in mx and cx occur at 0, and, again, we can setk0 = 0 . A second integration
of the equation, under the assumption that m 
= 0, provides an algebraic relation between
c(x) and m(x):

(18) m = m(c) = k1exp
( −χ

Dmα(1 + αc)

)
.

The nonzero constantk1 is a parameter that can be related to the total number of macrophages
in the spatial domain by integrating m(c(x)) over the domain, but only after the function c(x)
is known. Note that m is an increasing function ofc with a limiting value m = k1 as c → ∞.
Also note that this equation does not allow for solutions in whichm(x) → 0 at some pointx,
even in the limit as x → ∞ and c(x) → 0.
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PATTERN FORMATION IN A MODEL OF ACUTE INFLAMMATION 641

In view of (2), in a steady state a(x) and c(x) obey

0 = Dccxx − c + m/(1 + βa),

0 = Dcaxx − a + m/(1 + βa),

and so c − a obeys Dc(c − a)xx = ( c − a). With periodic or no-”ux boundary conditions
this equation has a unique solutiona = c. By combining it with ( 18), we obtain a single
second-order equation forc = C(x),

(19) DcCxx = C − m(C)
1 + βC

,

or the equivalent “rst-order autonomous ODE system,

dC

dx
= U,(20)

Dc
dU

dx
= C − m(C)

1 + βC
.

We can rescale space and assumeDc = 1 with no loss in generality. Stationary solutions
with no-”ux boundary conditions satisfy Cx(0) = Cx(L) = 0; i.e., U (0) = U (L) = 0 . Periodic
solutions must have at least one point in the domain such thatCx vanishes, so they can be
translated to obey the same conditions.

Let G(C) = C − m(C)/(1 + βC). Since system (20) is conservative, its trajectories are
level-set curves of the energy functionE(U,C) = DcU

2/2− ∫ G(C)dC. Any “xed point C � of
the system lies on theC-axis and is either a saddle (ifG� (C � ) > 0) or a center (if G�(C � ) < 0).
SinceG(0) < 0 and G → ∞ as C → ∞, G(C) has at least one root, but the slope at the
smallest root is positive, implying that it is a saddle point. Any trajectory U (x) obeying the
boundary conditions U (0) = U (L) = 0 can be extended to a periodic trajectory, Up(x) on
0 < x < 2L, by letting UP (x) = U (x) for 0 ≤ x ≤ L and Up(x) = −U (2L−x) for L < x < 2L.
Since a periodic orbit of autonomous planar ODEs must surround a “xed point of index 1,
we need to “nd parameters for whichG(C) has at least three “xed points. The combination
of conditions G(C � ) = 0 and G�(C � ) < 0 implies a necessary condition for the existence of a
center “xed point:

(21)
χ

Dm
> min

0<C<�

(1 + 2βC)(1 + αC)2

(1 + βC)C
> 4α.

Figure 5(A) shows the phase plane for (20) for one such case:

(22)
[
Dm Dc α β ρ χ k1

]
=
[
0.45 1 0.5 0.4 1 3 664

]
.

Any trajectory that starts and terminates on the C-axis gives a stationary solution that obeys
the no-”ux (or periodic) boundary conditions, but the length of the domain and the total
macrophagesM depend on the trajectory. The turquoise curve in 5(A) shows a solution
that corresponds to two bumps in a domain of lengthL = 25. If we integrate m(c(x)) over
the domain, we “nd that M = 250; i.e., m0 = 10. The black curve in 5(A) also satis“es
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Figure 5. Analysis of (20). (A) Phase plane for parameters (22). Green and red lines are nullclines. Blue
dots are the three fixed points. Turquoise curve and black curves show examples of periodic orbits. (B) Solutions
to (20) with (C(0) , k1) chosen to correspond to a macrophage density of 10 and a domain of length 25: single
peak (green) (C(0) , k1) = (0 .00145, 559.45), double peak (red) (C(0) , k1) = (0 .12, 664), and triple peak (black)
(C(0) , k1) = (0 .66, 785.83). (C) Two numerically stable solutions to the full PDE (2) on a domain of length 25
discretized into 100 points.

U (0) = U (25) = 0 but goes through three cycles instead of two and hasM = 469. If we seek
stationary solutions of a system with a “xed total number of macrophages, then we have to
adjust k1 so that along a given solution

(23)
∫ L

0
m(C(x)) dx = Lm0,

wherem0 is the initial uniform density. However, changing k1 also changes the phase plane,
and in particular, the two saddle-points. In Figure 5(A) only the turquoise solution curve is
a solution of the boundary value problem with L = 25 and m0 = 10. Other curves should be
considered as solutions of the system for di�erent domain sizes and total macrophage levels.

