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Dynamics of an electrostatically charged
elastic rod in fluid
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We investigate the effects of electrostatic and steric repulsion on the dynamics of a pre-
twisted charged elastic rod immersed in a viscous incompressible fluid. Equations of
motion of the rod include the fluid–structure interaction, rod elasticity and a combination
of two interactions that prevent self-contact, namely the electrostatic interaction and
hard-core repulsion. The governing equations are solved using the generalized immersed-
boundary method. We find that after perturbation, a pre-twisted minicircle collapses
into a compact supercoiled configuration. The collapse proceeds along a complex
trajectory that may pass near several unstable equilibrium configurations, before it
settles in a locally stable equilibrium. The dwell time near an unstable equilibrium
can be up to several microseconds. Both the final configuration and the transition
path are sensitive to the initial excess link, ionic strength of the solvent and the
initial perturbation.

Keywords: supercoiling; electrostatic force; immersed-boundary method

1. Introduction

Modelling of many biological systems requires one to take into account the
interaction of elastic structures with fluid. The immersed-boundary (IB) method
(Peskin 2002), created to study the dynamics of heart valves (Peskin 1972),
is an efficient mathematical procedure that has been used in the numerical
simulation of a variety of such systems. The mathematical formulation of the
IB method employs Eulerian independent variables for the description of the
fluid and Lagrangian independent variables for the elastic solid. The interaction
between the solid and the fluid is mediated by forces applied by the structure
on the fluid and vice versa. Dirac delta functions are used to convert forces
from one set of independent variables to the others. The numerical scheme for
the IB method employs two meshes—a Cartesian mesh for Eulerian variables
and a curvilinear mesh for Lagrangian variables, which moves freely through
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the Cartesian mesh. Smoothed approximations of Dirac delta functions are
involved in the interpolation between the two meshes. A distinguishing feature of
the IB method is that the velocity of the structure is identical to the velocity of
the surrounding fluid owing to no-slip conditions, i.e. the structure is carried
by the fluid (Peskin & McQueen 1996; Peskin 2002).

The classical IB method is applicable to the dynamics of two- or three-
dimensional structures in a three-dimensional fluid, but cannot be directly applied
to a one-dimensional structure (a space curve) because of the presence of a
singularity due to delta functions. The generalized IB method (Lim et al. 2008)
resolves this issue by using a smoothed delta function with a compact support,
which has the effect of assigning a cross-sectional radius to the space curve. In
addition, the generalized IB method incorporates the special Cosserat rod theory
and is distinguished by two new features: (i) the local angular velocity of the
fluid at the IB is evaluated, along with the local linear velocity of the fluid,
and (ii) the IB applies torque as well as force to the surrounding fluid. It was
observed that the generalized IB method prevents the passage of a discretely
modelled, infinitesimally thin elastic rod through itself, even without the use
of explicit repulsive potentials (Lim et al. 2008). This effect appears to be
the result of the no-slip condition at the fluid–structure interface, where the
interpolated velocity field is continuous, as is also true in the classical IB method.
Nonetheless, the prevention of self-penetration did not prove to be reliable in
the numerical implementation, since it varied with the grid-spacing and the
time step.

Here, we present an improved IB method for modelling the dynamics of elastic
rod-like structures in a fluid. In this method, the self-contact is treated naturally
by including two types of interactions: (i) a hard-core potential that does not
allow two points on the axis of the rod to approach closer than the specified
distance (rod diameter) and (ii) a long-range electrostatic repulsion. Inclusion of
these interactions prevents the passage of the rod through itself and enables one
to study the effects of the rod diameter and the magnitude of the repulsive force
on the dynamics.

The inclusion of electrostatic force was motivated by our application of the
model to the dynamics of short DNA molecules in a solvent. DNA is a double-
stranded molecule composed of two polynucleotide strands that are bound
together by hydrogen bonds between complementary nucleotide bases. In normal
conditions, the strands wind around the DNA axis as two right-handed helices
with diameters of 2 nm and pitches of 3.57 nm. During biological processes, such
as transcription or replication, various mechanical forces act on the DNA and
cause its underwinding or overwinding, i.e. an increase or decrease in the helical
pitch. The molecule responds by releasing some of the stored twisting energy
through a deformation that results in the so-called supercoiled configurations
(Bates & Maxwell 1993).

Aside from the bending and torsional elasticity, the dynamics of the molecule
is influenced by long-range electrostatic interactions between charged phosphate
residues on the DNA backbone. Two of these residues are located every 0.34 nm,
each carrying one electronic charge. The main influence of these charges is that
the chance of self-contact of the DNA, i.e. contact of a point on the surface of the
DNA with another point on the surface, is greatly reduced as the electrostatic
repulsion provides a cushion between any two closely approaching DNA segments.
Proc. R. Soc. A
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Electrostatic interaction is particularly important for supercoiled DNA dynamics
because, upon supercoiling, many parts of the double helix come into close
contact. A secondary effect of electrostatics is the so-called electrostatic stiffening
of the molecule, i.e. increased resistance to bending (Odijk 1977; Skolnick &
Fixman 1977; Baumann et al. 1997).

The electrostatic interaction between DNA charges in solution is screened by
counterions, and hence the strength of any electrostatic effect decreases with
increasing ionic strength of the solvent, i.e. the concentration of dissolved salt.
There are several theories describing the extent of such screening. The most
commonly employed is the theory of counterion condensation, due to Manning
(1978), which concludes that the DNA is surrounded by a concentrated layer
of counterions that neutralizes about 76 per cent of the DNA charge. The
electrostatic energy is then described by a Debye–Hückel term as a function
of the modified charge, molar salt concentration and the distance between
the charges.

