FEniCS is a collection of “components.”

1. You write a script in high-level Python
 ▶ Uses UFL form language
 ▶ Can use numpy, scipy, matplotlib.pyplot, etc.
 ▶ Can use Viper for plotting
2. DOLFIN interprets the script
3. UFL is passed to FFC for compilation
4. Instant turns it into C++ callable from Python (“swig”)
5. Linear algebra is passed to PETSc or UMFPACK

Other capabilities
▶ You can write your script in C++
▶ Other components are also available.
▶ Other linear algebra backends

DOLFIN classes
▶ x = Vector()
▶ A = Matrix()
▶ solve(A, x, b)
▶ Eigenvalues via SLEPc
▶ Newton solver for nonlinear equations
 ▶ You write a class defining the problem and Jacobian
 ▶ newton_solver = NewtonSolver()
 ▶ newton_solver.solve(...)
▶ Several mesh-generation commands
▶ Automated mesh-generation is available
▶ Meshes can come from files
▶ Easy to write files for ParaView plotting
Linear Algebra and parallel computing

- Linear algebra is where the “rubber meets the road”
- Real problems need good solvers
- Good solvers must be used intelligently
- Parallel operation is mostly transparent
- PETSc (plus add-ons SUPERLU, etc.)
- Trilinos

Resources

- FEniCS book, Chapter 1
- dolfin-get-demos
 - Creates directory $HOME/dolfin-demos, but I changed it to $HOME/fenics-demos for you
 - Demo files in it
 - Move it to where you like, if you like
- Examples for this course on my web pages.

Example 1: Poisson equation

- First tutorial example (d1_p2d.py)
- Poisson equation in 2D
 \[-\Delta u = -\frac{\partial^2 u}{\partial x_0^2} - 2 \frac{\partial^2 u}{\partial x_1^2} = -6\]
- Dirichlet boundary conditions
 \[u_D = 1 + x_0^2 + 2x_1^2\]
- The solution is \[u = 1 + x_0^2 + x_1^2\]

```python
# Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

# Define boundary conditions
u0 = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]')
def u0_boundary(x, on_boundary):
    return on_boundary
bc = DirichletBC(V, u0, u0_boundary)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

# Compute solution
u = Function(V)
solve(a == L, u, bc)

# Plot solution and mesh
plot(u, interactive=True)
plot(mesh, interactive=True)
```

Always start with this

- Mesh on \([0, 1] \times [0, 1]\)
- Uniform 6 cells in \(x_0\), 4 in \(x_1\)

Linear Lagrange shape functions

- “Expression” causes a compilation
- “Calling FFC just-in-time (JIT) compiler, this may take some time.”
- \(x\) is a “global variable”
- \(on_boundary\) is a “global” variable
- Value is True or False
- This is how b.c. are usually done

- Set Dirichlet b.c.
- Can be more than one
Add code:

```python
if True:
    # Dump solution to file in VTK format
    file = File('poisson.pvd')
    file << u
```

Code comparison

```python
from dolfin import *

# Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, 'Lagrange', 1)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)

f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

# Compute solution
u = Function(V)
solve(a == L, u, bc)
```

```python
from dolfin import *

# Create mesh and define function space
mesh = UnitIntervalMesh(5)
V = FunctionSpace(mesh, 'Lagrange', 2)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)

f = Expression('x[0]+2')
a = (-inner(nabla_grad(u), nabla_grad(v)) + 2*grad(u)[0]*v + u*v)*dx
L = f*v*dx

# Compute solution
u = Function(V)
solve(a == L, u)
```