In order to “nd other stationary solutions to the one-dimensional PDE with L and m0

“xed, we have to simultaneously chooseC(0) and k1 to satisfy the isoperimetric boundary
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0

5
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15

20

C

0 500 1000 1500 2000
m0

Figure 6. Bifurcation diagram for the nonhomogeneous stationary solutions in domain of size L = 30 with
parameters as in (22) showing the peak value of C for the solution versus the total number of macrophages.
The branches, right to left, correspond to solutions with 1, 2, . . . , 6 peaks.

value problem (20) with U (0) = U (L) = 0 and the integral condition ( 23). We do this
numerically by shooting. Figure 5(B) shows three solutions to (20) for di�erent choices of k1
such that (23) holds with m0 = 10. The green curve corresponds to a fat one-peak solution,
the red curve to the two-peak solution (which hask1 = 664 and is indicated by the turquoise
curve in panel (A)), and the black curve to a three-peak solution. By necessity, all peaks in a
given solution must have the same height, since they must be closed orbits for the conservative
planar system (20).

The existence of multiple solutions does not necessarily mean that we will see them in the
full PDE since they may not be stable. Figure5(C) shows two numerical stationary solutions
to the PDE that correspond to the red and black curves of panel (B). When we start with an
initial condition near the green curve, the single peak splits into the three-peak solution. We
think that the large single-peak solution is unstable, so the macrophages cannot gather into
a single aggregate for this choice of parameters.

Figure 6 shows the bifurcation diagram for the nonlinear stationary solutions in the domain
of size L = 30 with periodic boundary conditions and with parameters as in (22). The
trivial branch (lowest branch in the graph) corresponds to the homogeneous solutions. The
branching points correspond, right to left, to solutions with 1,2, . . . ,6 peaks, respectively. Near
the branch the solutions are almost sinusoidal and then split into separate, equidistributed
peaks similar to those in Figure 5(B). All branches terminate at a single point in which
the two smallest roots (saddle and center) coincide. For this parameter choice there are no
nonhomogeneous stationary solutions ifm0 > 1262 and no stationary solutions with more
than six peaks.
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Figure 7. Graphs of c and m for single-peak stationary solutions of (20) in a domain of length L = 40 .
The number of macrophages in one peak is m0 = 20 (red curve), 200 (magenta), 400 (blue), 800 (green), 1600
(cyan), and 3200 (light green). Parameters are as in (22).

Two-parameter bifurcation analysis of stationary solutions (not shown) shows that them0

values of all bifurcation points increase monotonically withχ, suggesting that at largeχ each
peak can accommodate larger number of macrophages and that the range ofm0 for which
nonhomogeneous stationary solutions exist increases with increasingχ.

For small domain sizes or large peak numbers the equilibrium solutions are close to si-
nusoidal oscillations. In the limit of large domain size, the single-peak solutions are close to
the homoclinic orbits of the system (20). Figure 7 shows single-peak solutions for the pa-
rameters (22) (except k1) for di�erent number of the total macrophages m0 and su�ciently
large domain size. Counterintuitively, the value of k1 decreases with increasing number of
macrophages in the peak.

For any domain sizeL the interval of M that will support an inhomogeneous solution in
that domain is bounded. The lower bound is given by the smaller of the two saddle-node “xed
points.
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6. Traveling wave analysis. Time-dependent solutions to (2) can be quite complex and
not amenable to a simple analysis. However, as we have seen from the numerical simulations,
for τ su�ciently large the system tends toward traveling waves that take the form of pulses.
One is tempted to seek traveling waves to (2) with a velocity V , that is, solutions of the form
(m(x, t), c(x, t), a(x, t)) = ( M (z), C(z), A(z)), where z = x − V t. With this assumption, we
obtain

−VMz = DmMzz − χ

(
M

(1 + αC)2
Cz

)
z

,(24)

−V Cz = DcCzz − C +
M

1 + βA
,(25)

−V τAz = DcAzz −A +
M

1 + βA
.(26)

We can again integrate (24) twice to reduce the dimension, but the resulting expression
will not give us M in terms of C, as in the case of stationary waves, but ratherM in terms
of C and z:

(27) V (M −M0) + DmMz =
χM

(1 + αC)2
Cz.

The parameter M0 can be viewed as the limiting macrophage density in solitary wave solu-
tions in which Mz → 0 and Cz → 0 as z → ±∞. The system of equations (27), (25), (26)
can be rewritten as a “ve-dimensional “rst-order system for the variables (M,C,U,A,W ) =
(M,C,Cz , A,Az):

Mz =
(
V (M0 −M ) +

χM

(1 + αC)2
U

)
/Dm,

Cz = U,

Uz =
(
−V U + C − M

(1 + βA)

)
/Dc,(28)

Az = W,

Wz =
(
−V τW + A− M

(1 + βA)

)
/Dc.