Equilibrium configurations of supercoiled circular DNA have been studied
extensively using elastic-rod models (e.g. Le Bret 1979, 1984; Benham 1989; Yang
et al. 1993; Tobias et al. 1994; Coleman et al. 1995, 2000; Westcott et al. 1995;
Dichmann et al. 1996 and also references in Swigon 2009). Schlick et al. (1994)
incorporated both elastic potential and electrostatic forces in a computational
model of DNA that represented the molecule by cubic B-splines. They found that
at low salt, the electrostatic term dominates over the bending and twisting terms
and the DNA assumes more open configurations, while at high salt, the DNA
structure is dominated by the bending term and takes upon compact and bent
interwound configurations. Westcott et al. (1997) also studied the mechanical
equilibria of charged DNA by solving the equations of mechanical equilibrium
for elastic DNA at fixed salt concentration. They showed that the extensible
DNA yields the same equilibrium configurations as in the inextensible DNA.
Recently, Biton et al. (2007) and Biton & Coleman (2010) have analysed the
influence of electrostatic repulsion on configurations of both open and closed
intrinsically curved DNA segments. The influence of electrostatics on DNA
configurations in single-molecule manipulation experiments was recently analysed
by Clauvelin et al. (2009) and Brutzer et al. (2010). The departure of a pre-
twisted circular elastic rod from the circular equilibrium configuration has been
studied using dynamical rod theories that included drag forces to represent
the interaction of the rod with fluid (Klapper 1996; Goriely & Tabor 1997;
Goyal et al. 2005, 2008).

We here use the generalized IB method to study the dynamics of supercoiling of
a pre-twisted charged elastic rod and its dependence on the ionic strength of the
surrounding solvent, mimicking the supercoiling of DNA minicircles. We model
the solvent as a viscous incompressible fluid, assume a no-slip interaction between
the solvent and the rod and treat the rod as a homogeneous, transversely isotropic,
intrinsically straight and uniformly charged rod obeying special Cosserat theory
of rods (Antman 1995), with electrostatic forces governed by the Debye–Hückel
theory. The rod is initially circular with a uniform twist density and an imposed
excess link corresponding to an integer number of turns of one end with
respect to the other before closure. This configuration is perturbed in its twist
density (but not the axial curve) and then left to evolve in accord with the
governing equations.
Proc. R. Soc. A
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2. Equations of motion

We consider a closed bent and twisted rod immersed in an incompressible
fluid governed by the Navier–Stokes equations. The mathematical model
discussed here is based on the model introduced by Lim et al. (2008) with
electrostatic and steric repulsion forces included in addition to the elastic force.
The immersed rod is represented by a three-dimensional closed space curve with
an associated orthonormal triad at each point of the curve.

Eulerian coordinates are used in the description of the motion of the fluid, while
Lagrangian variables are used to describe the immersed rod and its properties.
The interaction between these two types of variables is facilitated by means of
integral transformations that involve a smoothed version of the three-dimensional
Dirac delta function (Peskin & McQueen 1996).

The coupled system of equations of the rod and the fluid is as follows:

r

(
vu
vt

+ u · Vu
)

= −Vp + mV2u + f b, (2.1)

V · u = 0, (2.2)

0 = f + vF
vs

, (2.3)

0 = n + vN
vs

+ vX
vs

× F, (2.4)

F = F 1D1 + F 2D2 + F 3D3, (2.5)

N = N 1D1 + N 2D2 + N 3D3, (2.6)

N 1 = a1
vD2

vs
· D3, N 2 = a2

vD3

vs
· D1, N 3 = a3

vD1

vs
· D2, (2.7)

F 1 = b1D1 · vX
vs

, F 2 = b2D2 · vX
vs

, F 3 = b3

(
D3 · vX

vs
− 1

)
, (2.8)

f b(x, t) =
∫ (−f (s, t)

)
dc(x − X(s, t)) ds + 1

2
V ×

∫
(−n(s, t))dc(x − X(s, t)) ds

+
∫
(−f c(s, t))dc(x − X(s, t)) ds +

n∑
i=1

(−f e
i (t))dc(x − Xi(t)), (2.9)

vX(s, t)
vt

= U(s, t) =
∫

u(x, t) dc(x − X(s, t)) dx, (2.10)

W(s, t) = 1
2

∫
(V × u)dc(x − X(s, t)) dx (2.11)

and
vDi(s, t)

vt
= W(s, t) × Di(s, t), i = 1, 2, 3, (2.12)

where f c(s, t) and f e
i (t) are the steric repulsion and electrostatic forces

defined below.
Proc. R. Soc. A
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Equations (2.1) and (2.2) are the Navier–Stokes equations for the velocity
u(x, t) and pressure p(x, t) of an incompressible fluid; here, x = (x1, x2, x3)
describes a position in space and t is the time. The motion of the fluid is subject
to the body force f b(x, t), which here represents the force per unit volume applied
to the fluid by the immersed rod. The constant parameters r and m are the fluid
density and the fluid viscosity, respectively.

