SIAM Workshop
Introduction to Python for mathematicians and scientists

Mike Sussman
sussmanm@math.pitt.edu
http://www.math.pitt.edu/%7esussmanm

October 18, 2014
Topics

Introduction

Python, the language

Python language specifics
 Python basics, Example 1
 Functions, flow control, and import, Example 2
 Watch out, Alexander!

Classes

A finite element program
 Gauß integration, Example 3
 BVP by FEM
 Shape functions, Example 4
 Code, Example 4
 FEM code, Example 5

Python language comments

FEniCS
Who am I?

- Part-time faculty in Math Dept.
- Experience at Bettis lab
- Administer 2070/2071 Numerical Analysis lab
- Interested in numerical applications associated with fluid flow
- Interested in large-scale scientific computing
Objectives

- Introduce Python programming
- Focus on use in scientific work
References

- Recent Python and NumPy/SciPy books from oreilly.com
- Python Reference:
 https://docs.python.org/2/reference/index.html
- The Python Tutorial
 https://docs.python.org/2/tutorial
- 10-minute Python tutorial
 http://www.stavros.io/tutorials/python/
- Tentative NumPy Tutorial
 http://wiki.scipy.org/Tentative_NumPy_Tutorial
- Wonderful scientific Python blog by Greg von Winckel
 http://www.scientificpython.net/
Getting Python

1. Recommend using WinPython on MS-Windows
 http://sourceforge.net/p/winpython/wiki/Installation
2. Download version for Python 2.7
3. Run the installer
4. Do not “register” it
5. Navigate to Downloads\WinPython...
6. Run Spyder (not light)
Topics

Introduction

Python, the language

Python language specifics
 Python basics, Example 1
 Functions, flow control, and import, Example 2
 Watch out, Alexander!
 Classes

A finite element program
 Gauß integration, Example 3
 BVP by FEM
 Shape functions, Example 4
 Code, Example 4
 FEM code, Example 5

Python language comments

FEniCS
What is Python?

- Computer programming language
- Interpreted
- Object-oriented
- Extended using “modules” and “packages”
Python and modules

- Core Python: bare-bones
 https://docs.python.org/2/reference/index.html
- "Standard Library"
 https://docs.python.org/2/library/index.html
- "Python package index" (50,000 packages)
 https://pypi.python.org
Python for scientific use

- numpy
- scipy
- matplotlib.pylab
- sympy
- SAGE
Topics

Introduction

Python, the language

Python language specifics
 Python basics, Example 1
 Functions, flow control, and import, Example 2
 Watch out, Alexander!
 Classes

A finite element program
 Gauß integration, Example 3
 BVP by FEM
 Shape functions, Example 4
 Code, Example 4
 FEM code, Example 5

Python language comments

FEniCS
Running Python

- Use Spyder IDE
- Run `python` in a Cygwin command window
File structure and line syntax

- No mandatory statement termination character.
- Blocks are determined by indentation
- Statements requiring a following block end with a colon (:)
- Comments start with octothorpe (#), end at end of line
- Multiline comments are surrounded by triple double quotes (" " ")
- Continue lines with \
Topics

Introduction

Python, the language

Python language specifics
 Python basics, Example 1
 Functions, flow control, and import, Example 2
 Watch out, Alexander!
 Classes

A finite element program
 Gauß integration, Example 3
 BVP by FEM
 Shape functions, Example 4
 Code, Example 4
 FEM code, Example 5

Python language comments

FEniCS
Python basics

example1.py

1. Debugger
2. \(\frac{x}{3}, -\frac{x}{3} \)
3. \(\text{float}(x)/3 \)
4. \(\text{conjugate}(z), \text{abs}(w), w*w \)
5. \(y0==y1 \)
6. \(2**100 \) (answer is long)
Basic data types

- Integers: 0, −5, 100
- Floating-point numbers: 3.14159, 6.02e23
- Complex numbers: 1.5 + 0.5j
- Strings: "A string"
 - Can use single quotes
- Long (integers of arbitrary length)
- Logical or Boolean: True, False
- None
Basic operations

- +, -, *, /
- ** (raise to power)
- % (remainder)
- and, or, not
- >, <, >=, <=, ==, != (logical comparison)
Python array-type data types