Compare with exact solution

```python
# exact for comparison
exact=Expression("(1+x[0])*exp(1-x[0])+x[0]*(1-exp(-x[0]))")

Expression uses C++ syntax! Use pow(a,b) instead of a**b!

# let’s get coordinates, x, at the DOF locations
exF = Expression("x[0]")
exvector = interpolate(exF,V).vector().get_local()

# remember that u and exact are functions
sumsq0=0.
sumsq1=0.
for i in range(exvector.size):
    print "x=", exvector[i], " u=", u(exvector[i]), " uexact=", exact(exvector[i])
    sumsq0+=(u(exvector[i])-exact(exvector[i]))**2
    sumsq1+=u(exvector[i])**2

sumsq0 = sqrt(sumsq0)
sumsq1 = sqrt(sumsq1)
relerr0 = sumsq0/sumsq1
print "N=",N," relative 2-norm error=",relerr0
```
Convergence in Example 2

N= 10 relative 2-norm error= 3.21246743999e-07
N= 20 relative 2-norm error= 2.01845561365e-08
N= 40 relative 2-norm error= 1.23303254663e-09
N= 80 relative 2-norm error= 9.04294475874e-11

Looks like $O(h^4)$, faster than theory. Probably because mesh is uniform.

Printing the solution

- Code for printing solution and computing error is complicated
- If not printing, don’t need coordinates
- could just do:

```python
import scipy.linalg as la
u_array = u.vector().array()
u_e = interpolate(exact, V)
u_e_array = u_e.vector().array()
relerr1 = la.norm(u_e_array - u_array) / la.norm(u_e_array)
print "N=",N," relative 2-norm error=",relerr1
```

3D is just as easy, example3.py

- Change the Mesh to `UnitCubeMesh`
- Change the solver

Exercise 14 (5 points)

example3 is a 3D Poisson equation for which the solution is known. Add code similar to the 1D code in example2 to compute the error as the norm $\|u - u_{\text{exact}}\|/\|u_{\text{exact}}\|$ and print it at the end of the program. Be sure you are using quadratic Lagrange elements, and your error should be of roundoff size because the exact solution is in the approximation space.
The curse of dimensionality

- **Solving 50 1D**
 - 101 × 101 system with 401 nonzeros
 - Essentially no time to solve using default LU solver
- **Solving 50 × 50 2D**
 - 2601 × 2601 system, 17801 nonzeros
 - Less than 0.1 sec using default LU solver.
- **Solving 50 × 50 × 50 system 3D**
 - 132,651 × 132,651 system
 - Out of memory with default LU solver (UMFPACK)
 - Conjugate gradient with block jacobi (ilu) preconditioner
 - Less than a second to solve on my laptop

Higher accuracy costs you

- **Solving 50 × 50 × 50 system 3D, linear Lagrange**
 - 132,651 × 132,651 system
 - 1,927,951 nonzeros
 - Conjugate gradient with block jacobi (ilu, “preonly”) preconditioner
 - Less than a second to solve on my laptop
- **Solving 50 × 50 × 50 system 3D, quadratic Lagrange**
 - 1,030,301 × 1,030,301 system
 - 29,096,201 nonzeros
 - Conjugate gradient with block jacobi (ilu, “preonly”) preconditioner
 - 16.5 seconds to solve on my laptop (109 iterations)
 - 10 seconds to solve using 2 processors (120 iterations)

Why did LU run out of memory?

Some memory numbers

- **N × N square mesh**
 - Matrix is $N^2 \times N^2$, half-bandwidth N
 - N^3 nonzeros each factor
- **N × N × N cube mesh**
 - Matrix is $N^3 \times N^3$, half-bandwidth N^2
 - N^6 nonzeros each factor
Direct or iterative?

- 1D or 2D problem: direct solver
- Maybe run into trouble with large 2D problems
- 3D: debug with direct, go with iterative

Conjugate Gradient algorithm

Given SPD matrix A, initial guess x_0

\[
\begin{align*}
 r_0 &= b - Ax_0 \\
 d_0 &= r_0 \\
 \text{for } n \in \text{range(}itmax) : \\
 \alpha_{n-1} &= \frac{(d_{n-1}, r_{n-1})}{(d_{n-1}, Ad_{n-1})} = \frac{(r_n, r_n)}{(d_n, Ad_n)} \\
 x^n &= x^{n-1} + \alpha_{n-1}d_{n-1} \\
 r^n &= b - Ax^n = r^{n-1} - \alpha_{n-1}Ad_{n-1} \\
 \text{if converged:} \\
 \text{return } x \\
 \beta_n &= \frac{(r_n, r_n)}{(r_n-1, r_{n-1})} \\
 d^n &= r_n + \beta_n d_{n-1}
\end{align*}
\]