The equilibrium equations (2.3)–(2.8) are employed to relate the force and
torque of the immersed rod to the external forces applied on it, where the rod
is defined by giving its axial curve X(s, t) and an orthonormal triad embedded
in each cross section (D1(s, t), D2(s, t), D3(s, t)). The rod is assumed to have
no dynamics of its own other than the one that follows the motion of the
fluid. This approximation becomes exact in the limit of a thin elastic rod
with density equal to the fluid density and no-slip conditions imposed on the
fluid velocity at the rod surface. All variables in equations (2.3)–(2.8) are
functions of the linear material coordinate s of the rod (not necessarily the
arclength) and the time t. F(s, t) and N(s, t) are the force and moment (couple)
transmitted across the section of the rod at s. The expressions −f (s, t) and
−n(s, t) are the density of the external force and the torque applied by the rod
on the fluid.

The internal force and moment on the perpendicular cross section, F and
N, and also the applied force density f and the torque density n may be
expanded in the basis (D1, D2, D3). Equations (2.7) and (2.8) are the constitutive
relations of the special Cosserat theory of rods (Antman 1995). Here, a1 and
a2 are the bending moduli of the rod about D1 and D2, respectively, and a3 is
the twisting modulus of the rod. The parameters b1 and b2 are the shear-force
constants and b3 is the stretch-force constant. The elastic energy of the rod is
given by

E = 1
2

∫ [
a1

(
vD2

vs
· D3

)2

+ a2

(
vD3

vs
· D1

)2

+ a3

(
vD1

vs
· D2

)2

+b1

(
D1 · vX

vs

)2

+ b2

(
D2 · vX

vs

)2

+ b3

(
D3 · vX

vs
− 1

)2
]

ds. (2.13)

For simplicity, we assume that a1 = a2 ≡ a and b1 = b2 ≡ b, which corresponds to
the case of a rod with transversely isotropic material properties.

Equations (2.9)–(2.11) describe the interactions between the fluid and the
rod. These interaction equations connect the Lagrangian and Eulerian variables
via a three-dimensional smoothed Dirac delta function dc(x) = dc(x1)dc(x2)dc(x3),
which acts as a kernel of the integral transformations that appear in the
interaction equations. The particular choice of dc(x) that we make in this work
is the following:

dc(x) = 1
c3

f
(x1

c

)
f

(x2

c

)
f

(x3

c

)
, (2.14)
Proc. R. Soc. A
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2

 r

f(r)

0.5

−2 0

Figure 1. One-dimensional delta function f(r).

where x = (x1, x2, x3) and the function f is given by

f(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 − 2|r | + √
1 + 4|r | − 4r2

8
, if |r | ≤ 1,

5 − 2|r | − √−7 + 12|r | − 4r2

8
, if 1 ≤ |r | ≤ 2,

0, if |r | ≥ 2,

(figure 1). Note that dc(x − X) is a continuous function of x with continuous first
derivatives and with support equal to a cube of edge 4c centred on X. Whenever
c is an integer multiple of h, the function dc(x − X) satisfies two identities that
are of particular importance in this work. Note in particular that these identities
hold for all X, ∑

j

dc(jh − X)h3 = 1 (2.15)

and ∑
j

(jh − X)dc(jh − X)h3 = 0, (2.16)

where j is any vector with integer components, and h is the meshwidth of the fluid
grid. As mentioned above, these identities hold only if c/h is a positive integer,
and we shall choose h so that this is the case. The above identities ensure that
force and torque generated by the rod are correctly applied to the fluid by our
numerical scheme.

In equation (2.9), the first term describes how the force of the rod acts on the
fluid and the second term describes how the torque of the rod acts on the fluid
(see Lim et al. 2008 for details).
Proc. R. Soc. A
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The repulsive force f c is included to prevent penetration of the rod surface. It
is assumed to be a Hookian force proportional to the amount of penetration, i.e.

f c(s, t) =
∑
s′

f c(s, s′, t), (2.17)

where

f c(s, s′, t) = g(D − |X(s, t) − X(s′, t)|) X(s, t) − X(s′, t)
|X(s, t) − X(s′, t)| , (2.18)

for any two material points s and s′, such that |s − s′|>2D, |X(s, t) − X(s′, t)|≤D
and (X(s, t) − X(s′, t)) · T(s, t) = (X(s, t) − X(s′, t)) · T(s′, t) = 0. (In practice, for
any s there are only finitely many s′ obeying such conditions, whence the sum
in equation (2.17).) The constant D = 20 Å is the diameter of the DNA, and the
constant g is chosen sufficiently large so that no significant penetration occurs.

Electrostatics is included in the external force f b as a screened Coulombic force
f e
i , defined by

f e
i (t) =

n∑
j �=i

Fe
ij(t), (2.19)

where

Fe
ij(t) = qiqje−kdij (t)

4pe0ewdij(t)

(
1

dij(t)
+ k

)
(Xi(t) − Xj(t))

dij(t)
, (2.20)

where Xi and qi are the position and net charge of the ith base pair, respectively,
dij is the distance between net charges qi and qj and n is the number of base
pairs. The constant e0 is the permittivity of free space and ew is the dielectric
constant of water at 300 K. For simplicity, we represent each base pair by one
charge located on the DNA axis. The condensed monovalent cations around the
surface of the DNA reduce the charge of each phosphate group to 0.24e, where e
is the elementary charge of an electron (Manning 1978; Williams & Maher 2000).
Since there are two such phosphate groups per base pair, qi is 0.48e. The Debye
screening parameter, k, is given by

k = 0.329
√

Cs Å−1, (2.21)

where Cs is the molar salt concentration in moles per litre. The screened
Coulombic force can be obtained as the first variation of the Debye–Hückel
electrostatic potential (Westcott et al. 1997),