- **List:** `[0, "string", another list]
- **Tuple:** immutable list, surrounded by ()
- **Dictionary (dict):** `{"key1":"value1", 2:3, "pi":3.14}`
Getting help

```python
>>> help(complex)
class complex(object)
    complex(real[, imag]) -> complex number

    Create a complex number from a real part and an optional imaginary part.
    This is equivalent to (real + imag*1j) where imag defaults to 0.

    Methods defined here:

    __abs__(...)  
        x.__abs__() <==> abs(x)

    __add__(...)  
        x.__add__(y) <==> x+y

    __div__(...)  
        x.__div__(y) <==> x/y

    conjugate(...)  
        complex.conjugate() -> complex

        Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j

    Data descriptors defined here:

    imag  
        the imaginary part of a complex number

    real  
        the real part of a complex number
```
Topics

Introduction

Python, the language

Python language specifics
 - Python basics, Example 1
 - Functions, flow control, and import, Example 2
 - Watch out, Alexander!

Classes

A finite element program
 - Gauß integration, Example 3
 - BVP by FEM
 - Shape functions, Example 4
 - Code, Example 4
 - FEM code, Example 5

Python language comments

FEniCS
example2.py

1. Debugger
2. i/10
3. n, term, partialSum out of workspace after return!
Functions

- Functions begin with `def`
- The `def` line ends with a colon
- Function bodies are indented
- Functions use `return` to return values
Flow control

- if ... elif ... else
- for
- while
- Bodies are indented
- range(N) generates 0, 1, ... , (N−1)
Importing and naming

- Include external libraries using `import`
 - `import numpy`
 Imports all numpy functions, call as `numpy.sin(x)`
 - `import numpy as np`
 Imports all numpy functions, call as `np.sin(x)`
 - `from numpy import *`
 Imports all numpy functions, call as `sin(x)`
 - `from numpy import sin`
 Imports only `sin()`
Pylab in Spyder

Automatically does following imports

```python
from pylab import *
from numpy import *
from scipy import *
```

You must do your own importing when writing code in files

I strongly suggest using names.

```python
import numpy as np
import scipy.linalg as la
import matplotlib.pyplot as plt
```
Topics

Introduction

Python, the language

Python language specifics
 Python basics, Example 1
 Functions, flow control, and import, Example 2
 Watch out, Alexander!

Classes

A finite element program
 Gauß integration, Example 3
 BVP by FEM
 Shape functions, Example 4
 Code, Example 4
 FEM code, Example 5

Python language comments

FEniCS
Subscripts

```
x = [ 'a', 'b', 'c', 'd' ]
```

- $x[0]$ is 'a'
- $x[3]$ is 'd'
- $x[0:2]$ is ['a', 'b']
- $x[-1]$ is 'd'
Subscripts

- \(x = ['a', 'b', 'c', 'd'] \)
- \(x[0] \) is 'a'
- \(x[3] \) is 'd'
- \(x[0:2] \) is \['a', 'b' \]
- \(x[-1] \) is 'd'
Subscripts

- `x = ['a', 'b', 'c', 'd']`
- `x[0] is 'a'`
- `x[3] is 'd'`
Subscripts

- $x = ['a', 'b', 'c', 'd']$
- $x[0]$ is 'a'
- $x[3]$ is 'd'
- $x[0:2]$ is ['a', 'b']
Subscripts

- \(x = ['a', 'b', 'c', 'd'] \)
- \(x[0] \) is 'a'
- \(x[3] \) is 'd'
- \(x[0:2] \) is ['a', 'b']
- \(x[-1] \) is 'd'
Equals, Copies, and Deep Copies

```python
>>> import copy as cp
```

```python
>>> x = [1, 2]
>>> y = [3, 4, x]
>>> z = y
>>> print("x=", x, " y=", y, " z=", z)
```

```
x= [1, 2] y= [3, 4, [1, 2]] z= [3, 4, [1, 2]]
```

```python
>>> c = cp.copy(y)
>>> d = cp.deepcopy(y)
>>> print("y=", y, " z=", z, " c=", c, " d=", d)
```

```
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]
```

```python
>>> y[0] = "*
```

```
y= ['*', 4, [1, 2]] z= ['*', 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]
```

```python
>>> z[2][0] = 9
```

```
y= ['*', 4, [9, 2]] z= ['*', 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]
```

```python
>>> c[2][1] = 'c'
```

```
y= ['*', 4, [9, 'c']] z= ['*', 4, [9, 'c']] c= [3, 4, [9, 'c']] d= [3, 4, [1, 2]]
```

```python
>>> x
```

```
[9, 'c']
```

