SIAM student workshop on Matlab and differential equations

Mike Sussman

January 31, 2009

Introduction

Ordinary Differential Equations (ODEs)
Options for controlling ode solvers

Partial Differential Equations (PDEs)
Heat equation
Burgers’ equation

Who am I?

Mike Sussman

email: sussmanm@math.pitt.edu
There is an "m" at the end of “sussman”.

Web page: http://www.math.pitt.edu/~sussmanm

Retired from Bettis Laboratory in West Mifflin.
Part-time instructor at Pitt: 2070, 2071, 3040

Interests: numerical partial differential equations, particularly the Navier-Stokes equations and applications

Objectives

- Matlab Ordinary Differential Equation (ODE) solvers and application
 - Solving ODEs with default options
 - Writing m-files to define the system
 - Advanced options
- Solving time-dependent Partial Differential Equations (PDEs) using Matlab ODE solvers.
 - Finite-difference discretizations
 - One and two space dimension, one time dimension
Start up Matlab

- Will not discuss the Matlab PDE toolbox
- GUI for creating complicated mesh
- Limited set of differential equations, not including Navier-Stokes.

Outline

- Introduction

Ordinary Differential Equations (ODEs)

- Options for controlling ode solvers

Partial Differential Equations (PDEs)

- Heat equation
- Burgers’ equation

Initial Value Problem (IVP)

\[
\begin{align*}
\dot{u} &= f(t, u) \\
 u(t_0) &= u_0.
\end{align*}
\]

- \(u \in \mathbb{R}^n \)
- \(\dot{u} \) is shorthand for the derivative \(du/dt \)
- Explicit because \(\dot{u} \) can be written explicitly as a function of \(t \) and \(u \)
- First-order because the highest derivative that appears is the first derivative \(\dot{u} \)
- Higher-order equations can be written as first-order systems
- IVP because \(u_0 \) is given and solution is \(u(t) \) for \(t > t_0 \)
An analytic solution is a formula $u(t) \in C^p$ for some p

A numerical solution of an ODE is a table of times and approximate values (t_k, u_k), possibly with an interpolation rule.

In general, a numerical solution is always wrong, and numerical analysis focusses on the error.

$\dot{u} = f(t, u)$

$u(t_0) = u_0$.

Steps for basic solution

1. Write a Matlab m-file to define the function f.
2. Choose a Matlab ODE solver

Matlab ODE solvers

<table>
<thead>
<tr>
<th>Matlab ODE solvers and support</th>
<th>ode23</th>
<th>non-stiff, low order</th>
</tr>
</thead>
<tbody>
<tr>
<td>ode113</td>
<td>non-stiff, variable order</td>
<td></td>
</tr>
<tr>
<td>ode15s</td>
<td>stiff, variable order, includes DAE</td>
<td></td>
</tr>
<tr>
<td>ode23s</td>
<td>stiff, low order</td>
<td></td>
</tr>
<tr>
<td>ode23t</td>
<td>trapezoid rule</td>
<td></td>
</tr>
<tr>
<td>ode23tb</td>
<td>stiff, low order</td>
<td></td>
</tr>
<tr>
<td>ode45</td>
<td>non-stiff, medium order (Runge-Kutta)</td>
<td></td>
</tr>
<tr>
<td>odeset</td>
<td>sets options for all ODE solvers</td>
<td></td>
</tr>
<tr>
<td>odeget</td>
<td>gets current options</td>
<td></td>
</tr>
</tbody>
</table>

A first example

$\frac{du}{dt} = \sin t - u$

$u(0) = 1$

The Matlab m-file is `ex1_ode.m`.

```matlab
function udot=ex1_ode(t,u)
    udot=ex1_ode(t,u)
    % computes the right side of the ODE du/dt=sin(t)-u
    % t,u are scalars
    % udot is value of du/dt
    udot=sin(t)-u;

Use this command line:

`ode45(@ex1_ode,[0,15],1)`
More first example

If you want to get access to the solution values, use the following command line

```matlab
[t,u]=ode45(@ex1_ode,[0,15],1);
```

You can then plot it using the normal plot commands

```matlab
plot(t,u)
```

or compare it with other solutions

```matlab
plot(t,u,t,sin(t))
```

A stiff example

- Widely-different time scales
- Modify example 1 to be $\dot{u} = 1000 \ast (\sin(t) - u)$
- Changing name of function requires changing name of file!
- `ex2_ode.m`
- Looks like $\sin t$.

```matlab
[t,u]=ode45(@ex2_ode,[0,15],1);
plot(t,u,t,sin(t))
```

- But different for first 100 time steps!

```matlab
plot(t(1:100),u(1:100),t(1:100),sin(t(1:100)))
```

How to tell stiffness

- Easiest way is to time a non-stiff solver and a stiff solver

```matlab
tic;
[t45,u45]=ode45(@ex2_ode,[0,15],1);toc
tic;
[t15s,u15s]=ode15s(@ex2_ode,[0,15],1);toc
```

Never time the first use of a function!

- Solution is same.