Eelectro =
∑
i<j

qiqje−kdij

4pe0ewdij
. (2.22)

Equation (2.10) represents the condition that the rod moves at the same
velocity as the fluid, after averaging in a manner determined by the smoothed
Dirac delta function. Equation (2.11) represents a similar relation between the
angular velocity W(s, t) of the rod and a local average of the angular velocity of
the fluid, 1/2(V × u). Again, the smoothed delta function is used to determine the
appropriate weighted average of the local fluid velocity. The change in orientation
of the triad at each point of the rod is given by equation (2.12).
Proc. R. Soc. A
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Table 1. Computational parameters.

parameters symbol value

grid size N × N × N 643

domain size L × L × L L = 725 Å
time step Dt 1 × 10−10 s
fluid density r 1 g cm−3

fluid viscosity m 0.01 g (cm s)−1

permittivity of free space e0 3.45 × 10−7e2/(g Å3 s−2)
dielectric constant of water ew 77.7
electric charge q 0.24 × 2e
molar salt concentration Cs 0.001 ∼ 0.1 M
Debye screening parameter k 0.329

√
cs Å−1

bending modulus a1 = a2 = a 1.3 × 10−19 g cm3 s−2

twist modulus a3 1.82 × 10−19 g cm3 s−2

shear-force constants b1 = b2 = b 5 × 10−5 g cm s−2

stretch modulus b3 = b 5 × 10−5 g cm s−2

number of base pairs n 600
radius r 324.676 Å

Any deformation of a closed DNA is subject to the constraint of a fixed linking
number Lk, defined as one half of the number of signed crossings of a DNA
strand and the DNA axis in a planar projection (Calladine et al. 2004). A related
quantity is the excess link DLk, which is a topological invariant, just like Lk, and
is equal to half of the number of signed crossings of the axial curve and the curve
that is formed by the endpoints of the vector D1 that is embedded in the cross
section, and is constant in a stress-free configuration. If the axial curve of closed
DNA is a simple closed planar curve, then it follows from the theorem of White
(1969, 1989) that

DLk = DTw =
∫

dD1

ds
· D2 ds, (2.23)

and hence DLk equals the total number of turns of one end of the rod before it
is sealed with the other end to produce a ring.

The numerical scheme we employ to solve the system (2.1)–(2.12) and (2.17)–
(2.20) is based on the generalized IB method. In particular, since the discretized
Navier–Stokes equations are linear in the variables of time level (n + 1) with
constant coefficients that depend on the variables at time level n, Fourier
transformation decouples the discretized system into N 3 separate 4 × 4 systems
of linear equations that are easily solved (for details, see Lim et al. 2008).
The parameter values used in the computations are listed in table 1. The
elastic and electrostatic constants are based on the physical properties of the
DNA (Westcott et al. 1997). In particular, the ratio of twisting to bending
moduli, a3/a is here chosen to be 1.4 in accord with the experimental estimates
obtained by measurements of the free energy of supercoiling for small DNA rings
(Horowitz & Wang 1984) and single DNA manipulation experiments (Strick
et al. 1996). Each trajectory was continued until the total kinetic energy of
Proc. R. Soc. A
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the system dropped below 10−12kT to make sure that the system converged
to a locally stable equilibrium. The computation of one dynamical trajectory
takes 2–3 days of CPU time on a common Linux workstation. The order
of accuracy of the numerical method was verified by performing calculations
on three different grid sizes of 643, 1283 and 2563, comparing the discrete
L2-norm of the difference in fluid velocities and computing the convergence
ratios. For example, for the trajectory of the system with (DLk, Cs) = (4, 0.1 M)
(see below), the convergence ratios for the velocity u = (u, v, w) at t = 0.4 ms
were (||u64 − u128||2)/(||u128 − u256||2) = 2.40, (||v64 − v128||2)/(||v128 − v256||2) =
2.56 and (||w64 − w128||2)/(||w128 − w256||2) = 1.98, which implies that the scheme
is first-order accurate.

3. Results and discussion

In choosing the initial configuration, we start with a configuration that has a
circular axial curve of radius r0 and a uniform twist density DLk/(2pr0), and
hence is an equilibrium solution of equations (2.3)–(2.8) in the absence of external
force and moment, i.e. with f = 0 and n = 0. We perturb this configuration by
varying the twist along the DNA while leaving the axial curve intact. In terms
of cylindrical coordinates (r , q, z) with unit vectors (r(q), q(q), z), the initial
configuration becomes

X(s) = r0(cos b)r
(

s
r0

)
, (3.1)

D3(s) = (cos b)q
(

s
r0

)
+ (sin b) z, (3.2)

E(s) = −(sin b)q
(

s
r0

)
+ (cos b)z, (3.3)

D1(s) = cos
(

DLk
s
r0

+ g(s)
)

E(s) + sin
(

DLk
s
r0

+ g(s)
)

r
(

s
r0

)
(3.4)

and D2(s) = − sin
(

DLk
s
r0

+ g(s)
)

E(s) + cos
(

DLk
s
r0

+ g(s)
)

r
(

s
r0

)
, (3.5)

where

sin b = − a3DLk
br2

0 + a3 − a
, 0 ≤ s ≤ 2pr0,

and
g(s) =

∑
m

em sin
ms
r0

. (3.6)

