Complex variables: Exam 1 Solutions 2/25/10

Question 1

Compute the following limits, or explain why the limit in question does not exist.

- \[A = \lim_{z \to 1+i} \left(\frac{z^4 + 4}{z^2 - 3iz - 3 + i} \right) \]

Note that \((1 + i)^2 = 1 - 1 + 2i = 2i\).

Then we have:

\[z^4 + 4 = (z^2)^2 - (2i)^2 = (z^2 - 2i)(z^2 + 2i) = (z - (1 + i))(z + 1 + i)(z^2 + 2i). \]

Also we have (since \((1 + i)(2i - 1) = 2i - 2 - 1 - i = -3 + i\)):

\[z^2 - 3iz - 3 + i = (z - (1 + i))(z - 2i + 1) \]

So we get:

\[A = \lim_{z \to 1+i} \left(\frac{z^4 + 4}{z^2 - 3iz - 3 + i} \right) \]

\[= \lim_{z \to 1+i} \left(\frac{(z - (1 + i))(z + 1 + i)(z^2 + 2i)}{(z - (1 + i))(z - 2i + 1)} \right) \]

\[= \lim_{z \to 1+i} \left(\frac{(z + 1 + i)(z^2 + 2i)}{(z - 2i + 1)} \right) \]

\[= \frac{(1 + i + 1 + i)(2i + 2i)}{(1 + i - 2i + 1)} \]

\[= \frac{(2 + 2i)(4i)}{2 - i} = \frac{(-8 + 8i)(2 + i)}{5} \]

\[= \frac{-16 - 8 + 16i - 8i}{5} = \frac{-24 + 8i}{5}. \]
Alternatively, we first note that this is a "0/0" limit, since we have, when \(z = 1 + i \):

\[
\begin{align*}
z &= 1 + i, \\
z^2 &= 2i, \\
z^3 &= z^2 z = 2i(1 + i) = -2 + 2i, \\
z^4 &= (z^2)^2 = (2i)^2 = -4, \\
z^4 + 4 &= 0, \\
z^2 - 3iz - 3 + i &= 2i - 3i(1 + i) - 3 + i = 2i - 3i + 3 - 3 + i = 0.
\end{align*}
\]

Then we can use L'Hôpital:

\[
A = \lim_{z \to 1+i} \left(\frac{z^4 + 4}{z^2 - 3iz - 3 + i} \right) \\
= \lim_{z \to 1+i} \left(\frac{4z^3}{2z - 3i} \right) \\
= \frac{4(-2 + 2i)}{2(1 + i) - 3i} \\
= \frac{-8 + 8i}{2 - i} = \frac{(-8 + 8i)(2 + i)}{5} \\
= \frac{-16 - 8 + 16i - 8i}{5} = \frac{-24 + 8i}{5}.
\]
\[B = \lim_{z \to 0} \left(\frac{\Re(z) \Im(z)}{z} \right). \]

Put \(z = re^{it} \), with \(r > 0 \) and \(t \) real. Then we have:

\[z = re^{it} = r \cos(t) + ir \sin(t) \]
\[\Re(z) = r \cos(t), \Im(z) = r \sin(t), \]
\[B = \lim_{z \to 0} \left(\frac{\Re(z) \Im(z)}{z} \right) \]
\[= \lim_{r \to 0^+} \left(\frac{r \cos(t) r \sin(t)}{re^{it}} \right) \]
\[= \lim_{r \to 0^+} r \sin(t) \cos(t) e^{-it}. \]

But the factor \(\sin(t) \cos(t) e^{-it} \) has size:

\[|\sin(t) \cos(t) e^{-it}| = |\sin(t) \cos(t)| = \frac{1}{2} |\sin(2t)| \leq \frac{1}{2}. \]

So since in the expression of the limit, the factor \(r \) goes to zero and the factor \(\sin(t) \cos(t) e^{-it} \) is bounded in size, the limit exists and is zero. So \(B = 0 \).

\[C = \lim_{z \to 3i} \frac{|z - 3i|^2}{z^2 + 9} \]

Put \(z = 3i + re^{it} \), where \(r > 0 \) and \(t \) is real. Then we have:

\[C = \lim_{z \to 3i} \frac{|z - 3i|^2}{z^2 + 9} = \lim_{z \to 3i} \frac{|z - 3i|^2}{(z - 3i)(z + 3i)} \]
\[= \frac{1}{6i} \lim_{z \to 3i} \frac{|z - 3i|^2}{z - 3i} = \frac{1}{6i} \lim_{r \to 0^+} \frac{|re^{it}|^2}{re^{it}} \]
\[= \frac{1}{6i} \lim_{r \to 0^+} re^{-it}. \]