In addition to the standard parameters Dm,Dc, χ, α, β, the solutions of that system depend
also on the velocityV and the limiting macrophage numberM0. The system has just one “xed
point, which, just like the homogeneous solution, can be parameterized by the equilibrium
value A0 of A as

(29) (M0, C0, U0, A0,W0) = ( A0(1 + βA0), A0,0, A0,0).

The Jacobian of the system at this “xed point is

(30) J =

⎡
⎢⎢⎢⎢⎢⎢⎣

− V
Dm

0 χA0(1+βA0)
Dm(1+αA0)2

0 0
0 0 1 0 0

− 1
Dc(1+βA0)

1
Dc

− V
Dc

βA0

Dc(1+βA0)
0

0 0 0 0 1
− 1

Dc(1+βA0)
0 0 1+2βA0

Dc(1+βA0)
−V τ

Dc

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Figure 8. Bifurcation diagram for system (28) with fixed V and a bifurcation parameter M0. The thin
curve represents steady state homogeneous solutions. Heavy curves represent periodic solutions of (28) which
correspond to traveling waves of the system. The corresponding wave speeds are, left to right and then top to
bottom, V = 0 .01, 0.02, 0.03, 0.04, 0.045, 0.046, 0.047, 0.048, 0.049.

Traveling waves appear in the system in two ways„through Hopf bifurcation o� the
trivial branch of homogeneous solutions (29) or through a homoclinic bifurcation. Bifurcation
analysis of the system (28) at “xed values of V with M0 taken as the bifurcation parameter
reveals a complex structure of branches of periodic solutions, each corresponding to a traveling
wave on a periodic domain of an appropriate size (see Figure8). For the parameter choice

(31)
[
Dm Dc α β ρ χ

]
=
[
0.45 1 0.5 0.4 1 2.1

]
,

we “nd that the waves exist for wave speedsV < 0.05. There is a range of wave speeds for
which multiple period doubling bifurcations can be observed in the diagram, and we are not
able to rule out the possibility of spatially chaotic traveling waves on in“nite domains. There
are two Hopf bifurcation points present for each V. For small values of V the branches of
periodic trajectories that originate at those points approach homoclinic con“gurations. For
large V both bifurcation points belong to a single closed branch of periodic solutions.

When τ = 1, the dynamics of A and C variables are identical (and so areU and W ), so
the “ve-dimensional system (28) reduces to a three-dimensional system describing traveling
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PATTERN FORMATION IN A MODEL OF ACUTE INFLAMMATION 647

solutions of a Keller…Segel-type chemotaxis model:

Mz =
(
V (M0 −M ) +

χM

(1 + αC)2
U

)
/Dm,

Cz = U,(32)

Uz =
(
−V U + C − M

(1 + βC)

)
/Dc.

At its only “xed point ( M � , C � , U � ) = ( C0(1+ βC0), C0,0), the reduced system has a Jacobian

(33) J =

⎡
⎢⎣ − V

Dm
0 χC0(1+βC0)

Dm(1+αC0)2

0 0 1
− 1

Dc(1+βC0)
1+2βC0

Dc(1+βC0)
− V

Dc

⎤
⎥⎦

with characteristic polynomial λ3 + Nλ2 + Pλ + Q. Periodic traveling waves correspond to
periodic solutions of the reduced system. In the full system such solutions arise from Hopf
bifurcation of the homogeneous solution. In the reduced system no such bifurcations can arise
sinceNQ < 0, soJ always has both an eigenvalue with a positive real part and an eigenvalue
with a negative real part.

Let � be the subset of the phase space for whichU = 0 . Periodic orbits of (32) can
be studied by analyzing the induced Poincaré map P : � → � de“ned as P ((M,C,0)) =
�( T (M,C,0), (M,C,0)), where �( t, x) is the ”ow of ( 32) and T (M,C,0) is the time when
the orbit starting at ( M,C,0) crosses � the second time (i.e., complete orbit, not half-orbit).
For V = 0, P = id near (M � , C � , U � ); i.e., every point of the phase space corresponds to
a periodic orbit. For small nonzero V , P has a saddle “xed point at (M � , C � , U � ), and
there are no periodic orbits near (M � , C � , U � ). Since no bifurcations are possible asC0 varies,
the Poincaré maps for di�erent values of C0 are topologically conjugate to the one shown
in Figure 9. Therefore we do not expect the appearance of periodic orbit in the vicinity of
(M0, C0) for any C0 and any small V. It appears that large value of τ is necessary for the
existence of traveling waves.