Solution as minimization

- Solving $Ax = b$ is the same as
- Minimizing $\|Ax - b\|^2$ is the same as
- Minimizing $2(Ax, x) - (b, y)$ (SPD A)
- Finding $(Ax, y) = (b, y), \forall y$

Iteration as successive minimization

- If A is $N \times N$ SPD and a sequence of subspaces $K^n \subset \mathbb{R}^N$

is available.
- An iteration can be defined as

\[
 x^n = \min_{x \in K^n} (2(Ax, x) - (b, x)).
\]

- Clearly, this will converge in N or fewer steps.
- Given an initial vector x^0, you can define a sequence of “Krylov” spaces with $r^0 = Ax^0 - b$ with

\[
\begin{align*}
 r^n &\in r^0 + \text{span}\{Ar^0, A^2r^0, \ldots, A^n r^0\}, \text{ and} \\
 e^n &\in e^0 + \text{span}\{Ar^0, A^2r^0, \ldots, A^n r^0\}
\end{align*}
\]

where $e^n = x^n - x^\infty$.

CG as minimization

- Amazing! CG defined earlier satisfies
 \[\| r^n \|_{A^{-1}} = \min_{r \in K^n} \| r \|_{A^{-1}} \]
 \[\| e^n \|_A = \min_{e \in K^n} \| e \|_A \]
- \(J(x) = (Ax, x) - (b, x) \), then \(J(x^n) = \min_{x \in K^n} J(x) \)
- Furthermore,
 \[(r^k, r^j) = 0, \quad k \neq j \]
 \[(d^k, d^j)_A = 0, \quad k \neq j \]
- Proofs are by induction.

Consequences of CG

- Orthogonality relations \(\implies A^n r^0 \) independent
- Sensitive to roundoff error
- Still rapidly convergent

Important observations

- Never need anything from the matrix except the product \(Ax \)
- Sharp contrast with factorization methods.
- “Matrix-free” methods: elementwise multiplication

What if not SPD?

- Replace “automatic orthogonality” with Gram-Schmidt
- GMRES
- Cannot store all the iterates
- “Restart” every 30 or so iterations.
 There are many other possibilities, too
How do I know when to stop iterating?

- Watch $\|r^n\|$ and/or $\|x^n - x^{n-1}\|$.
- Rates are important
 - Ideally, $\|x^{n+1} - x^n\|/\|x^n - x^{n-1}\| \rightarrow \rho < 1$
 - Then $\|x^{n+1} - x^n\| \approx \|x^{n+1} - x^n\|/(1 - \rho)$
- Domain-specific knowledge to estimate condition number
- “Model” problems give guidance

Solution methods in FEniCS

```python
list_linear_solver_methods()
```

<table>
<thead>
<tr>
<th>Solver</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>default linear solver (UMFPACK)</td>
</tr>
<tr>
<td>umfpack</td>
<td>UMFPACK</td>
</tr>
<tr>
<td>mumps</td>
<td>MUMPS</td>
</tr>
<tr>
<td>petsc</td>
<td>PETSc builtin LU solver</td>
</tr>
<tr>
<td>cg</td>
<td>Conjugate gradient</td>
</tr>
<tr>
<td>gmres</td>
<td>Generalized minimal residual</td>
</tr>
<tr>
<td>minres</td>
<td>Minimal residual</td>
</tr>
<tr>
<td>tfqmr</td>
<td>Transpose-free quasi-minimal residual</td>
</tr>
<tr>
<td>richardson</td>
<td>Richardson</td>
</tr>
<tr>
<td>bicgstab</td>
<td>Biconjugate gradient stabilized</td>
</tr>
</tbody>
</table>

- UMFPACK: Unsymmetric MultiFrontal sparse LU factorization
- MUMPS: MUltifrontal Massively Parallel Sparse direct Solver

Computers are never big enough or fast enough!

