1 Python language exercises

1. (5 points) Consider the following expression, intended to print the square root of 16:

\[\text{pow}(16, (1/2)) \]

What is the result of this expression? How should it be changed, still using `pow`, to yield the correct answer?

2. (5 points) Define the variables \(x \) and \(y \) as lists of numbers, and \(z \) as a tuple.

\[x = [1, 2, 3, 4, 5] \]
\[y = [11, 12, 13, 14, 15] \]
\[z = (21, 22, 23, 24, 25) \]

(a) What is the value of \(3*x \)?
(b) What is the value of \(x+y \)?
(c) What is the value of \(x-y \)?
(d) What is the value of \(x[1] \)?
(e) What is the value of \(x[0] \)?
(f) What is the value of \(x[-1] \)?
(g) What is the value of \(x[:1] \)?
(h) What is the value of \(x[2:4] \)?
(i) What is the value of \(x[1:4:2] \)?
(j) What is the value of \(x[:2] \)?
(k) What is the value of \(x[:2] \)?
(l) What is the result of the following two expressions?

\[x[3]=8 \]
\[\text{print } x \]

(m) What is the result of the above pair of expressions if the list \(x \) were replaced with the tuple \(z \)?

3. (5 points) Define the variable \(s \) as the string \(s = "abcde" \).

(a) What is the value of \(3*x \)?
(b) What is the value of \(x[1] \)?
(c) What is the value of \(x[-1] \)?
(d) What is the value of \(x[:2] \)?

4. (5 points) Write a program to find those numbers \(j = 100 \) that are equal to the sum of their factors.
5. (5 points) Define a “Big number” as a list of digits. Write a program whose first non-comment lines are two 20-digit numbers
\[
x = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 5]
\]
\[
y = [2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5, 5, 3, 4, 9]
\]
Write a program that:

(a) Finds the sum (x+y) considered as 20-digit “big numbers” and prints it as a list of digits.

(b) Finds the product 15∗x considered as a product of “big numbers” and prints it as a list of digits.

Your program should be general enough that if x and y are changed to be 30-digit numbers, your program would still work correctly.

6. (8 points) Write a program to do the following tasks:

(a) Define a function named \texttt{dif2} that accepts an integer N as input parameter and constructs and returns an \(N \times N\) two-dimensional \texttt{numpy} array \(A\), with the value -2.0 on the main diagonal and the value +1.0 on the super-diagonal and the sub-diagonal.

(b) For N=10, construct a one-dimensional array \(b\) of length \(N\) filled with zeros except that the first element is 1.0 and the last element is -N. For N=10, solve the system \(Ax = b\) for \(x\).

(c) For N=20, construct a one-dimensional array \(c\) of length \(N\), filled with random numbers. For \(A\) from the \texttt{dif2} function, Solve the system \(Ay = c\) for \(y\) and then confirm that the solution you found is approximately correct by computing the relative norm of the residual error, \(\|Ay - c\|/\|c\|\). This value should be no larger than \(10^{-12}\).