The insight of mixture theory for the growth and remodelling of soft biological tissues

Davide Ambrosi
Dipartimento di Matematica
Politecnico di Torino

The emergence of residual stress as due to growth and remodelling of soft biological tissues is examined at the light of the mixture theory. The focus is on a mixture composed by one elastic solid component and several fluid ones. It is shown that the standard theory is unable to predict residual stresses, unless enriched by a suitable descriptor of growth, and the Kroner--Lee multiplicative decomposition of the gradient of deformation works effectively in this respect. Conversely, thermodynamical arguments as applied in a mixtures framework suggest constitutive laws for the evolution of the growth tensor that point out the role of inhomogeneity of species in driving the emergence of residual stress.