Moral: Only deepcopy does it right!
import copy as cp

x=[1,2]
y=[3,4,x]
z=y
print "x=",x," y=",y," z=",z
x= [1, 2] y = [3, 4, [1, 2]] z = [3, 4, [1, 2]]
Equals, Copies, and Deep Copies

>>> import copy as cp

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print "x=",x," y=",y," z="",z
x= [1, 2] y= [3, 4, [1, 2]] z= [3, 4, [1, 2]]

>>> c=cp.copy(y)
>>> d=cp.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [1, 2]] z= [" *", 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, 2]] z= [" *", 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> c[2][1]='c'
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, c]] z= [" *", 4, [9, c]] c= [3, 4, [9, c]] d= [3, 4, [1, 2]]

>>> x
[9, c]

Moral: Only deepcopy does it right!
Equals, Copies, and Deep Copies

```python
>>> import copy as cp

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print "x=",x," y=",y," z=",z
  x= [1, 2]  y= [3, 4, [1, 2]]  z= [3, 4, [1, 2]]

>>> c=cp.copy(y)
>>> d=cp.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
  y= [3, 4, [1, 2]]  z= [3, 4, [1, 2]]  c= [3, 4, [1, 2]]  d= [3, 4, [1, 2]]

>>> y[0]="*
>>> print "y=",y," z=",z," c=",c," d=",d
  y= [*], 4, [1, 2]]  z= [*], 4, [1, 2]]  c= [3, 4, [1, 2]]  d= [3, 4, [1, 2]]
```
Equals, Copies, and Deep Copies

```python
>>> import copy as cp

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print "x=",x," y=",y," z=",z
x= [1, 2]  y= [3, 4, [1, 2]]  z= [3, 4, [1, 2]]

>>> c=cp.copy(y)
>>> d=cp.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]]  z= [3, 4, [1, 2]]  c= [3, 4, [1, 2]]  d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [1, 2]]  z= ["*", 4, [1, 2]]  c= [3, 4, [1, 2]]  d= [3, 4, [1, 2]]
```
Equals, Copies, and Deep Copies

```python
>>> import copy as cp

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print "x=",x," y=",y," z=",z
x= [1, 2]  y= [3, 4, [1, 2]]  z= [3, 4, [1, 2]]

>>> c=cp.copy(y)
>>> d=cp.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]]  z= [3, 4, [1, 2]]  c= [3, 4, [1, 2]]  d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= [*", 4, [1, 2]]  z= [*", 4, [1, 2]]  c= [3, 4, [1, 2]]  d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
```

Moral: Only deepcopy does it right!
Equals, Copies, and Deep Copies

```python
>>> import copy as cp
>>> x=[1,2]  
>>> y=[3,4,x]
>>> z=y
>>> print "x=",x," y=",y," z=",z
x= [1, 2]  y= [3, 4, [1, 2]]  z= [3, 4, [1, 2]]

>>> c=cp.copy(y)
>>> d=cp.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]]  z= [3, 4, [1, 2]]  c= [3, 4, [1, 2]]  d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [1, 2]]  z= ["*", 4, [1, 2]]  c= [3, 4, [1, 2]]  d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, 2]]  z= ["*", 4, [9, 2]]  c= [3, 4, [9, 2]]  d= [3, 4, [1, 2]]
```

Moral: Only deepcopy does it right!
Equals, Copies, and Deep Copies

```python
>>> import copy as cp

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y

>>> print "x=",x," y=",y," z=",z
x= [1, 2] y= [3, 4, [1, 2]] z= [3, 4, [1, 2]]

>>> c=cp.copy(y)
>>> d=cp.deepcopy(y)

>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*"

>>> print "y=",y," z=",z," c=",c," d=",d
y= ['*', 4, [1, 2]] z= ['*', 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9

>>> print "y=",y," z=",z," c=",c," d=",d
y= ['*', 4, [9, 2]] z= ['*', 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> c[2][1]='c'

>>> print "y=",y," z=",z," c=",c," d=",d
```