So since in the expression of the limit, the factor \(r \) goes to zero and the factor \(e^{-it} \) is bounded in size, having size \(|e^{-it}| = 1 \), the limit exists and is zero. So \(C = 0 \).
Question 2

Determine the images of the circle of radius 5 and center $-5 + 3i$ and of the line $y = -x$ under the transformation $z \rightarrow \frac{1}{z + 1}$.

Plot the curves and their images under the transformation on one graph.

The inverse transformation is given by solving the following equation for w in terms of z:

$$z = \frac{1}{w + 1}, \quad w + 1 = \frac{1}{z},$$

$$w = \frac{1}{z} - 1 = \frac{1 - z}{z}.$$

The circle of radius 5 and center $-5 + 3i$ has the equation:

$$|z + 5 - 3i| = 5.$$

Its image under the given transformation is obtained by substituting the formula for the inverse transformation into this equation, so is:

$$\left|\frac{1 - z}{z} + 5 - 3i\right| = 5,$$

$$|1 - z + 5z - 3iz| = 5|z|,$$

$$|1 + 4z - 3iz| = 5|z|,$$

$$|1 + (4 - 3i)z|^2 = 25|z|^2,$$

$$(1 + (4 - 3i)z)(1 + (4 + 3i)\overline{z}) = 25z\overline{z},$$

$$1 + (4 - 3i)z + (4 + 3i)\overline{z} + 25z\overline{z} = 25z\overline{z},$$

$$1 + (4 - 3i)z + (4 + 3i)\overline{z} = 0.$$

Putting $z = x + iy$, with x and y real, we get:

$$0 = 1 + (4 - 3i)(x + iy) + (4 + 3i)(x - iy) = 1 + 4x + 3y - 3ix + 4iy + 4x + 3y + 3ix - 4iy,$$

$$8x + 6y + 1 = 0.$$

This is a straight line through the point $\left(0, -\frac{1}{6}\right)$ with slope $-\frac{4}{3}$.

Note that the image of the given circle is a straight line rather than a circle, because the point -1 is sent to infinity by the transformation, and the point -1 lies on the given circle, since $| -1 + 5 - 3i| = |4 - 3i| = 5$.

4
The line $y = -x$ has the equation: $\mathcal{R}(z) + \mathfrak{I}(z) = 0$.
Its image is then:

$$\mathcal{R} \left(\frac{1 - z}{z} \right) + \mathfrak{I} \left(\frac{1 - z}{z} \right) = 0.$$

We simplify by multiplying by the real quantity $z\overline{z}$, which can be brought inside the \mathcal{R} and \mathfrak{I} terms, since $\mathcal{R}(ua) = u\mathcal{R}(a)$ and $\mathfrak{I}(ua) = u\mathfrak{I}(a)$, for any real u and any complex number a.

$$\mathcal{R} \left((1 - z)\overline{z} \right) + \mathfrak{I} \left((1 - z)\overline{z} \right) = 0,$$

$$\mathcal{R} \left(\overline{z} - z\overline{z} \right) + \mathfrak{I} \left((\overline{z} - z\overline{z}) \right) = 0,$$

$$\mathcal{R}(z) - z\overline{z} + \mathfrak{I}(z) = 0,$$

$$0 = z\overline{z} - \mathcal{R}(z) + \mathfrak{I}(z).$$

Here we used that $\mathcal{R}(a + b) = \mathcal{R}(a) + \mathcal{R}(b)$, $\mathfrak{I}(a + b) = \mathfrak{I}(a) + \mathfrak{I}(b)$, for any complex numbers a and b.

Also we used that, for any real u, $\mathcal{R}(u) = u$ and $\mathfrak{I}(u) = 0$.

Also we used that $\mathcal{R}(a) = \mathcal{R}(\overline{a})$ and $\mathfrak{I}(a) = -\mathfrak{I}(a)$, for any complex a.