6.1. Asymptotic analysis. To gain better insight into the shape of the traveling waves,
we make some approximations. To get stationary spatial pro“les, we were able to expressM
as a function ofC. Thus, we will simplify the model by replacing the dynamics ofM (z) with
the •pseudosteady stateŽ assumption,M (z) = m(C(z)), where m(C) is de“ned in (18). The
traveling wave equations are

−V Cz = DcCzz − C + m(C)/(1 + βA) ≡ DcCzz + f (C,A),

−V τAz = DcAzz −A + m(C)/(1 + βA) ≡ DcAzz + g(C,A).

Figure 10(A) shows a traveling wave solution on periodic boundary conditions for the full
model in (2). Notice that it takes about 500 time units to traverse the domain. Figure 10(B)
shows the same simulation, but we have setM = m(C), its pseudosteady state. The velocity
of the wave is about four times faster than that of the full model. The reason for this is
that the macrophages do not respond instantly to the chemotactic information (an implicit
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C
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Wu

Ws

Figure 9. Poincaré map for the system (32) defined on the plane � . Here C0 = 1 , M0 = 1 .4, V = 0 .01,
and other parameters are as in (31) except χ = 3 . The black star shows the location of the saddle fixed point
(M0, C0); the stable manifold of (M0, C0) is shown in green, unstable manifold in red.

t=200

A

t=500

t=0 t=0B

Figure 10. (A) Traveling wave solutions to the full equations (2) (τ = 100). Shown is the concentration of
C(x, t) where the spatial location is along the horizontal axis and time runs down. The domain is periodic. (B)
Traveling periodic wave for the reduced model where M = m(C) is at the pseudosteady state.

assumption when using the pseudosteady state). If we increase bothDm and χ (e�ectively
speeding up the macrophages), we get much better agreement between the reduced and the
full models (simulations not shown). To better understand the origin of the traveling waves,
we show an example of a solitary traveling wave for the reduced model in Figure11(A) where
the boundary conditions are not periodic. The velocity of this wave is much faster than that
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Figure 11. (A) Traveling solitary wave for the reduced model (C(x, t) is shown). (B) Plot of A(50, t),
C(50, t) (black curve) for the reduced model. A-nullcline is in green and C-nullcline in red (τ = 100).

of the periodic wave in Figure 10(B) since the solitary wave is moving into a medium in
which the anti-in”ammatory cytokine, A, is close to zero. Figure11(B) is a projection of
(C(50, t), A(50, t)) in the C-A phase plane. We have also drawn the nullclines for the planar
systemC � = f (C,A), A� = g(C,A) in the “gure. These nullclines are the •signatureŽ for an
excitable activator-inhibitor system, with C playing the role of the activator and A the role
of the inhibitor. The trajectory hugs fairly closely to the cubic-shaped C-nullcline, a fact that
is even more evident whenτ is large as in Figure12(B) ( τ = 1000).

We can easily construct a singular traveling wave in the limit asτ → ∞ along the lines of
[4]. Let ε = 1/τ so that we can write

−V Cz = f (C,A) + DCzz,

−V Az = ε(g(C,A) + DAzz).

Figure 12(A) shows the pro“le of a solution to the reduced model PDE; both C and A are
shown in spatial pro“le. The wave travels to the right, and the C pro“le consists of four pieces
labeled i…iv. The corresponding phase plane is shown in panel (B). There is a fast up-jump
(i), a slow movement along theC-nullcline (ii), a rapid down-jump (iii), and a slow return to
rest along the C-nullcline (iv). For ε = 0, A is constant, and since the wave is starting in a
resting medium, we takeA = 0 as that constant. The C equation is then

(34) −V Cz = f (C,0) + DCzz.

This is called the inner equation. The function f (C,0) has three roots: c1 = 0, c2, c3. c2
is about 10 and c3 is about 335. c1,3 are saddle-points with one-dimensional stable and
unstable manifold. We need to chooseV so that the unstable manifold of (c1,0) intersects
the stable manifold of (c3,0). From the theory of [10], there is a unique velocityV such that
this intersection occurs, resulting in a traveling front that joins ( c1,0) to (c3,0). We show the
trajectory in Figure 12(C) where we have picked the velocityV ≈ 2.635 by shooting. This
velocity compares quite well with the numerical velocity computed by solving the PDE in
Figure 11(A), V ≈ 2.5.
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Figure 12. Construction of the singular traveling wave. (A) Spatial profile of the solution to the reduced
model when τ = 1000. Direction of propagation is shown by an arrow, and A,C are shown. Small filled circles
correspond to equilibria in the inner equation (see panels (C) and (D) ). Labels i…iv correspond to parts of
the wave in the singular construction. (B) Phase plane of the reduced solution showing the four parts i…ivof
the singular construction. It qualitatively resembles Figure 11(B) . (C) Solution to the inner equation at the
approximate velocity of the up-jump from (0, 0) (black filled circle) to (360, 0) (cyan circle). (Green curve,
dC/dz nullcline; red curve, the C nullcline.) (D) Down-jump from the knee (35, 0) (blue circle) to (0, 0) (black
circle).