Moral: Only deep copy does it right!
>>> import copy as cp
>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print "x=",x," y=",y," z=",z
x= [1, 2] y= [3, 4, [1, 2]] z= [3, 4, [1, 2]]

>>> c=cp.copy(y)
>>> d=cp.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [1, 2]] z= ["*", 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, 2]] z= ["*", 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> c[2][1]=’c’
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, c]] z= ["*", 4, [9, c]] c= [3, 4, [9, c]] d= [3, 4, [1, 2]]

>>> x
[9, c]
Equals, Copies, and Deep Copies

```python
>>> import copy as cp

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print "x=",x," y=",y," z=",z
x= [1, 2] y= [3, 4, [1, 2]] z= [3, 4, [1, 2]]

>>> c=cp.copy(y)
>>> d=cp.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [1, 2]] z= ["*", 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, 2]] z= ["*", 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> c[2][1]=‘c’
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, c]] z= ["*", 4, [9, c]] c= [3, 4, [9, c]] d= [3, 4, [1, 2]]

>>> x
[9, c]
```

Moral: Only deepcopy does it right!
Equals, Copies, and Deep Copies

```python
>>> import copy as cp

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print "x=",x," y=",y," z=",z
x= [1, 2] y= [3, 4, [1, 2]] z= [3, 4, [1, 2]]

>>> c=cp.copy(y)
>>> d=cp.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= ['*', 4, [1, 2]] z= ['*', 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
y= ['*', 4, [9, 2]] z= ['*', 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> c[2][1]='c'
>>> print "y=",y," z=",z," c=",c," d=",d
y= ['*', 4, [9, c]] z= ['*', 4, [9, c]] c= [3, 4, [9, c]] d= [3, 4, [1, 2]]

>>> x
[9, c]
```

Moral: Only `deepcopy` does it right!
Equals, Copies, and Deep Copies

```python
>>> import copy as cp

>>> x=[1,2]
>>> y=[3,4,x]
>>> z=y
>>> print "x=",x," y=",y," z=",z
x= [1, 2] y= [3, 4, [1, 2]] z= [3, 4, [1, 2]]

>>> c=cp.copy(y)
>>> d=cp.deepcopy(y)
>>> print "y=",y," z=",z," c=",c," d=",d
y= [3, 4, [1, 2]] z= [3, 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> y[0]="*"
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [1, 2]] z= ["*", 4, [1, 2]] c= [3, 4, [1, 2]] d= [3, 4, [1, 2]]

>>> z[2][0]=9
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, 2]] z= ["*", 4, [9, 2]] c= [3, 4, [9, 2]] d= [3, 4, [1, 2]]

>>> c[2][1]=’c’
>>> print "y=",y," z=",z," c=",c," d=",d
y= ["*", 4, [9, c]] z= ["*", 4, [9, c]] c= [3, 4, [9, c]] d= [3, 4, [1, 2]]

>>> x
[9, c]
```

Moral: Only **deepcopy** does it right!
Topics

Introduction

Python, the language

Python language specifics
 - Python basics, Example 1
 - Functions, flow control, and import, Example 2
 - Watch out, Alexander!

Classes

A finite element program
 - Gauß integration, Example 3
 - BVP by FEM
 - Shape functions, Example 4
 - Code, Example 4
 - FEM code, Example 5

Python language comments

FEniCS
A Class is a generalized data type

- **numpy** defines a class called **ndarray**
- Define variable `x` of type **ndarray**, a one-dimensional array of length 10:
  ```python
  import numpy as np
  x=np.ndarray([10])
  ```
- Variables of type **ndarray** are usually just called “array”.
Classes define members’ “attributes”

- Attributes can be data
 - Usually, data attributes are “hidden”
 - Names start with double-underscore
 - Programmers are trusted not to access such data

- Attributes can be functions
 - Functions are provided to access “hidden” data
Examples of attributes

One way to generate a `numpy` array is:

```python
import numpy as np
x=np.array([0, 0.1, 0.2, 0.4, 0.9, 3.14])
```

- (data attribute) `x.size` is 6.
- (data attribute) `x.dtype` is "float64" (quotes mean “string”)
- (function attribute) `x.item(2)` is 0.2 (parentheses mean “function”)
- Copy function is provided by numpy:
  ```python
  y = x.copy() or
  y = np.copy(x)
  ```
Operators can be overridden