```matlab
plot(t45,u45,t15s,u15s)
```

- Time difference comes from number of steps

```matlab
length(u45)
length(u15s)
```

High order ODEs as systems

Consider a fourth-order differential equation

$$5\frac{d^4u}{dt^4} + 4\frac{d^3u}{dt^3} + 3\frac{d^2u}{dt^2} + 2\frac{du}{dt} + u = \sin(t)$$

The first step is to define new variables

$$v_1 = u \quad v_2 = du/dt \quad v_3 = d^2u/dt^2 \quad v_4 = d^3u/dt^3$$

and write

$$\dot{v}_1 = v_2$$
$$\dot{v}_2 = v_3$$
$$\dot{v}_3 = v_4$$
$$\dot{v}_4 = (\sin x - v_1 - 2v_2 - 3v_3 - 4v_4)/5$$
van der Pol's equation

\[ \ddot{u} + a(u^2 - 1) \dot{u} + u = 0 \]

- Assume \( a > 0 \). We will use \( a = 1 \).
- \( u < 1 \), system behaves as negatively-damped oscillator
- \( u > 1 \), system behaves as damped oscillator
- tunnel diodes, beating heart

\[ ex3_ode.m \]

```matlab
function udot=ex3_ode(t,u)% udot=ex3_ode(t,u)% van der Pol ode with A=1
A=1;
udot=[u(2) -A*(u(1)^2-1)*u(2)-u(1)];
```

There are other ways to make column vectors.
Not stiff. Use ode45

```matlab
[t u]=ode45(@ex3_ode,[0,75],[5;0]);
```

First component of solution is \( u \), second is \( \dot{u} \)

```
plot(t,u(:,1))
```

**Options: odeset**

<table>
<thead>
<tr>
<th>Option name</th>
<th>value</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbsTol</td>
<td>positive scalar or vector</td>
<td>1e-6</td>
</tr>
<tr>
<td>RelTol</td>
<td>positive scalar</td>
<td>1e-3</td>
</tr>
<tr>
<td>OutputFcn</td>
<td>function_handle</td>
<td></td>
</tr>
<tr>
<td>OutputSel</td>
<td>vector of integers</td>
<td></td>
</tr>
<tr>
<td>Stats</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>InitialStep</td>
<td>positive scalar</td>
<td></td>
</tr>
<tr>
<td>MaxStep</td>
<td>positive scalar</td>
<td></td>
</tr>
<tr>
<td>MaxOrder</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Jacobian</td>
<td>matrix</td>
<td>function_handle</td>
</tr>
<tr>
<td>JPattern</td>
<td>sparse matrix</td>
<td></td>
</tr>
<tr>
<td>Vectorized</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>Mass</td>
<td>matrix</td>
<td>function_handle</td>
</tr>
<tr>
<td>MvPattern</td>
<td>sparse matrix</td>
<td></td>
</tr>
<tr>
<td>MassSingular</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>InitialSlope</td>
<td>vector</td>
<td></td>
</tr>
<tr>
<td>Events</td>
<td>function_handle</td>
<td></td>
</tr>
</tbody>
</table>

**Using options**

- Confusing!
  ```matlab
 ode45(@ex3_ode,[0,15],[5;0]);
  ```
- Not
  ```matlab
 opt=odeset(’OutputSel’,1);
 ode45(@ex3_ode,[0,15],[5;0],opt);
  ```
Extra parameters

```matlab
function udot=ex4_ode(t,u,a)
 udot=ex4_ode(t,u,a)
 % van der Pol ode with parameter = a
 % default value of a is 1
 if nargin < 3
 a=1;
 end
 udot=[u(2)
 -a*(u(1)^2-1)*u(2)-u(1)];
end
```

Timing test ...

```matlab
tic;
[t,u]=ode45 (@ex4_ode,[0,750],[5;0],[], 1);
toc;
[t,u]=ode15s(@ex4_ode,[0,750],[5;0],[],1);
toc;
[t,u]=ode45 (@ex4_ode,[0,750],[5;0],[],25);
toc;
[t,u]=ode15s(@ex4_ode,[0,750],[5;0],[],25);
toc
```

Critical events

```matlab
function [value,isterminal,direction]=ex4_event(t,u, dummy)
 % [value,isterminal,direction]=ex4_event(t,u, dummy)
 isterminal=1;
 direction=-1; % peak: derivative decreases to zero
 value= u(2); % Event is that derivative is zero
end
```

Use any of the integrators with it

```matlab
opt=odeset('OutputSel',1,'Events',@ex4_event);
ode45(@ex4_ode,[0,25],[2.5;0],opt);
```

To pick up and continue for one more cycle:

```matlab
[t0,u0]=ode45 (@ex4_ode,[0,25],[2.5;0],opt);
[t1,u1]=ode45 (@ex4_ode,[t0(end),25],u0(end,:),opt);
plot(t0,u0(:,1),'b',t1,u1(:,1),'r');
```

Accuracy

Solutions must be critically evaluated!
In this case, default options are too coarse to pick up the nonzero initial value!