- Moore’s Law: Chip density doubles every 18 months.
- Speed increases with chip density in part because signals have less distance to travel.
- Even with PCs, the faster the CPU chip, the more stuff you cram into the operating system.
- When you run a problem, you always pick it so that it includes everything you can think of but runs in acceptable time. In order to do so, you always leave something out. Some problems end up being perhaps ten times too small, others end up being 10^7 times too small.
- Daily weather forecasts must run in less than a day. If you get a new computer and it is twice as fast, you increase your local coverage just far enough so it runs in just less than a day. You get more accuracy, but you still miss things.
- Some problems (turbulent fluid flow) require mesh sizes small enough to resolve the turbulence details (fraction of a millimeter) but enough mesh elements to cover, say, a whole airplane (tens of meters).

References on parallel computing

Three texts are recommended. All are excellent sources.
Gropp, Lusk, Skjellum: “To pull a bigger wagon, it is easier to add more oxen than to grow a gigantic ox.” This is true even when oxen double in capacity every eighteen months.

The fastest and most advanced single-CPU computers are the most expensive, too. (ibid., “Large oxen are expensive.”)

Why not hook a bunch of smaller, cheaper computers together and have them all work together?

Good idea! Except how can you make them all work together?

Parallel computing.

There are two major classes of parallel computer

1. Shared memory
2. Distributed memory

Advantages and disadvantages of shared memory (following Douglas, Haase, Langer)

+ Each process has access to all the data.
+ Sequential code can easily be ported.
+ Speedup factors of a few 10s
 - Memory bandwidth per CPU can suffer.
 - Cache-coherence is a stumbling block.
 - Poor scalability
 - Memory subsystem is very expensive.

Classification by memory access: shared memory

A “shared memory” parallel computer (SMP) is a set of CPUs, all sharing the same memory space.

Current “multi-core” chips have adopted this architecture with several CPUs on a single chip, all accessing the same memory.
Shared memory for you

▶ Today, numerical libraries are optimized to use several processors (cores) if available.
▶ You don’t have to do much yourself to take advantage of them.

Classification by memory access: distributed memory

Ideally speaking, a “distributed memory” parallel computer is a set of serial computers connected together with a communication facility such as a network:

Advantages and disadvantages of distributed memory
(from Douglas, Haase, Langer)

+ There are no access conflicts since all data is locally stored.
+ Inexpensive hardware. (Network)
+ Code for such computers scales very well.
+ Need more memory? Buy another node!
 - Sequential code does not run because one processor cannot see another’s data.
 - Special parallel code is difficult.
▶ The ratio between arithmetic and communication must be balanced.
▶ Packages such as PETSc can do much of the work for you.

“Message passing” computing model

▶ Very like distributed memory computer
▶ Easily implemented on shared memory computers
▶ Each process has local memory and a way to send data to others.
▶ Data transfer requires cooperation between sender and receiver.
“Single Program Multiple Data”

- Same program runs on all processors
- Relatively few special cases

Message Passing Interface (MPI) (Foster, Chapter 8)

- Set of Fortran (C, C++) subroutines to implement message passing.
- Not ISO/ANSI standard because of the cost, but is standardized.
- http://www.mpi-forum.org for standards

MPI Basics

- MPI.COMM_WORLD Communications group
- comm.Get_size() Get the number of processors
- comm.Get_rank() Get the rank (number) of this process
- comm.Barrier() Synchronize processes

MPI sending and receiving

- comm.Send(ndarray, dest, tag) Send a message
- comm.Recv(ndarray, source, tag) Receive a message (wait)
- comm.Bcast(ndarray, root) Broadcast data from root to all processes
- comm.Reduce(ndarray to send, ndarray to recv, op, root) Arithmetic reduction over all processes
My first parallel program

Here is a program to print “Hello world” from each process running in parallel.

```python
from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

print "hello from process ",rank," of total of ",size
```

Get MPI module Use all available processes What is the number of this process? What is the total number of processes? Each process prints something!