Note that integer-valued DLk implies that the triad will be continuous at s = 0,
which is the same point as s = 2pr0. The vector E(s) is a useful reference vector
orthogonal to D3 within the plane spanned by q and z. The charges are located
on the axis at the discretization points. As each material point of the discretized
immersed rod corresponds to a base pair of the circular DNA, the spacing between
them is 0.34 nm.
Proc. R. Soc. A
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

( j) (k) (l)

Figure 2. Example of a trajectory of a DNA minicircle with 600 bp, Cs = 0.1 M, DLk = 6 and
other parameters as in table 1. Rapid equilibration of the twist density accompanied by a small
perturbation of the axial curve (a–b), is followed by a collapse of the circle through (c) and (d) to the
point of first ‘contact’ (e) at which the DNA comes to close proximity and the motion abruptly slows
down, continued through one or several intermediate configurations with non-increasing number
of terminal loops and the creation of additional contacts (f –j), and finally a slow convergence to
a locally stable equilibrium accompanied by writhe relaxation (j–l). (a) t = 0 ms; (b) t = 0.2 ms;
(c) t = 1.8 ms; (d) t = 2 ms; (e) t = 2.6 ms; (f) t = 3 ms; (g) t = 3.6 ms; (h) t = 4 ms; (i) t = 4.8 ms;
(j) t = 15.2 ms; (k) t = 30 ms; and (l) t = 64 ms.

The use of a circular initial configuration is standard in studies of DNA
supercoiling, and corresponds to the situation in which a sudden change in the
stress-free value of twist density pushes a stable circular minicircle above the
instability threshold. This can be accomplished experimentally, for example, by
adding intercalating agents to the solution.

We study the dynamics of initially circular DNA with excess link DLk fixed
at a value between 1 and 6 and the molar salt concentration Cs fixed at 0.01,
0.05 or 0.1 M. Regardless of DLk, Cs and the initial perturbation, the majority
of DNA trajectories we computed progressed through four characteristic phases
described in figure 2.

(a) Dependence of limiting configurations on DLk and Cs

We first explore the dependence of trajectories and limiting configurations
on DLk and Cs while the initial perturbation is held fixed. For DLk = 1, the
circular configuration is stable even in the absence of electrostatics (Coleman &
Swigon 2000). A familiar result in the theory of inextensible, unshearable
elastic rods states that the circular equilibrium configuration is unstable if DLk
exceeds a critical value DLk∗ = (a/a3)

√
3 (Michell 1889; Goriely 2006). The

equivalent critical value for a charged rod with a3/a = 0.67 has been estimated
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(a) (c)(b)

DLk = 1DLk = 1DLk = 1

DLk = 2DLk = 2DLk = 2

DLk = 3DLk = 3DLk = 3

DLk = 4DLk = 4DLk = 4

DLk = 5DLk = 5DLk = 5

DLk = 6DLk = 6DLk = 6

Figure 3. Limiting configurations of a 600 bp DNA minicircle with given value of the excess link
DLk (i.e. imposed excess twist in a circular configuration) and salt concentration Cs, when started
from identical initial perturbations (see text).(a) Cs = 0.01 M; (b) Cs = 0.05 M; (c) Cs = 0.1 M.

by Schlick et al. (1994) as a function of the ionic strength: DLk∗(0.1 M) = 2.27,
DLk∗(0.05 M) = 2.38, DLk∗(0.01 M) = 2.81, DLk∗(0.005 M) = 3.25. We find that
for our choice of a3/a = 1.4, the circular configuration with DLk = 2 is unstable for
Cs ≥0.01 M. Furthermore, we find that DLk∗(0.005 M)>2 and DLk∗(0.001 M)>3.

When the circular state is unstable, the DNA deforms into a supercoiled
configuration. Each column in figure 3 depicts limiting steady-state equilibrium
configurations at specified values of excess link and salt concentration when the
initial perturbation is chosen in accord with equation (3.6) with e1 = 1, and em = 0
Proc. R. Soc. A
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Figure 4. Energies (kT ) and writhe for the configurations in figure 3. (a) Ebending (kT ), (b) Etwisting
(kT ), (c) DEelectro (kT ) and (d) Wr.

for m ≥ 2. (Although each of these configurations is locally stable, they should
not be viewed as the minimum energy configurations for there may be other
configurations at the same value of DLk with even lower energy.)

The shapes of equilibrium configurations, supercoiled plasmids can be classified
according to their symmetry (Coleman & Swigon 2000). In the absence of
electrostatics, the minimum elastic-energy configuration for any value of excess
link has the D2 symmetry group (dihedral group of order 2) with three axes
of rotational symmetry. Additional stable configurations with higher symmetries
(D3, D4, and so on) can be found for larger values of excess link. There are
two types of supercoiled configurations: plectonemically supercoiled configurations
have a small number of terminal loops and large two-ply plectonemic regions
in which two helical DNA segments run in parallel. Toroidally supercoiled
configurations have multiple terminal loops and DNA segments at the points
of self-contact run transversally. The distinction is meaningless for DLk < 3. In
figure 3, among the limiting configurations with DLk ≥ 3 those with (DLk, Cs) =
(3, 0.01 M), (5, 0.1 M), (6, 0.05M) and (6, 0.1 M) are plectonemically supercoiled,
while the remaining ones are toroidally supercoiled.

The shapes of limiting configurations at high salt resemble those found for
elastic rods without electrostatic repulsion (Coleman & Swigon 2000). The DNA
at low salt has the tendency to limit the total extent in close contact, which
results in a preference for toroidal supercoiling.