- Multiplication and division are pre-defined (overridden)

  ```python
  >>> 3*x
  array([ 0. , 0.3 , 0.6 , 1.2 , 2.7 , 9.42])
  ```

- Brackets can be overridden to make things look “normal”

  ```python
  >>> x[2] # bracket overridden
  0.2
  ```
Topics

Introduction

Python, the language

Python language specifics
 Python basics, Example 1
 Functions, flow control, and import, Example 2
 Watch out, Alexander!
 Classes

A finite element program
 Gauß integration, Example 3
 BVP by FEM
 Shape functions, Example 4
 Code, Example 4
 FEM code, Example 5

Python language comments

FEniCS
Topics

Introduction

Python, the language

Python language specifics
 Python basics, Example 1
 Functions, flow control, and import, Example 2
 Watch out, Alexander!
 Classes

A finite element program
 Gauß integration, Example 3
 BVP by FEM
 Shape functions, Example 4
 Code, Example 4
 FEM code, Example 5

Python language comments

FEniCS
Gauss integration

- Integrate $Q = \int_0^1 f(\xi) d\xi$
- Approximate it as $Q \approx \sum_{i=1}^{3} w_i f(g_i)$
- w_i and g_i come from reference materials.
Example 3

```
example3.py
```

- Function of a vector returns a vector
- `np.not`
- Extensive testing!

- `y=0.0*x+1.0 ⇔ y=np.zeros_like(x) ⇔ y=np.zeros(shape(x))`
- `append()` is a List attribute (function)
Topics

Introduction

Python, the language

Python language specifics
 Python basics, Example 1
 Functions, flow control, and import, Example 2
 Watch out, Alexander!
 Classes

A finite element program
 Gauß integration, Example 3
 BVP by FEM
 Shape functions, Example 4
 Code, Example 4
 FEM code, Example 5

Python language comments

FEniCS
A boundary value problem by the finite element method

\[-u'' + u = f \quad \text{on} \ [0, L]\]

\[u'(0) = 0 = u'(L)\]

1. Pick a basis of functions \(\phi_i(x) \)
2. Write \(u(x) \approx \sum_i u_i \phi_i(x) \)
3. Plug into equation
4. Multiply equation through by \(\phi_j(x) \) and integrate
5. Solve system of equations for \(u_i \)
FEM formulation

\[-u'' + u = f(x) \quad u'(0) = u'(L) = 0\]

Multiply through by a function \(v\) and integrate

\[
\int_0^L u'(x)v'(x)dx + \left[u'(x)v(x)\right]_0^L + \int_0^L u(x)v(x)dx = \int_0^L f(x)v(x)dx
\]

The bracketed term drops out because of boundary values. Assume that an approximate solution can be written as

\[
u(x) = \sum_{j=1}^{N} u_j \phi_j(x)\]

Choosing \(v(x) = \phi_i(x)\) yields

\[
\sum_{j=1}^{N} \begin{pmatrix} \int_0^L \phi_i'(x)\phi_j'(x)dx + \int_0^L \phi_i(x)\phi_j(x)dx \end{pmatrix} u_j = \int_0^L f(x)\phi_i(x)dx.
\]

\[
\begin{pmatrix} a_{ij} \end{pmatrix} \begin{pmatrix} u_j \end{pmatrix} = \begin{pmatrix} f_i \end{pmatrix}.
\]

\[
AU = F.
\]
Do integrations elementwise

- Break $[0, L]$ into N uniform subintervals $e_k : k = 0, \ldots, N - 1$, each of width Δx
- $\int_0^L \phi_i(x) f(x) \, dx = \sum_k \int_{e_k} \phi_i(x)f(x) \, dx$
- $\int_{e_k} \phi_i(x)f(x) \, dx = \int_0^1 \phi_i(\xi)f(\xi) \Delta x \, d\xi$
- Inside e_k, define
 \[
 \begin{align*}
 \phi^0(\xi) &= 2.0(\xi - 0.5)(\xi - 1.0), \\
 \phi^1(\xi) &= 4.0\xi(1.0 - \xi), \\
 \phi^2(\xi) &= 2.0\xi(\xi - 0.5)
 \end{align*}
 \]
Topics

Introduction

Python, the language

Python language specifics
- Python basics, Example 1
- Functions, flow control, and import, Example 2
- Watch out, Alexander!