Remarks on `mpi_hello.py`

```bash
mpirun -np 4 python mpi_hello.py
- 4 separate copies of python
- Variable rank is distinct on each copy
- No order of execution
```

Approximating π with numerical integration

The value of π can be found many different ways. One way is to compute the integral

$$I = \int_0^1 \frac{4}{1 + x^2} \, dx = 4 \tan^{-1}(1)$$

by some numerical method, such as the rectangle rule with n intervals

$$I \approx \sum_{i=1}^{n} \frac{4h}{1 + x_i^2}$$

where $h = 1/n$ and $x_i = h(2i - 1)/2$.

Run it

```bash
$ python mpihello.py
hello from process 0 of total of 1

$ mpirun -np 2 python mpihello.py
hello from process 0 of total of 2
hello from process 1 of total of 2

$ mpirun -np 4 python mpihello.py
hello from process 2 of total of 4
hello from process 3 of total of 4
hello from process 0 of total of 4
hello from process 1 of total of 4

$ mpirun -np 4 python mpihello.py
hello from process 0 of total of 4
hello from process 3 of total of 4
hello from process 1 of total of 4
hello from process 2 of total of 4
```
A parallel program for approximating π

```python
from mpi4py import MPI
import numpy as np
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
NumIntervals = 100000
h = 1.0/NumIntervals
myPieceOfPi = np.array([0.0])
for i in range(rank,NumIntervals,size):
    x = h * (i - 0.5)  # center of interval
    myPieceOfPi += 4.0*h / (1.0 + x**2)
wholePi = np.empty(1)
comm.Reduce(myPieceOfPi, wholePi, op=MPI.SUM, root=0)
if rank == 0:
    print "Pi=", wholePi, " error=", np.abs(wholePi - np.pi)
```

Splits up the work among `size` processes. Sum individual `myPieceOfPi` into `wholePi`:

- Only want one print
- Only valid on processor 0 anyhow

Variables in messages need to be contiguous arrays.

Comments on `mpi_pi_sr.py`

- Note that we have `size-1` sends in an explicit loop, but the same number of receives are not in a loop. The sends and receives must come in pairs.
- If you try to receive a message you have not sent, the receiving process will “block” until the message is sent (possibly forever).
- You will not notice if an extra message is sent.
- If one of the MPI functions fails and its process stops, the other processes won’t automatically know about it. Ultimately, the processes will end up waiting for messages the stopped process never sends.

Exercise 15 (10 points)

Write `mpi4py` program that runs with two processes. Have process 0 first print the word “ping” and then send a message to process 1. When process 1 gets its message, have it print the word “pong” and send a message back to process 0. Repeat the cycle 5 times. The output should be the words “ping” and “pong” in sequence, 5 times.
Preconditioning

- Instead of solving $Ax = b$, solve $M^{-1}Ax = M^{-1}b$
- Really solving $(M^{-1}AM)(M^{-1}x) = M^{-1}b$
- Pick M^{-1} “close to” A^{-1}
- Can substantially reduce the number of iterations
- M^{-1} must be “easy” to gain anything

Preconditioned CG

Given a SPD matrix A, preconditioner M, initial guess vector x^0, right side vector b, and maximum number of iterations \textit{itmax}

$r^0 = b - Ax^0$
Solve $Md^0 = r^0$

`for n in range(itmax):
 α_n = (r^n, z^n)/(d^n, Ad^n)
 x^{n+1} = x^n + α_n d^n
 r^{n+1} = b - Ax^{n+1}
if converged:
 return x`

Solve $Mz = r$ iteratively
- Iterations inside iterations

Preconditioners in parallel context

- Problem partitioned generally reside on single processor
- Common preconditioner strategy: respect the parallel partitioning
- “Block Jacobi” preconditioning
- “Additive Schwarz” preconditioning

ICCG

- Suppose A is SPD
- A Cholesky factorization $A = LL^T$ exists where L is lower-triangular
- Lower-triangular matrices are easy to invert
- Fill-in eats you up
- Only keep entries in L corresponding to nonzeros in A (HOW?)
- “Incomplete” Cholesky
- Use it if you can!
How does Block Jacobi preconditioning work?