In figure 4, we compare the bending, twisting and electrostatic energies of
configurations in figure 3. (The electrostatic energies are shown as a difference
from the electrostatic energy of the circle at the same Cs.) Bending energy
increases with DLk, but does not vary much with salt concentration. On the
other hand, the twisting energy is independent of DLk at medium and high
salt concentration, but depends strongly on DLk at low salt concentration. The
differences in electrostatic energy among the configurations are much smaller
than the differences in either bending or twisting energy—there is only a 6.43kT
increase in electrostatic energy at Cs = 0.1 M as DLk varies from 1 to 6, although
the configurations vary substantially; the bending energy, for example, changes
by 34.52kT . This reflects the charge screening—charges that are located more
than several Debye lengths apart (which, in this case, equals k−1 = 10 Å) do not
interact with each other. Writhe increases monotonically with both increasing
DLk and increasing Cs.
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Figure 5. Distance of closest approach versus DLk for the configurations in figure 3 (open symbols).
Solid symbols correspond to experimental estimates of the effective DNA diameter (Rybenkov et al.
1993) from DNA knotting experiments. Open triangles, Cs = 0.01 M; open circles, Cs = 0.05 M; open
squares, Cs = 0.1 M.

The stretching energy (not shown) plays a minor role, in accord with
observations of Westcott et al. (1997), who showed that supercoiling dynamics of
DNA is not much affected by DNA extensibility.

To assess the compaction of the supercoiled molecule, we measured the distance
of closest approach, i.e. the closest distance between the centre of a given
base pair and the centre of another base pair that has at least 20 base pairs
separation along the axis of the DNA (figure 5). The distance of closest approach
decreases with increasing molar salt concentration and increasing DLk, as a
result of increased supercoiling and decreased electrostatic repulsion. The distance
of closest approach can be compared in figure 5 with experimental estimates
of the effective DNA radius, based on measurements of knotting probability in
the absence of supercoiling (Rybenkov et al. 1993). In those experiments, no
supercoiling was imposed and hence we plot their estimated values at an arbitrary
value DLk = 1.6. The values of closest approach we calculate are smaller than the
effective DNA diameter at the same ionic strength because supercoiling induces
forces that push the DNA into closer proximity. The values of plectonemic radius
versus ionic strength reported by Ubbink & Odjik (1999) and Rybenkov et al.
(1997) are about twice as large as those we find, most likely because our values
are for equilibrium configurations and do not account for thermal fluctuations
that would tend to increase the plectonemic radius.

Numerical results also show that for a fixed salt concentration, the distance
between two adjacent base pairs (i.e. the stretching of the DNA) is essentially
constant, regardless of different initial twist number DLk (in accord with Westcott
et al. 1997) and it slightly increases as the salt concentration decreases. Figure 6
shows five different projections of the equilibrium configurations for (DLk, Cs) =
(5, 0.01 M) and (5, 0.05 M), to demonstrate that there are no actual self-contact
points anywhere along the configuration as the distance of closest approach is
larger than D.
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(a)

(b)

Figure 6. Different views of the limiting configuration for (a) (DLk, Cs) = (5, 0.01 M) and
(b) (DLk, Cs) = (5, 0.05 M). There is no self-contact in any of the configurations.

energy (kT) (a) (b) (c) (d ) (e)
Ebending 37.6 45.6 62.0 38.7 28.8
E twisting 7.7 11.2 7.2 7.9 6.8
E electro 348.2 347.3 346.8 348.0 348.1
E total 400.8 411.7 423.3 401.9 391.2
Wr 4.66 4.39 4.70 4.65 4.75

(c)(b)(a)

(d ) (e)

Figure 7. Locally stable equilibrium configurations for (DLk, Cs) = (6, 0.1 M) obtained as limiting
configurations of trajectories starting at different perturbations of the circular configuration.

In the theory of elastic rods with self-contact, multiple locally stable
equilibrium configurations exist for DLk > 1 (Coleman & Swigon 2000; Coleman
et al. 2000). In the presence of electrostatics, two types of locally stable equilibria
(lobed and interwound) were found by Schlick et al. (1994) for several values of
DLk. It is not known, however, how many local equilibria exist or whether they
all can be attained by a path from a perturbed circular configuration, i.e. whether
the domain of attraction of each local equilibrium extends up to a neighbourhood
of the circular equilibrium. We have examined this question by sampling over
different perturbations of circular configurations with excess link DLk = 6 and the
molar salt concentration Cs = 0.1 M, and observed which configurations appeared
as the limits of corresponding trajectories. Our search led to a total of five distinct
limiting configurations shown in figure 7. Among those are the 2-loop plectoneme,
which minimizes the total energy, two types of 3-loop configurations, one 4-loop
configuration and one 5-loop configuration. The 4-loop configuration was the most
commonly occurring limiting configuration.
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Figure 8. Decrease in total energy from initial value versus time for trajectories leading to the
configurations in figure 3. Excess link is as indicated, the ionic strength is 0.01 M (dashed-
dotted line), 0.05 M (dashed line) and 0.1 M (solid line). (a) DLk = 1, (b) DLk = 2, (c) DLk = 3,
(d) DLk = 4, (e) DLk = 5 and (f ) DLk = 6.

(b) Dynamics of transitions

The time of transition from the perturbed circle to a stable equilibrium
configuration for the cases shown in figure 3 varies greatly with DLk and Cs.
The dynamics of each trajectory that produced a configuration in figure 3 can
be followed on the plots of total energy, kinetic energy and writhe versus time in
figures 8–10.