Continuing we get:

$$0 = z\overline{z} - \frac{1}{2}(z + \overline{z}) + \frac{1}{2i}(z + \overline{z}) = z\overline{z} - \left(\frac{1 + i}{2} \right) z - \left(\frac{1 - i}{2} \right) \overline{z}$$

$$= \left(z - \frac{1 - i}{2} \right) \left(\overline{z} - \frac{1 + i}{2} \right) - \frac{1 - i)(1 + i)}{4}$$

$$= \left| z - \frac{1}{2}(1 - i) \right|^2 - \frac{1}{2},$$

$$\left| z - \frac{1}{2}(1 - i) \right| = \frac{1}{\sqrt{2}}.$$

So the image of the given line is a circle center the point $\frac{1 - i}{2}$ and radius $\frac{1}{\sqrt{2}}$.

Alternatively, we write $z = x + iy$, with x and y real.

Then the required equation is:

$$0 = z\overline{z} - \mathcal{R}(z) + \mathfrak{I}(z) = x^2 + y^2 - x + y = \left(x - \frac{1}{2} \right)^2 + \left(y + \frac{1}{2} \right)^2 - \frac{1}{2}.$$

Again this is the equation of a circle, centered at $\left(\frac{1}{2}, -\frac{1}{2} \right)$, with radius $\frac{1}{\sqrt{2}}$, in agreement with the above.
Question 3
Let \(u = x^2 - y^2 - 2xy + 6x^2y + 3xy^2 - 2y^3 - x^3 \).

- Prove that \(u \) is harmonic and find its harmonic conjugate \(v \).

We solve the Cauchy-Riemann equations.
- The equation \(v_x = -u_y \) gives:
 \[
v_x = -u_y = 2y + 2x - 6x^2 - 6xy + 6y^2,
 \]
 \[
v = \int (2y + 2x - 6x^2 - 6xy + 6y^2)dx = 2xy + x^2 - 2x^3 - 3x^2y + 6xy^2 + g(y).
 \]
- Then the equation \(0 = v_y - u_x \) gives:
 \[
 0 = g'(y) + 2x - 3x^2 + 12xy - 2x + 2y - 12xy - 3y^2 + 3x^2
 = g'(y) + 2y - 3y^2.
 \]
 \[
g = \int (3y^2 - y^2)dy = y^3 - y^2 + C.
 \]

So the harmonic conjugate \(v \) of \(u \) exists and is:
\[
v = 2xy + x^2 - 2x^3 - 3x^2y + 6xy^2 - y^2 + y^3 + C.
\]

In particular, it follows that \(u \) is harmonic:
\[
u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0.
\]

Alternatively, we use differentials.
We need:
\[
dv = v_x dx + v_y dy = -u_y dx + u_x dy
= (2y + 2x - 6x^2 - 6xy + 6y^2)dx + (2x - 2y + 12xy + 3y^2 - 3x^2)dy
= 2xdx - 6x^2 dx - 2ydy + 3y^2 dy + (2ydx + 2xdy) - (6ydx + 3x^2 dy) + (6y^2 dx + 12xy dy)
= d(x^2 - 2x^3 - y^2 + y^3 + 2xy - 3x^2y + 6xy^2).
\]
So \(v = x^2 - 2x^3 - y^2 + y^3 + 2xy - 3x^2y + 6xy^2 + C \), as before.
• Express \(f = u + iv \) as a function of \(z = x + iy \) and show that:

\[
f'(z) = \frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y}.
\]

We have:

\[
u(x, y) + iv(x, y) = f(x + iy),
\]

\[
f(x) = u(x, 0) + iv(x, 0) = x^2 - x^3 - iy(x^2 - 2x^3 + C) = x^2(1 + i) - x^3(1 + 2i).
\]

So \(f(z) = z^2(1 + i) - z^3(1 + 2i) + iC \).

Check:

\[
z^2(1 + i) - z^3(1 + 2i) + iC
\]

\[
(x^2 - y^2 + 2ixy)(1 + i) - (x^3 - 3xy^2 + 3ix^2y - iy^3)(1 + 2i) + iC
\]

\[
= x^2 - y^2 - 2xy - x^3 + 3xy^2 + 6x^2y - 2y^3 + i(2xy + x^2 - y^2 - 2x^3 + 6xy^2 - 3x^2y - 6y^3 + C)
\]

\[
= u + iv.
\]