Suppose there are 3 processes. Write M as

$$
M =
\begin{pmatrix}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{pmatrix}
$$

Block Jacobi iteration is

$$
\begin{pmatrix}
M_{11} & 0 & 0 \\
0 & M_{22} & 0 \\
0 & 0 & M_{33}
\end{pmatrix}
\begin{pmatrix}
X_{n+1}^1 \\
X_{n+1}^2 \\
X_{n+1}^3
\end{pmatrix}
=
\begin{pmatrix}
0 & M_{12} & M_{13} \\
M_{21} & 0 & M_{23} \\
M_{31} & M_{32} & 0
\end{pmatrix}
\begin{pmatrix}
X_{n}^1 \\
X_{n}^2 \\
X_{n}^3
\end{pmatrix}
+
\begin{pmatrix}
B_1 \\
B_2 \\
B_3
\end{pmatrix}
$$

Alternating Schwarz method

- Want to solve $N \times N$ system $Au = f$
- Decompose whole domain into J overlapping sub-domains.
- Diagonal block on domain j is $n \times n$ matrix A_j
- Split iteration into steps

$$
u^{(n+J/J)} = u^{(n+(J-1)/J)} + R_j^T A_j^{-1} R_j (f - A u^{(n+(J-1)/J)})
$$

where R_j represents the restriction to domain j.
- Whole step can be written

$$
u^{(j+1)} = u^{(j)} + M^{-1} (f - A u^{(j)})
$$

- "Multiplicative Schwarz" method amounts to

$$
M^{-1}_{MS} = (I - \prod_j (I - R_j^T A_j^{-1} R_j A)) A^{-1}
$$

On each process, solve a system

- Off-process variables are computed once each iteration
- Diagonal block M_{kk} equations are solved
- All solver arithmetic is on-block
- Might not solve with M_{kk} but with an incomplete factorization
- $b jacobi$ using ilu (default in FEniCS)
- Additive Schwarz is similar
- Native PETSc preconditioners respect the partitioning

Visualizing overlapping blocks

Imagine a long problem broken horizontally into overlapping blocks with each block assigned to a processor.
Additive Schwarz theory

- Additive Schwarz
 \[M_{AS}^{-1} = \sum_{j} R_j^T A_j^{-1} R_j \]

- Won’t usually converge because common (overlapping) values updated repeatedly
- Restricted Additive Schwarz
 \[M_{RAS}^{-1} = \sum_{j} R_j^T A_j^{-1} R_j \]

- Makes sense either with subdomains defined physically or according to parallel data distribution
- Amount of overlap can be a parameter.
- Overlapped points often called “ghost” points in the redundant block.