As expected, for every transition path, the total energy decreases with time due
to the strong dissipation in the system. The plateaus in the graphs of total energy
coincide with local minima in the kinetic energy and correspond to transient
states near unstable equilibrium configurations. The transient states resemble the
unstable equilibria of elastic rods with self-contact in the absence of electrostatics,
which can be found using explicit solutions of the governing equations of
Kirchhoff’s theory of rods (Coleman & Swigon 2000; Coleman et al. 2000).

The time of convergence to the limiting configuration can be estimated from the
graphs of writhe versus t (figure 10) as the largest t for which |W (t) − W ∞| >
d, where d is some small positive number, say 0.01. The convergence time for
each trajectory that produced a configuration in figure 3 can be found in table 2.
The convergence time is longest for configurations with DLk = 2 regardless of
ionic strength. For DLk > 3, the convergence times differ depending on whether
the limiting configuration shows plectonemic or toroidal supercoiling. Toroidally
supercoiled configurations are attained much faster at around 10.1 ms on average,
independent of DLk and Cs. Plectonemic configurations are attained on average
in 47.3 ms.
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(aii) (bii) (cii) (dii)

(aiii) (biii) (ciii) (diii)

(aiv) (biv) (civ) (div)

Figure 11. Equilibria on a transition path. The last configuration in each row is locally
stable, all others are transient states. Parameters for each row, top to bottom: (DLk, Cs) =
(3, 0.01 M), (5, 0.05 M), (5, 0.1 M) and (6, 0.05 M). (ai) t = 1.6 ms; (bi) t = 25.6 ms; (ci) t = 100 ms;
(aii) t = 0.4 ms; (bii) t = 4.4 ms; (cii) t = 7.4 ms; (dii) t = 100 ms; (aiii) t = 0.4 ms; (biii) t = 4.0 ms;
(ciii) t = 15.6 ms; (diii) t = 100 ms; (aiv) t = 0.2 ms; (biv) t = 2.8 ms; (civ) t = 10.6 ms; (div) t = 100 ms.

Table 2. Writhe convergence time (ms) for trajectories leading to the configurations in figure 3.

Cs

DLk 0.01 M 0.05 M 0.1 M

2 97.8 98.2 101.4
3 49.2 63.6 65.2
4 10.2 10.2 10.6
5 8.6 10.6 50.6
6 10.4 45.8 43.4

The most prominent transient state, found as a local minimum in the plot of the
kinetic energy in figure 9, can be seen in the trajectory for (DLk, Cs) = (3, 0.01 M).
Other transient states are in (DLk, Cs) = (5, 0.05 M), (5, 0.1 M) and (6, 0.05 M)
(figure 11).
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The fastest transition is observed for DLk = 1 as that trajectory involves only
equilibration of the twist along the DNA and no deformation of the axial curve.
In this case, the relaxation of kinetic energy obeys a power law, i.e. EK ∼ t−m ,
with m = 1.8 ± 0.1, which is independent of Cs.

For DLk = 2, the transition paths are also independent of Cs. They start with
an equilibration of twist and approach to the unstable circular configuration,
followed by a buckling transition along the branch of configurations with D2
symmetry and terminating at a figure 8 configuration.

For DLk = 3, the transition paths depend on Cs. After the initial twist
equilibration, all three trajectories proceed towards the unstable equilibrium
similar to the configuration shown in figure 11bi. Then, for Cs = 0.01 M, the
trajectory continues towards a plectonemic configuration in figure 11ci. For Cs =
0.05 M and 0.1 M, however, the trajectory continues towards the configuration
with D3 symmetry, seen in figure 3. This transition is slower than the one for
Cs = 0.01 M, but because it does not dwell in a transient state, the final writhe is
attained at about the same time (table 2).

For DLk = 4, the transition paths are again essentially independent of the ionic
strength and similar to the path for (DLk, Cs) = (3, 0.05 M), with no significant
dwell time near any locally stable equilibrium.

For DLk = 5, the transition paths depend on Cs. After the initial twist
equilibration, the trajectory for Cs = 0.01 M proceeds directly towards a
configuration with four terminal loops. For Cs = 0.05 M and 0.1 M, the trajectories
proceed to a transient shown in figure 11bii and 11biii. Then, for Cs = 0.05 M, the
trajectory proceeds towards a second transient state figure 11cii and continues
towards a limiting configuration with four lobes. For Cs = 0.1 M, however, the
trajectory departs towards a transient state figure 11ciii with three terminal
loops and continues with a slow equilibration of the writhe towards the final
configuration with two plectonemic loops.

Finally, for DLk = 6, the transition paths again depend on Cs. After the initial
twist equilibration, the trajectory for Cs = 0.01 M proceeds directly towards a
configuration with four terminal loops, similarly as for DLk = 4. For Cs = 0.05 M
and 0.1 M, the transition proceeds along a path similar to (or exactly like) the
one in figure 2 with one transient state at t = 2.6 ms (for Cs = 0.1 M). The final
equilibration of the writhe is again a slow process because of the presence of a
long plectonemic loop.

Figure 11aii–dii and 11aiii–diii illustrates the remarkable sensitivity of the
supercoiling process to ionic strength, whereby a small difference in salt
concentration causes the system to depart the same transient configuration along
markedly different paths.