Then we have:

\[
f'(z) = 2z(1 + i) - 3z^2(1 + 2i)
\]

\[
= 2(x + iy)(1 + i) - 3(x^2 - y^2 + 2ixy)(1 + 2i)
\]

\[
= 2x - 2y - 3x^2 + 3y^2 + 12xy + i(2x + 2y - 6x^2 + 6y^2 - 6xy).
\]

Also we have:

\[
f_x = u_x + iv_x = 2x - 2y + 12xy + 3y^2 - 3x^2 + i(2y + 2x - 6x^2 - 6xy + 6y^2) = f'(z),
\]

\[
-if_y = v_y - iu_y = 2x - 3x^2 + 12xy - 2y + 3y^2 + i(2y + 2x - 6x^2 - 6xy + 6y^2) = f_x = f'(z).
\]

So we have \(f'(z) = f_x = -if_y \), as required.
Question 4

Let \(f(z) = \frac{z^2 + 1}{z} \).

- Find by computing an appropriate limit, the complex derivative of \(f(z) \). What is the domain of \(f'(z) \)? Explain your answer.

- When \(z = x + iy \), with \(x \) and \(y \) real, write \(f = u + iv \), where \(u(x, y) \) and \(v(x, y) \) are real functions. Show that \(u \) and \(v \) are harmonic and that:

\[
f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}.
\]

We have, when \(z \neq 0 \):

\[
f'(z) = \lim_{w \to z} \left(\frac{f(w) - f(z)}{w - z} \right)
\]

\[
= \lim_{w \to z} \left(\frac{w^2 + 1 - \frac{z^2 + 1}{z}}{w - z} \right)
\]

\[
= \lim_{w \to z} \frac{z(w^2 + 1) - w(z^2 + 1)}{wz(w - z)}
\]

\[
= \frac{1}{z^2} \lim_{w \to z} \frac{zw^2 - wz^2 + z - w}{w - z}
\]

\[
= \frac{1}{z^2} \lim_{w \to z} \frac{zw(w - z) - 1(w - z)}{w - z}
\]

\[
= \frac{1}{z^2} \lim_{w \to z} (zw - 1)
\]

\[
= \frac{z^2 - 1}{z^2}.
\]

The domain of \(f' \) is the same as that of \(f \), namely all non-zero complex numbers.
Next we have:

$$f(z) = \frac{z^2 + 1}{z} = z + \frac{1}{z} = x + iy + \frac{x - iy}{x^2 + y^2} = u + iv,$$

$$u = x + \frac{x}{x^2 + y^2}, \quad v = y - \frac{y}{x^2 + y^2}.$$

Then we have:

$$u_x = 1 + \frac{1}{x^2 + y^2} - \frac{2x^2}{(x^2 + y^2)^2} = 1 + \frac{y^2 - x^2}{(x^2 + y^2)^2},$$

$$u_y = -\frac{2xy}{(x^2 + y^2)^2},$$

$$v_x = \frac{2xy}{(x^2 + y^2)^2},$$

$$v_y = 1 - \frac{1}{x^2 + y^2} + \frac{2y^2}{(x^2 + y^2)^2} = 1 + \frac{y^2 - x^2}{(x^2 + y^2)^2}.$$

Then $u_x = v_y$ and $u_y = -v_x$, so u and v are harmonic:

$$u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0,$$

$$v_{xx} + v_{yy} = -u_{yx} + u_{xy} = 0.$$

Finally we have, since $\overline{z^2} = x^2 + y^2$ and $\overline{(x - iy)^2} = (x^2 - y^2 - 2ixy)$:

$$u_x + iv_x = 1 + \frac{y^2 - x^2}{(x^2 + y^2)^2} + \frac{2ixy}{(x^2 + y^2)^2}$$

$$= 1 - \frac{x^2 - y^2 - 2ixy}{(z\overline{z})^2}$$

$$= 1 - \frac{x^2}{z^2\overline{z^2}}$$

$$= 1 - \frac{1}{z^2}$$

$$= \frac{z^2 - 1}{z^2} = f'(z).$$

So $f'(z) = u_x + iv_x$, as required.
Question 5

Consider the transformation \(T : z \to (2 - 2i)z - 12 - i \), defined for any \(z \in \mathbb{C} \).

- Describe the transformation geometrically.

This is an affine linear transformation of the complex plane to itself. We have \(2 - 2i = 2\sqrt{2}e^{-\frac{i\pi}{4}} \), so the transformation is a rotation through forty-five degrees, clockwise about the origin, followed by a dilation centered at the origin by a factor of \(2\sqrt{2} \), followed by a translation through the vector \([-12, -1]\), so twelve units to the left and one unit down.