```matlab
opt=odeset('AbsTol',1.e-14,'RelTol',1.e-10);
[td,ud]=ode15s(@ex4_ode,[0,200],[1.e-5;0],[],100);
[to,uo]=ode15s(@ex4_ode,[0,200],[1.e-5;0],opt,100);
plot(td,ud(:,1),to,uo(:,1))
```

Outline

Introduction

Ordinary Differential Equations (ODEs)

Options for controlling ode solvers

Partial Differential Equations (PDEs)

Heat equation

Burgers’ equation
Imagine a rod of some sort of metal,
- Part of it might be heated in some manner
- Its ends are kept at a constant temperature
- It starts out with some distribution of temperature

Temperature is $u(x, t)$, $x_{\text{left}} \leq x \leq x_{\text{right}}$, and $t \geq t_{\text{initial}}$.

\[
\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left( k(u, x, t) \frac{\partial u}{\partial x} \right) + f(x, t)
\]

Boundary conditions $u(x_{\text{left}}, t) = u_{\text{left}}(t)$, $u(x_{\text{right}}, t) = u_{\text{right}}(t)$.

Initial condition $u(x, t_{\text{initial}}) = u_{\text{initial}}(x)$.

Spatial discretization
- $x_{\text{left}} = 0$, $x_{\text{right}} = 1$, $t_{\text{initial}} = 0$, $k = 2x + t + 1$
- $u_{\text{left}} = u_{\text{right}} = 0$
- Choose $N$, and set $\Delta x = 1/N$
- $x_n = n\Delta x$ for $n = 0, 1, \ldots, N$
- $u_n(t) \approx u(x_n, t)$.
- $\dot{u}_n = \left[ k(x_{n+1/2}, t) \left( \frac{u_{n+1} - u_n}{\Delta x} \right) - k(x_{n-1/2}, t) \left( \frac{u_n - u_{n-1}}{\Delta x} \right) \right] / \Delta x$

Matlab spatial discretization

```matlab
dx=1/N;
for n=1:N-1
 kright=(2*(x(n)+dx/2)+t+1);
 kleft =(2*(x(n)-dx/2)+t+1);
 if n==1 %left
 udot(n,1)=(kright*(u(n+1)-u(n))-kleft*(u(n)-uleft))/dx^2;
 elseif n<N-1 %interior
 udot(n,1)=(kright*(u(n+1)-u(n))-kleft*(u(n)-u(n-1)))/dx^2;
 else %right
 udot(n,1)=(kright*(uright-u(n))-kleft*(u(n)-u(n-1)))/dx^2;
 end
end
Full code is in ex5_ode.m
```

Heat equation results

```matlab
[t,u]=ode15s(@ex5_ode,[0,.1,.2,.3,.4,.5],100*ones(99,1));
figure(1)
for k=1:6
 plot(u(k,:))hold on
endhold off
title('Temperature distribution at several times')
figure(2)
plot(u(:,50))xlabel('time')ylabel('temperature')title('Temperature vs. time in the middle')
```
Burgers’ equation

\[ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} \]

With \( u_{\text{left}} = 1 \) and \( \frac{\partial u}{\partial x} \big|_{\text{right}} = 0 \) and \( u \in [0, 1] \).

\[ \frac{du_n}{dt} = \nu \frac{u_{n+1} - 2u_n + u_{n-1}}{\delta x^2} - u_n \frac{u_{n+1} - u_{n-1}}{2\delta x} \]

With \( u_{\text{left}} = 1 \) and \( \frac{\partial u}{\partial x} \big|_{\text{right}} = 0 \) approximated by \( u_{\text{right}}^+ = u_N \).

Running ex6

- \( \nu = .001 \) solution is relatively smooth.
  - \( N=500; \)
  - \( \text{init}=(1-\text{linspace}(0,1,N)).^3; \)
  - \( \text{nu}=.001; \)
  - \( [t,u]=\text{ode45}(@(\text{ex6_ode},0:.01:1.5,\text{init},[],\text{nu}); \)
- See the wave steepen as it moves
  - \( \text{for } k=1:\text{length}(u(:,1));\text{plot}(u(k,:)); \)
  - \( \text{axis}([0,N,0,2]);\text{pause}(.1);\text{end} \)
- \( \nu = .0001 \) causes numerics to break down
  - \( \text{nu}=.0001; \)
  - \( [t,u]=\text{ode45}(@(\text{ex6_ode},0:.01:1.5,\text{init},[],\text{nu}); \)
- See the oscillations grow
  - \( \text{for } k=1:\text{length}(u(:,1));\text{plot}(u(k,:)); \)
  - \( \text{axis}([0,N,0,2]);\text{pause}(.1);\text{end} \)