With the exception of the initial twist relaxation, the approach of a
configuration X(t) to a local equilibrium Xeq is close to exponential, and
hence we can define the relaxation time of a local equilibrium, t, as ||X(t) −
Xeq|| ≈ e−t/t. The relaxation times can be estimated from the graph of
the kinetic energy, which scales as e−2t/t, when equilibrium is approached.
Relaxation times for the limiting configurations with DLk > 1, shown in
figure 3, are given in table 3. They are computed for the transition phase
after which no further contacts between DNA segments are formed and no
further rearrangement of contacts occurs. With the exception of DLk = 4,
for which we observe the fastest relaxation times, for any other given DLk,
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Table 3. Relaxation time (ms) for the configurations in figure 3.

Cs

DLk 0.01 M 0.05 M 0.1 M

2 1.0 1.7 1.9
3 3.3 7.3 7.3
4 2.1 1.1 0.9
5 1.1 1.2 3.0
6 0.8 2.6 3.1

the relaxation time gets larger as salt concentration increases. The toroidally
supercoiled configurations have shorter relaxation times than the plectonemically
supercoiled ones.

4. Summary and conclusion

In this paper, we present an improved generalized IB method for simulation of
the dynamics of elastic rods in a fluid. By including electrostatic repulsion and
steric (hard-core) interaction between rod segments, we completely eliminate
any self-penetration of the modelled rod during simulations and assure the
conservation of linking number. The model can be applied to macroscopic
structures, such as underwater cables, ropes and fishing lines (charged or not), to
cellular components, such as bacterial filaments and microtubules, and to short
semiflexible polymers, such as DNA.

We here focus on supercoiling of twisted DNA rings, and explore the
dependence of the dynamical trajectories and limiting configurations on the excess
link, ionic strength and perturbation. Our goal is to obtain a better idea about the
kinetics of supercoiling processes in short molecules, motivated by the possibility
that loop-formation kinetics, not just equilibrium, may be important in biological
processes in which binding and unbinding of proteins happens on fast time scales.
We confirm the earlier findings (Schlick et al. 1994; Westcott et al. 1995) that
the type of limiting configuration is influenced by ionic strength in which higher
salt gives rise to plectonemic supercoiling, while low salt gives rise to toroidal
supercoiling. In all the limiting structures we found, the repulsion is sufficiently
strong that the DNA surface remains free of direct contact.

We find that the dynamics of the ring is overdamped and that the time
of transition from the circle to a supercoiled configuration can vary greatly
depending on excess link and ionic strength, and that the transition slows
down at various times as the configuration approaches unstable equilibria, with
characteristic plateaus in the total energy. Similar plateaus were observed in the
dynamics of elastic rods with self-contact (Goyal et al. 2008). The dwell time near
such equilibria is of the order of 1–10 ms, which is enough time for a protein to
bind and connect DNA segments that are in proximity. The transition paths are
sensitive to ionic strength—small changes in ionic strength may cause divergence
of the trajectories in the neighbourhood of transient states.

We confirm the existence of multiple locally stable configurations for the
given ionic strength and excess link, and find that each such configuration can
be attained with an appropriate initial perturbation of the circle. Our search
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recovered all locally stable equilibria known from the theory of elastic rods with
self-contact (Coleman & Swigon 2000), and hence, we conjecture that any locally
stable equilibrium configuration of a closed rod can be attained from the circular
configuration with the same excess link by a dynamical trajectory that starts
with an appropriate initial perturbation in twist density.

Our findings on the departure from the circular configuration are in accord with
the results from perturbation analyses of looping and ring collapse transitions
(Goriely & Tabor 1997) and numerical analyses of supercoiling of DNA plasmids
(Klapper 1996), in the sense that if the excess link is large enough, the departure
from the unstable twisted circular configuration is fastest along the mode
with four loops. It is not the only unstable mode and other modes can be
excited with different perturbations—these modes generally lead to other locally
stable configurations.

At the length scales corresponding to the size of our minicircles, random
fluctuations, not accounted by our method, have an additional effect on DNA
supercoiling dynamics, primarily by enabling transitions between various locally
stable configurations and perturbing the configurations in such a way that
the probability of occurrence of any configuration is given by the Boltzmann
distribution. Stochastic dynamics of 1000–1500 bp DNA plasmids has been
studied using Brownian dynamics with excluded volume (Chirico & Langowski
1994) and electrostatics (Jian et al. 1998). The average relaxation times for writhe
reported in Chirico & Langowski (1994) are 6 ms for DLk = 4 and 3.5 ms for
DLk = 6, those reported in Jian et al. (1998) are 20 ms for DLk = 4 and 10 ms for
DLk = 5.5, both at Cs = 0.01 M. Our results indicate that relaxation time depends
on the limiting configuration, but is in the range of 0.8–8 ms. Thermal fluctuations
can be accounted for in the framework of the generalized IB method by adding a
random force with a Boltzmann distribution acting on the fluid (Atzberger et al.
2007). We plan to combine electrostatic repulsion and thermal fluctuations in a
future implementation of the generalized IB method.

The theory of counterion condensation, employed in this paper, is based on
approximations that are valid only in the limit of low salt concentrations and
for an infinitely long, straight polyion. Although the theory has been shown to
provide good estimates of DNA repulsive forces up to the values of ionic strength
considered here, a more accurate and potentially interesting extension of the
current work would be to account explicitly for the dynamics of ion distribution
and its interaction with the DNA. It is possible that the ions would localize near
the plectonemic regions of DNA, which would make configurations showing such
regions energetically favourable.
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