- Find the fixed points of the transformation, if any.

We solve the equation:

\[
0 = T(z) - z = (2 - 2i)z - 12 - i - z = (1 - 2i)z - 12 - i,
\]

\[
(1 - 2i)z = 12 + i,
\]

\[
(1 + 2i)(1 - 2i)z = (1 + 2i)(12 + i),
\]

\[
5z = 10 + 25i,
\]

\[
z = 2 + 5i.
\]

Check:

\[
T(2 + 5i) = (2 - 2i)(2 + 5i) - 12 - i = 4 + 10 - 4i + 10i - 12 - i = 2 + 5i.
\]

So \(z = 2 + 5i \) is the unique fixed point of the transformation \(T \).

- Find a formula for the inverse transformation.

We solve the equation \(z = T(w) \), for \(w \) in terms of \(z \):

\[
z = (2 - 2i)w - 12 - i,
\]

\[
(2 - 2i)w = z + 12 + i,
\]

\[
(2 + 2i)(2 - 2i)w = (2 + 2i)(z + 12 + i),
\]

\[
8w = (2 + 2i)z + 22 + 26i,
\]

\[
w = \frac{1}{4}((1 + i)z + 11 + 13i).
\]
So the inverse transformation is defined for any complex z and is:

$$T^{-1}(z) = \frac{1}{4}((1 + i)z + 11 + 13i).$$

Check:

- First we have:

$$T(T^{-1}(z)) = (2 - 2i)T^{-1}(z) - 12 - i$$

$$= \frac{1}{4}(2 - 2i)((1 + i)z + 11 + 13i) - 12 - i$$

$$= \frac{1}{2}((1 - i)(1 + i)z + (1 - i)(11 + 13i)) - 12 - i$$

$$= \frac{1}{2}(2z + 24 + 2i) - 12 - i = z.$$

- Next we have:

$$T^{-1}(T(z)) = \frac{1}{4}((1 + i)T(z) + 11 + 13i)$$

$$= \frac{1}{4}((1 + i)((2 - 2i)z - 12 - i) + 11 + 13i)$$

$$= \frac{1}{4}(4z - 12 + 1 - i - 12i + 11 + 13i) = z.$$

Since, for any complex z, we have $T(T^{-1}(z)) = T^{-1}(T(z)) = z$, the map T is invertible, with inverse the map T^{-1}.

11
• Find the images under the transformation of the lines \mathcal{L} and \mathcal{M} with the following parametric equations, where s and t are real parameters:

$$\mathcal{L} : z = i + (1 + 2i)s \quad \text{and} \quad \mathcal{M} : z = (2 - i)t.$$

Also sketch the lines \mathcal{L} and \mathcal{M} and their images on the complex plane.

- The image of \mathcal{L} under T is the curve, for s real:

$$T(i + (1 + 2i)s) = (2 - 2i)(i + (1 + 2i)s) - 12 - i$$

$$= 2i + 2 + (2 + 4i - 2i + 4)s - 12 - i$$

$$= (6 + 2i)s + i - 10.$$

This is a straight-line through the point $(-10, 1)$ with the direction vector $(3, 1)$, so slope $\frac{1}{3}$.

It has the Cartesian equation:

$$0 = x - 3y + 13.$$

- The image of \mathcal{M} under T is the curve, for t real:

$$T((2 - i)t) = (2 - 2i)(2 - i)t - 12 - i$$

$$= (2 - 6i)t - 12 - i.$$

This is a straight-line through the point $(-12, -1)$ with the direction vector $(1, -3)$, so slope -3.

It has the Cartesian equation:

$$0 = 3x + y + 37.$$

Note that the lines \mathcal{L} and \mathcal{M} are perpendicular, since their slopes are 2 and $-\frac{1}{2}$, respectively, as are their images, with slopes $\frac{1}{3}$ and -3, respectively.
• Find the image under the transformation of the circle $|z - 2| = 5$ and sketch the circle and its image on the complex plane.

The given circle has parametric equation $z = 2 + 5e^{it}$, with t real. Its image under T is then the curve:

$T(2 + 5e^{it}) = (2 - 2i)(2 + 5e^{it}) - 12 - i$

$= 4 - 4i - 12 - i + 10(1 - i)e^{it}$

$= -8 - 5i + 10\sqrt{2}e^{i(t-\pi/4)}$

$= -8 - 5i + 10\sqrt{2}e^{is}, \quad s = t - \frac{\pi}{4}$.