Classes

A finite element program
- Gauß integration, Example 3
- BVP by FEM
- Shape functions, Example 4
- Code, Example 4
- FEM code, Example 5

Python language comments

FEniCS
What do the shape functions look like?

- Suppose $\Delta x = L/N$ so that $e_k = [k\Delta x, (k + 1)\Delta x]$
- Define $x_i = i\Delta x/2$ for $i = 0, 1, \ldots, 2N$
- $x_{2N} = L$
- $e_k = [x_{2k}, x_{2K+2}]$ for $k = 0, 1, \ldots, (N - 1)$
- Map $e_k \rightarrow [0, 1]$ is given by $x = (k + \xi)\Delta x$
- Inside e_k,

$$
\xi = (x - k\Delta x)/\Delta x
$$

$$
\phi_0^0(x) = 2.0(\xi - 0.5)(\xi - 1.0),
\phi_k^1(x) = 4.0\xi(1.0 - \xi),
\phi_k^2(x) = 2.0\xi(\xi - 0.5)
$$

- Outside e_k, $\phi_i^k = 0$
Shape functions are a “partition of unity”

- Each ϕ^i_k is 1 at $\xi_i \in e_k$ and 0 elsewhere
- Each ϕ is piecewise quadratic
- The unique piecewise quadratic function satisfying $\phi_i(x_j) = \delta_{ij}$ agrees with one of the ϕ^i_k when $x_j \in e_k$.
- $\sum_i \phi_i(x) = 1$
- ϕ_i form a basis of the space of piecewise quadratic functions with breaks at x_i.
- u piecewise quadratic $\Rightarrow u(x) = \sum_i u_i \phi_i(x)$
- u_i are called “degrees of freedom.”
Topics

Introduction

Python, the language

Python language specifics
 Python basics, Example 1
 Functions, flow control, and import, Example 2
 Watch out, Alexander!
 Classes

A finite element program
 Gauß integration, Example 3
 BVP by FEM
 Shape functions, Example 4
 Code, Example 4
 FEM code, Example 5

Python language comments

FEniCS
Example 4

```
example4.py

- $\phi^2_1$ and $\phi^0_2$ together make $\phi_4$
- 2D subscripting: (Amat1[ m, n ])
- `plt.plot` and `plt.hold` are like Matlab
- `np.linspace` is like Matlab
```
Topics

Introduction

Python, the language

Python language specifics
 Python basics, Example 1
 Functions, flow control, and import, Example 2
 Watch out, Alexander!
 Classes

A finite element program
 Gauß integration, Example 3
 BVP by FEM
 Shape functions, Example 4
 Code, Example 4
 FEM code, Example 5

Python language comments

FEniCS
Example 5

example5.py

- Solves $-u'' + u = f$ in weak form $\int u'v' + \int uv = \int fv$ with Neumann boundary conditions on $[0, 5]$
- Two tests: $f_0(x) = 1$ and $f_1(x) = x$
- Two exact solutions: $u_0(x) = x$ and $u_1(x) = \frac{\cosh(5) - 1}{\sinh(5)} \cosh(x) - \sinh(x) + x$
Convergence results

<table>
<thead>
<tr>
<th>N</th>
<th>error</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.000142449953558</td>
<td>16.55121254702143</td>
</tr>
<tr>
<td>10</td>
<td>8.60661737944e-06</td>
<td>16.51318937903001</td>
</tr>
<tr>
<td>20</td>
<td>5.21196552761e-07</td>
<td>16.29927108429344</td>
</tr>
<tr>
<td>40</td>
<td>3.19766785929e-08</td>
<td>16.1582134550725</td>
</tr>
<tr>
<td>80</td>
<td>1.97897364593e-09</td>
<td>16.0787397905218</td>
</tr>
<tr>
<td>160</td>
<td>1.23080146312e-10</td>
<td>16.0787397905218</td>
</tr>
</tbody>
</table>

Fourth-order convergence is too high, a consequence of "superconvergence."
Topics