Other preconditioners

- Multigrid
 - Presented later
- Incomplete LU across all processes

Preconditioners in FEniCS

```python
list_krylov_solver_preconditioners()
```

<table>
<thead>
<tr>
<th>preconditioner</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>default preconditioner (bjacobi + ilu)</td>
</tr>
<tr>
<td>none</td>
<td>No preconditioner</td>
</tr>
<tr>
<td>ilu</td>
<td>Incomplete LU factorization</td>
</tr>
<tr>
<td>icc</td>
<td>Incomplete Cholesky factorization</td>
</tr>
<tr>
<td>sor</td>
<td>Successive over-relaxation</td>
</tr>
<tr>
<td>petsc_amg</td>
<td>PETSc algebraic multigrid</td>
</tr>
<tr>
<td>jacobi</td>
<td>Jacobi iteration</td>
</tr>
<tr>
<td>bjacobi</td>
<td>Block Jacobi iteration</td>
</tr>
<tr>
<td>additive_schwarz</td>
<td>Additive Schwarz</td>
</tr>
<tr>
<td>amg</td>
<td>Algebraic multigrid</td>
</tr>
<tr>
<td>hypre_amg</td>
<td>Hypre algebraic multigrid (BoomerAMG)</td>
</tr>
<tr>
<td>hypre_euclid</td>
<td>Hypre parallel incomplete LU factorization</td>
</tr>
<tr>
<td>hypre_parasails</td>
<td>Hypre parallel sparse approximate inverse</td>
</tr>
</tbody>
</table>

Newton’s method

\[u^{(k+1)} = u^{(k)} - J^{-1} f(u^{(k)}) \]
Quick and dirty derivation

\[
\frac{f(u^{(k)} + \Delta u) - f(u^{(k)})}{\Delta u} \approx f'(u^{(k)})
\]

If \(f \) were linear, this would be true equality, and the next iterate would satisfy \(f(u^{(k+1)}) = f(u^{(k)} + \Delta u) = 0 \). Rearranging terms gives

\[
\Delta u = u^{(k+1)} - u^{(k)} = -\frac{f(u^{(k)})}{f'(u^{(k))}}
\]

Facts about Newton iterations

- Convergence is (usually) quadratic: \(\|\Delta u^{(k+1)}\| \approx \|\Delta u^{(k)}\|^2 \)
- “Radius of convergence” can be small
- Must have the Jacobian!

newton.py for Newton iterations

```python
import numpy as np
import scipy.linalg as la
import copy

def ex1(x):
    
    """intersection of circle and parabola""
    assert(len(x) == 2)
    f=np.empty(2)
    fprime=np.empty([2,2])
    f[0]=x[0]**2+x[1]**2-1.0
    f[1]=x[1]-x[0]**2
    fprime[0,0]=2.0*x[0]
    fprime[0,1]=2.0*x[1]
    fprime[1,0]=-2.0*x[0]
    fprime[1,1]=1.0
    return f,fprime

def newton(f,xin):
    """Newton's method
    the function f returns the pair (f,fprime)
    ""
    EPSILON = 1.0e-10
    x = copy.deepcopy(xin)
    # usually converges in <= 100 iterations
    for n in range(100):
        value,derivative = f(x)
        increment = la.solve(derivative,value)
        x -= increment
        errorEstimate = la.norm(increment)/la.norm(x)
        print "errorEstimate = ",errorEstimate
        if errorEstimate < EPSILON:
            return x,n
    assert(False)

y,i = newton(ex1,np.array([10.,10.]))
print "y = ",y, " i= ",i
```

Output from newton.py

```
errorEstimate = 0.990068105443
errorEstimate = 0.961414155537
errorEstimate = 0.860078869547
errorEstimate = 0.586994090496
errorEstimate = 0.214892321847
errorEstimate = 0.027988546798
errorEstimate = 0.000496297688535
errorEstimate = 1.56654175525e-07
errorEstimate = 1.55344805293e-14
y = [ 0.78615138 0.61803399] i= 8
```
A mistake in the Jacobian destroys quadratic convergence

\[
J = \begin{pmatrix}
2x_1 & 2x_2 \\
-2x_1 & x_2
\end{pmatrix}
\]

Error estimates:
- \(0.990714987357\)
- \(0.968455531242\)
- \(0.934784964882\)
- \(0.491063275932\)
- \(0.212353923457\)
- \(0.0250723487329\)
- \(0.00186382569352\)

If quadratic convergence is not observed, check that function and Jacobian are consistent.

Newton is not the only possibility
- Broyden's method
 - Multidimensional generalization of secant
 - Superlinear convergence
- Picard iteration (successive substitution)
 - Often slow convergence
 - Usually linear convergence
- Need storage for approximate Jacobian