As t ranges over the real line, so does s, so the image is the circle of radius $10\sqrt{2}$ centered at $-8 - 5i$.

So its equation is $|z + 8 + 5i| = 10\sqrt{2}$.

Its Cartesian equation is then:

$$(x + 8)^2 + (y + 5)^2 = 200,$$

$$x^2 + y^2 + 16x + 10y = 111.$$

Note that both circles go through the fixed point $2 + 5i$ of T, since $|2 + 5i - 2| = |5i| = 5$ and $|2 + 5i + 8 + 5i| = |10 + 10i| = 10\sqrt{2}.$
Question 6

Consider the function \(f(z) = (z - 1)^{\frac{1}{2}}(z + 1)^{\frac{1}{2}} \).

- If \(f(0) = i \) and the branch cuts for \(f \) are the intervals \([1, \infty)\) and \((-\infty, -1]\) along the real axis, determine the values of \(f \):
 - when \(z = 9 \) is approached from the upper half-plane.
 - when \(z = 9 \) is approached from the lower half-plane.

- If instead \(f(0) = i \) and the branch cuts for \(f \) are the vertical lines in the upper-half plane starting at the points \(z = \pm 1 \), explain why \(f(9) \) is unambiguous and determine its value.

Let \(z - 1 = pe^{is} \) and \(z + 1 = qe^{it} \), where \(p, q, s \) and \(t \) are real and \(p \) and \(q \) are positive (so we avoid the points \(z = \pm 1 \). Then we have:

\[
f(z) = (pq)^{\frac{1}{2}}e^{\frac{i}{2}(s+t)}.
\]

At the point \(z = 0 \), we have \(z - 1 = -1 \) and \(z + 1 = 1 \), so \(p = q = 1 \) and we may take: \(s = \pi \) and \(t = 0 \). This gives the required value:

\[
f(0) = ((1)(1))^{\frac{1}{2}}e^{\frac{i}{2}((\pi + 0))} = i.
\]

The freedom in choice of the pair \((s, t)\) is then:

\[
(s, t) = ((2k + 1)\pi, -2k\pi + 4m\pi).
\]

Here \(k \) and \(m \) are any integer.

First suppose that the cuts for \(f \) are the intervals \([1, \infty)\) and \((-\infty, -1]\) along the real axis.

At the point \(z = 9 \), we have \(z - 1 = 8 \) and \(z + 1 = 10 \), so \(p = 8 \) and \(q = 10 \). Also moving continuously from the origin to 9 in the upper half-plane, the angle \(s \) decreases to \(2k\pi \), whereas the angle \(t \) returns to its initial value. So we get in the limit:

\[
f(9) = ((8)(10))^{\frac{1}{2}}e^{\frac{i}{2}(2k\pi - 2k\pi + 4m\pi)} = 4\sqrt{5}.
\]

14
If instead, we move continuously from the origin to 9 in the lower half-plane, the angle s increases to $(2k + 2)\pi$, whereas the angle t again returns to its initial value. So we get in the limit:

$$f(9) = ((8)(10))^{\frac{1}{2}}e^{\frac{i}{2}(2k+2)\pi-2k\pi+4m\pi} = -4\sqrt{5}.$$

Next suppose that the cuts for f are the vertical lines in the upper-half plane starting at the points $z = \pm 1$.

At the point $z = 9$, we have $z - 1 = 8$ and $z + 1 = 10$, so $p = 8$ and $q = 10$. Also moving continuously from the origin to 9 avoiding the cuts, so going under the cut at $z = 1$, the angle s increases to $(2k + 2)\pi$, whereas the angle t returns to its initial value. So we get the unambiguous value for $f(9)$.

$$f(9) = ((8)(10))^{\frac{1}{2}}e^{\frac{i}{2}(2k+2)\pi-2k\pi+4m\pi} = -4\sqrt{5}.$$

In general, the cuts entail that the angles s and t are unambiguous, anywhere except on the cuts, given their initial values at some point off the cut. Then the function is itself unambiguous, since at the initial point (s, t) are given up to $(s + 2k\pi, t - 2k\pi + 4m\pi)$, where k and m are integers. Then, by continuity, there is the same ambiguity in the angles at every point and this ambiguity does not affect the value of $f(z)$, since the angle $\frac{1}{2}(s + t)$ changes by an integer multiple of 2π.