Once the up-jump takes place, we need to study the dynamics of region ii. We letξ = εz
be a slow variable. With this change of variables, the traveling wave solution obeys

−εV Cξ = f (C,A) + ε2DCξξ,

−V Aξ = g(C,A) + ε2DAξξ.

We let ε → 0 and obtain the so-called outer equation,

(35) −V Aξ = g(C3(A), A),

whereC3(A) is the root of f (C,A) = 0 such that C3(0) = c3. Note that as long asA < Aknee,
we can “nd such a root which is the rightmost branch of theC-nullcline in Figure 12(B). V is
the unique velocity that was chosen by solving the inner equation for a traveling wavefront.
As can be seen from Figure12(A), we want z (and thereforeξ) to be decreasing from the point
of the up-jump (cyan circle (A)) to the top of the knee (blue circle in (A) and Aknee in (B)).
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Since along ii in Figure12(B) we are under theA-nullcline (green curve), g(C3(A), A) > 0, so
that we integrate (35) backward in ξ until we are able to make the down-jump (iii). In the
standard singular construction of waves, the down-jump is made at a value ofA such that the
so-called equal-area condition is met. LetC1,3(A) be the respective leftmost and rightmost
roots of f (C,A) = 0 . The equal-area condition choosesAjump such that

∫ C3(0)

C1(0)
f (c,0) dc = −

∫ C3(Ajump)

C1(Ajump)
f (c,Ajump) dc.

Geometrically, the condition can be seen in Figure12(B) as follows. The “rst integral is the
area between theC-axis and the C-nullcline (red curve). For this particular system the area
is very large (indeed, we do not even show the rootC3(0) ≈ 365 in the graph). It is clear
that as we move a horizontal line upward in Figure 12(B), we can never make the negative
area (the part between C1(A), C2(A)) equal in magnitude to the large positive area of the
up-jump. Thus, what must happen is that the down-jump (iii) must occur precisely at the
knee,A = Aknee. With this value of A, we turn again to the inner equation (34). Figure 12(D)
shows the phase-plane. Note that the rightmost root is a saddle-node. If we pick the stable
manifold of the saddle-point (0,0) and integrate backward, we always hit this saddle-node
(shown by the blue circle) for any velocity. Thus, we choose the same velocity as our up-jump
(i) but with opposite sign. This produces the wave •backŽ shown by iii. Finally, we complete
the dynamics by once again solving the outer equation (35) with C3(A) replaced by C1(A).
In sum, the singular wave consists of an up-jump from (C,A) = (0 ,0) to (c3,0), and a slow
decay ofC along the right branch of the C-nullcline as A increases toAknee. Then follows a
fast down-jump from (C3(Aknee), Aknee) to (C1(Aknee), Aknee), and last a slow return to rest
at (0,0). The velocity of the singular wave is determined solely by the velocity of the up-jump,
which can be found by numerical shooting applied to (34).

7. Exotica.

7.1. Two-dimensiona l simulation results. We now present two-dimensional numerical
experiments for our model. Since we expect behavior similar to that in our one-dimensional
simulations, we use parameter regions from section4.

In two spatial dimensions, (2) becomes

mt = Dm(mxx + myy) −∇ ·
(

χm

(1 + αc)2
∇c

)
,

ct = Dc(cxx + cyy) − c +
m

1 + βaρ
,(36)

at =
(
Dc(axx + ayy) − a +

m

1 + βaρ

)
1
τ
,

where m, c, and a are functions of x, y, and t. We discretize the spatial variables using a
square grid with spacing � x = � y = s, and the time using a uniformly spaced grid with
spacingh, i.e., (mn

i,j, c
n
i,j , a

n
i,j) = ( m, c, a)( is, js, nh). As in our one-dimensional simulations,

we approximate the terms on the right-hand side of (36) using expressions that conserve the
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652 K. PENNER, B. ERMENTROUT, AND D. SWIGON

total number of macrophages. For the Laplacianmxx + myy (and similar terms) we use a
second-order central “nite-di�erence method:

Mn
i,j =

Dm

s2
(mn

i+1,j − 2mn
i,j + mn

iŠ 1,j + mn
i,j+1 − 2mn

i,j + mn
i,jŠ 1),

Cn
i,j =

Dc

s2
(cni+1,j − 2cni,j + cniŠ 1,j + cni,j+1 − 2cni,j + cni,jŠ 1),

An
i,j =

Dc

s2
(ani+1,j − 2ani,j + aniŠ 1,j + ani,j+1 − 2ani,j + ani,jŠ 1).