Introduction

Python, the language

Python language specifics
 Python basics, Example 1
 Functions, flow control, and import, Example 2
 Watch out, Alexander!
 Classes

A finite element program
 Gauß integration, Example 3
 BVP by FEM
 Shape functions, Example 4
 Code, Example 4
 FEM code, Example 5

Python language comments

FEniCS
Some differences with C++

- Indentation
- **, and, or
- long
- (=) and copying
- Interpreted vs. compiled
- No private variables
 - Programmer must pretend not to see variables starting with __
- No const
- Cannot have two functions with same name
 - Allowed in C++ if signatures different
- Automatic garbage collection
- Variable types are implicit
- Constructor syntax
- Extra parameter self
Some versions/variants of Python

- **CPython**: reference implementation of Python, written in C
- **Cython**: superset of Python. Easy to write integrated C or C++ and Python code
- **Jython**: version of Python written in Java, can easily call Java methods
Topics

Introduction

Python, the language

Python language specifics
 Python basics, Example 1
 Functions, flow control, and import, Example 2
 Watch out, Alexander!
 Classes

A finite element program
 Gauß integration, Example 3
 BVP by FEM
 Shape functions, Example 4
 Code, Example 4
 FEM code, Example 5

Python language comments

FEniCS
FEniCS is a package for solving partial differential equations expressed in weak form.

1. You write a script in high-level Python
 - Uses UFL form language
 - Can use numpy, scipy, matplotlib.pyplot, etc.
 - Can use Viper for plotting
2. DOLFIN interprets the script
3. UFL is passed to FFC for compilation
4. Instant turns it into C++ callable from Python ("swig")
5. Linear algebra is passed to PETSc or UMFPACK
DOLFIN classes

- Sparse matrices and vectors *via* PETSc
- Solvers *via* PETSc can run in parallel
- Eigenvalues *via* SLEPC
- Newton solver for nonlinear equations
- Connected to ParaView for plotting solutions
from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')

def u0_boundary(x, on_boundary):
 return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)
from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')

def u0_boundary(x, on_boundary):
 return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v)) * dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u, interactive=True)
plot(mesh, interactive=True)

- Mesh on $[0, 1] \times [0, 1]$
- Uniform 6 cells in x_0, 4 in x_1
from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')

def u0_boundary(x, on_boundary):
 return on_boundary

c = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, c)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)
from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')

def u0_boundary(x, on_boundary):
 return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

▶ “Expression” causes a compilation
▶ x is a “global variable”
from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')
def u0_boundary(x, on_boundary):
 return on_boundary
bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)
from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')
def u0_boundary(x, on_boundary):
 return on_boundary
bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)
from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')
def u0_boundary(x, on_boundary):
 return on_boundary
bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)
from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')

def u0_boundary(x, on_boundary):
 return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u, interactive=True)
plot(mesh, interactive=True)
FEaniCS example

```python
from dolfin import *

# Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

# Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')
def u0_boundary(x, on_boundary):
    return on_boundary
bc = DirichletBC(V, u0, u0_boundary)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

# Compute solution
u = Function(V)
solve(a == L, u, bc)

# Plot solution and mesh
plot(u, interactive=True)
plot(mesh, interactive=True)
```

Define \(L(v) = \int f(x)v(x) \, dx \) with \(f = -6 \)
FEniCS example

```python
from dolfin import *

# Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

# Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')
def u0_boundary(x, on_boundary):
    return on_boundary
bc = DirichletBC(V, u0, u0_boundary)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

# Compute solution
u = Function(V)
solve(a == L, u, bc)

# Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)
```

Define $a(u, v) = \int \nabla u \cdot \nabla v \, dx$
from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')
def u0_boundary(x, on_boundary):
 return on_boundary
bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v)) * dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u, interactive=True)
plot(mesh, interactive=True)

u is redefined as a Function instead of TrialFunction
from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')
def u0_boundary(x, on_boundary):
 return on_boundary
bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

Solve the system
\[L(v) = a(u, v) \quad \forall v \] subject to boundary conditions.
from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')
def u0_boundary(x, on_boundary):
 return on_boundary
bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u, interactive=True)
plot(mesh, interactive=True)

▶ Plot u and mesh in two frames.
▶ `interactive=True` causes the plot to remain displayed until destroyed by mouse.
▶ Can also put `interactive()` at the end.