15
Question 7

Consider the function \(f(z) = \ln(z - i) - \ln(z + i) \), where the branch cut goes from \(z = i \) to \(z = -i \) along the semi-circle \(|z| = 1 \), with \(\Re(z) \leq 0 \).

- If \(f(0) = -\pi i \), determine the possible values of \(f(3) \) and \(f(-3) \).

Let \(z - i = pe^{is} \) and \(z + i = qe^{it} \), where \(p, q, s \) and \(t \) are real and \(p \) and \(q \) are positive (so we avoid the points \(z = \pm i \)).

Then \(f(z) = \ln(p) - \ln(q) + i(s - t) \).

At \(z = 0 \), we may take \(z - i = -i = e^{-i\pi} \) and \(z + i = i = e^{i\pi} \).

This gives \(p = q = 1 \) and allows us to take \(s = -\frac{\pi}{2} \) and \(t = \frac{\pi}{2} \), giving:

\[
f(0) = \ln(1) - \ln(1) + i \left(-\frac{\pi}{2} - \frac{\pi}{2} \right) = -i\pi.
\]

This gives us the required value for \(f(0) \).

The remaining freedom in the choice of the angles \(s \) and \(t \), keeping the correct value of \(f(0) \) is \((s, t) = \left(-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right) \), where \(k \) is any integer.

Now moving to the point \(z = 3 \), the vector \(z - i \) is the vector \([3, -1] \), whereas the vector \(z + i \) is the vector \([3, 1] \), so we get \(p = q = \sqrt{10} \) and \(s \) increases to \(-\arctan \left(\frac{1}{3} \right) + 2k\pi \), whereas \(t \) decreases to \(\arctan \left(\frac{1}{3} \right) + 2k\pi \).

So we get a unique value for \(f(3) \):

\[
f(3) = \ln \left(\sqrt{10} \right) - \ln \left(\sqrt{10} \right) + i \left(- \arctan \left(\frac{1}{3} \right) + 2k\pi - \arctan \left(\frac{1}{3} \right) - 2k\pi \right)
\]

\[
= -2i \arctan \left(\frac{1}{3} \right).
\]
Moving continuously to the point \(z = -3 \), the vector \(z - i \) is the vector \([-3, -1]\), whereas the vector \(z + i \) is the vector \([-3, 1]\), so, if we go around over the top of the cut, we get \(p = q = \sqrt{10} \) and \(s \) increases to \(\arctan \left(\frac{1}{3} \right) + 2k\pi \), whereas \(t \) decreases to \(- \arctan \left(\frac{1}{3} \right) + 2k\pi \).

Alternatively, if we go around the bottom of the cut, \(s \) decreases to \(\arctan \left(\frac{1}{3} \right) + (2k - 2)\pi \) and \(t \) decreases to \(\arctan \left(\frac{1}{3} \right) + (2k - 2)\pi \). In either case, we get the same value for \(f(-3) \):

\[
f(-3) = \ln \left(\sqrt{10} \right) - \ln \left(\sqrt{10} \right) + i \left(\arctan \left(\frac{1}{3} \right) + 2k\pi + \arctan \left(\frac{1}{3} \right) - 2k\pi \right)
\]

\[
= \ln \left(\sqrt{10} \right) - \ln \left(\sqrt{10} \right) + i \left(\arctan \left(\frac{1}{3} \right) + (2k - 2)\pi + \arctan \left(\frac{1}{3} \right) - (2k - 2)\pi \right)
\]

\[
= 2i \arctan \left(\frac{1}{3} \right).
\]

Indeed, away from the cut, the function \(f(z) \) is everywhere well-defined and analytic.

- Determine the complex derivative of \(f \) (you may assume that this derivative exists).

The derivative of \(f(z) \) is just given by the standard rules of calculus:

\[
f'(z) = \frac{1}{z - i} \cdot 1 - \frac{1}{z + i} \cdot 1 = \frac{z + i - (z - i)}{(z - i)(z + i)} = \frac{2i}{z^2 + 1}.
\]

Note that the function \(\arctan(z) \) has derivative \(\frac{1}{z^2 + 1} \), so the functions \(\frac{f(z)}{2i} \) and \(\arctan(z) \) differ at most by a constant.