We then set

fn
i,j =

χmn
i,j

(1 + αcni,j)
2
,

gni,j =
mn

i,j

1 + β(ani,j)
ρ
,

and we approximate the chemotaxis term with

Fn
i,j =

fn
i+1,j + fn

i,j

2s2
(cni+1,j − cni,j) −

fn
i,j + fn

iŠ 1,j

2s2
(cni,j − cniŠ 1,j)

+
fn
i,j+1 + fn

i,j

2s2
(cni,j+1 − cni,j) −

fn
i,j + fn

i,jŠ 1

2s2
(cni,j − cni,jŠ 1).

The time derivatives are discretized using a forward di�erence scheme:

(37)
mn+1

i,j −mn
i,j

h
= Mn

i,j − Fn
i,j ,

(38)
cn+1
i,j − cni,j

h
= Cn

i,j − cni,j + gni,j ,

(39)
an+1
i,j − ani,j

h
= An

i,j − ani,j + gni,j.

To improve accuracy, we use a domain size 162× 162 and a time step ofh = 0 .01.1 The
solutions for m do not blow up or become negative at any point or time during simulation.

Checking the positivity of m is important because numerical instabilities can arise in
“nite-di�erence schemes if negative values are introduced. We veri“ed several simulations
using additional numerical algorithms based on the second-order positivity preserving central-
upwind scheme [6] developed to solve two-dimensional chemotaxis models. In this method,

1Time steps an order of magnitude smaller and re“ned grids gave similar results.
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Table 1
Two-dimensional simulation results.

Region of Figure 1 (τ, χ) Result Corresponding “gure
3 (30, 2.8) Transiently merging spots Figure 13
3 (50, 2.8) Rotating star Figure 14
3 (80, 2.8) Lack of cohesion Figure 15
3 (50, 2.4) Propagating sawtooth Figure 16
3 (50, 3.8) Lack of cohesion Figure 17

the system is extended to “ve dimensions by auxiliary variablesp and q as follows:

mt +
(

χmp

(1 + αc)2

)
x

+
(

χmq

(1 + αc)2

)
y

= Dm(mxx + myy),

ct = Dc(cxx + cyy) − c +
m

1 + βa
,

at =
1
τ

(
Dc(axx + ayy) − a +

m

1 + βa

)
,

pt +
(
c− m

1 + βa

)
x

= Dc(pxx + pyy),

qt +
(
c− m

1 + βa

)
y

= Dc(qxx + qyy).

In a ”ux formulation, the system becomes

(40) Ut + f (U)x + g(U)y = Λ(Uxx + Uyy) + R(U),

where U := ( m, c, a, p, q)T , the ”uxes are F(U) :=
( χmp
(1+αc)2

,0,0, c − m
1+βa ,0

)
and G(U) :=( χmq

(1+αc)2
,0,0,0, c − m

1+βa

)
, the di�usion matrix is Λ := diag (Dm,Dc,Dc/τ,Dc,Dc), and the

source terms areR(U) :=
(
0, m

1+βa − c, ( m
1+βa − a)/τ,0,0

)
. Detailed expressions for the eigen-

values of the Jacobians∂f
∂U and ∂g

∂U , x speeds, andy speeds were obtained using Mathematica.
We used the MATLAB minmod function to calculate numerical derivatives, and the forward
Euler method to evolve the system in time using time steps satisfying the CFL condition
(see (2.14) in [6]). The results from this second-order method were qualitatively identical to
those using the simpler scheme, which we show in Figures13…17 below. (The drawback of the
second-order scheme is about a 6-fold increase in computation time.)

For simulations reported in this section we again use periodic boundary conditions. We
increasedβ from the 0.4 used in one-dimensional simulations to 0.6. We also used more
macrophages than in our one-dimensional simulations, settingm(x, y,0) = m0 = 30 for all
(x, y). The simulations in this section use

(41)
[
Dm Dc α β m0 ρ

]
=
[
0.45 1 0.5 0.6 30 1

]
.

Table 1 shows the wide range of dynamic behavior we can obtain with the model. By
choosing (τ, χ) properly, we can get patterns consisting of spots that transiently move to
merge with each other, a rotating star, a moving sawtooth pattern, or packets of macrophages
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t=20000

t=20 t=1000

t=10000

Figure 13. Time evolution of m in a square domain for (τ, χ) = (30 , 2.8), with other parameters as in
(41). Please see the corresponding movie 83408 02.mp4 [local/ web 1.73MB].

that move around and ”uctuate in size. From a dynamical point of view, we “nd the rotating
star (Figure 14) and sawtooth pattern (Figure 16) the most interesting.

Further simulations, as well as Figure1, indicate the following:
• Patterns become more likely asm0 increases.
• Patterns become spatially bigger asm0 increases.
• The results from increasing (decreasing)χ are similar to results from increasing (de-

creasing)m0.
• Values of τ that are too low give transiently dynamical or stationary patterns, while

values that are too high cause a lack of cohesion for the patterns.

8. Discussion and further research. The numerical and analytical results on the dynam-
ics of a three-variable chemotaxis system (2) presented here strongly indicate that the in-
corporation of anti-in”ammatories as an inhibitor of chemoattractant production encourages
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t=20000

t=20 t=1000

t=10000

Figure 14. Time evolution of m in a square domain for (τ, χ) = (50 , 2.8), with other parameters as in
(41). Please see the corresponding movie 83408 03.mp4 [local/ web 9.20MB].

instability and propagating patterns, especially when the time-scale of anti-in”ammatory dy-
namics is su�ciently slow compared to that of the chemoattractant. For small values of τ
the patterns consist of isolated round spots that move only transiently in order to merge with
their neighbors. For moderately high values of the time-scale parameterτ the system set-
tles to regular dynamical patterns that include oscillating patterns, localized breathers, and
traveling waves, which are absent in the two-dimensional Keller…Segel-type chemotaxis model
(limiting case with τ = 1). If the dynamics of anti-in”ammatories is su�ciently slow ( τ is
high enough), the system does not settle to any periodic or traveling pattern.

All traveling waves require nonzero concentration of macrophages at in“nity, corresponding
to the case in which the cells ahead of the wave accumulate and join the localized wave, while
those at the tail end of the wave fall o�. In two dimensions we also observe traveling waves
with other symmetries, speci“cally waves that appear as wave-like instabilities of the edge
of a localized region of cells, including moving sawtooth patterns at the edges of strips and
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t=20000

t=20 t=1000

t=10000

Figure 15. Time evolution of m in a square domain for (τ, χ) = (80 , 2.8), with other parameters as in
(41). Please see the corresponding movie 83408 04.mp4 [local/ web 9.23MB].

discs. In some regimes the two-dimensional systems show patterns that resemble systems
of interacting particles. Such particle-like traveling waves have also been observed in three-
component reaction-di�usion systems, where they are called •dissipative solitonsŽ [17, 3, 22].
For certain parameter ranges the reaction-di�usion system can be reduced to a set of ODEs
describing the dynamical behavior of isolated and interacting dissipative solitons using their
center coordinates [24]. We expect that similar analysis can, in principle, be done for isolated
spots in our equations.

Further analysis is also required to fully understand the behavior of the system, especially
the appearance and interactions of traveling waves. One could analyze the stability of non-
homogeneous stationary solutions and describe the parameter combinations that lead to the
appearance of breather solutions. Another possible extension would be to obtain a de“nite
proof of nonexistence of localized traveling waves forτ = 1, which requires ruling out all
periodic and homoclinic orbits for system (32).
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t=20000

t=20 t=1000

t=10000

Figure 16. Time evolution of m in a square domain for (τ, χ) = (50 , 2.4), with other parameters as in
(41). Please see the corresponding movie 83408 05.mp4 [local/ web 9.16MB].

We have made a number of strong assumptions about the parameters in the model. First,
we have used rather large values ofτ in order to emphasize the plausible di�erence in time
scales between pro- and anti-in”ammatory cytokines. While we have taken the di�erence in
time scales to an extreme value to get traveling waves and other interesting dynamical behav-
ior, the anti-in”ammatory cytokines often have longer time-scales than the initial chemokines
which signal the onset of the immune response [25]. This di�erence makes biological sense; we
want the immune system to have time to fend o� the initial insult and then slowly ameliorate.
To make the analysis simpler (especially in the steady state dynamics of section5.1), we have
assumed that the e�ect of A on the production of both C and A by macrophages is identical
for both species. We can relax this assumption and then numerically solve the equations.
Indeed, we “nd, that, for example, stationary stripes (in one spatial dimension) persist if we
change the value ofβ in the equation for A (call this βA). We “nd that βA as small as 0.02
or as large as 2 still leads to a single-peak solution. In the Turing…Hopf bifurcation seen in
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t=20000

t=20 t=1000

t=10000

Figure 17. Time evolution of m in a square domain for (τ, χ) = (50 , 3.8), with other parameters as in
(41). Please see the corresponding movie 83408 06.mp4 [local/ web 9.25MB].

Figure 2(C), the checkerboard pattern remains forβA close to 0.4, but for smaller values there
are periodic waves. For large values ofβA, the patterns disappear. The latter is not surprising
since large values ofβA take the anti-in”ammatory cytokines out of the picture and the value
of χ is not large enough to destabilize the rest state. (Supplementary videos are available
showing the bifurcations asβA varies.)

We mentioned that one application of the model could be the study of rash patterns.
Stationary spots, like those in Figure 13, arise in many models. However, we were originally
motivated to model moving rash patterns. Erythema gyratum repens is a case of a moving rash
[13] that produces patterns resembling those seen in in Figure17. Although not all patterns
observed in simulations have experimentally or clinically observed counterparts, we believe
the wide range of patterns produced by the model indicates that it is a step in modeling the
wide range of rash patterns. We again note that our model does not incorporate pathogenic
stimuli. In modeling speci“c reactions, pathogens could be incorporated for more realistic
predictions.D

ow
nl

oa
de

d 
11

/0
6/

12
 to

 1
36

.1
42

.1
24

.7
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

83408_06.mp4
http://epubs.siam.org/doi/suppl/10.1137/110834081/suppl_file/83408_06.mp4


PATTERN FORMATION IN A MODEL OF ACUTE INFLAMMATION 659

Acknowledgments. K.P. would like to extend his sincerest thanks to his advisors for all
their advice and support, and to Dr. Jonathan Rubin and the Complex Biological Systems
Group at the University of Pittsburgh.

REFERENCES

[1] A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-
induced angiogenesis, Bull. Math. Biol., 60 (1998), pp. 857…899.

[2] J. C. Arciero, Q. Mi, M. F. Branca, D. J. Hackam, and D. Swigon, Continuum model of collective
cell migration in wound healing and colony expansion, Biophys. J., 100 (2011), pp. 535…543.

[3] M. Bode, A. W. Liehr, C. P. Schenk, and H. G. Purwins, Interaction of dissipative solitons: Particle-
like behaviour of localized structures in a three-component reaction-diffusion system, Phys. D, 161
(2002), pp. 45…66.

[4] R. G. Casten, H. Cohen, and P. A. Lagerstrom, Perturbation analysis of an approximation to the
Hodgkin-Huxley theory, Quart. Appl. Math., 32 (1975), pp. 365…402.

[5] M. A. J. Chaplain, S. R. McDougall, and A. R. A. Anderson, Mathematical modeling of tumor-
induced angiogenesis, Annu. Rev. Biomed. Eng., 8 (2006), pp. 233…257.

[6] A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemo-
taxis and haptotaxis models, Numer. Math., 111 (2008), pp. 169…205.

[7] J. Day, J. Rubin, Y. Vodovotz, C. C. Chow, A. Reynolds, and G. Clermont, A reduced math-
ematical model of the acute inflammatory response II . Capturing scenarios of repeated endotoxin
administration, J. Theoret. Biol., 242 (2006), pp. 237…256.

[8] B. Ermentrout, Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the
square, Proc. R. Soc. Lond. A, 434 (1991), pp. 413…417.

[9] P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Springer-Verlag, New York, Berlin,
1979.

[10] P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling
front solutions, Arch. Ration. Mech. Anal., 65 (1977), pp. 335…361.

[11] P. Grindrod, The Theory and Applications of Reaction-Diffusion Equations: Patterns and Waves,
Clarendon Press, Oxford, UK, 1996.

[12] T. Hillen and K. J. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009),
pp. 183…217.

[13] J. M. Hyman, L. A. Segel, A. S. Perelson, and S. N. Klaus, Rash theory, in Theoretical and
Experimental Insights into Immunology, A. S. Perelson and G. Weisbuch, eds., NATO ASI Series,
Springer-Verlag, New York, Berlin, 1992, pp. 333…352.

[14] E. F. Keller and G. M. Odell, Necessary and sufficient conditions for chemotactic bands, Math.
Biosci., 27 (1975), pp. 309…317.

[15] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret.
Biol., 26 (1970), pp. 399…415.

[16] E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), pp. 225…234.
[17] K. Krischer and A. Mikhailov, Bifurcation to traveling spots in reaction-diffusion systems, Phys. Rev.

Lett., 73 (1994), pp. 3165…3168.
[18] I. R. Lapidus and R. Schiller, Model for the chemotactic response of a bacterial population, Biophys.

J., 16 (1976), pp. 779…789.
[19] S. R. Lubkin, R. Tyson, and J. D. Murray, A minimal mechanism for bacterial pattern formation,

Proc. Roy. Soc. London, 266 (1999), pp. 299…304.
[20] N. V. Mantzaris, S. Webb, and H. G. Othmer, Mathematical modeling of tumor-induced angiogenesis,

J. Math. Biol., 49 (2004), pp. 111…187.
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