Theoretical Mathematics II, Exam 2 Solutions, 11/24/9

Question 1

Let $f : [0, 1] \to [0, 1]$ be continuous.

- Prove that f is injective if and only if f is strictly monotonic.

First suppose that f is strictly monotonic.
Let s and t be reals with $0 \leq s \leq 1$ and $0 \leq t \leq 1$ and $f(s) = f(t)$.

- If f is strictly increasing, and $s < t$, then $f(s) < f(t)$, false; so $s \geq t$; if $s > t$, then $f(s) > f(t)$, false. So $s = t$.

- If f is strictly decreasing, and $s < t$, then $f(s) > f(t)$, false; so $s \geq t$; if $s > t$, then $f(s) < f(t)$, false. So $s = t$.

In either case $f(s) = f(t)$ implies that $s = t$, so f is injective.

Now suppose that f is injective.
We want to show that f is strictly monotonic.
Note that the function g, given by the formula $g(x) = 1 - f(x)$, for any $x \in [0,1]$, is also continuous and injective and $g : [0, 1] \to [0, 1]$, and f is strictly monotonic if and only if g is (where f is strictly increasing if and only if g is strictly decreasing, whereas f is strictly decreasing if and only if g is strictly increasing).
Also $g(0) = f(1)$ and $g(1) = f(0)$.
Since f is injective, either $f(0) < f(1)$, or $f(0) > f(1)$.
If $f(1) > f(0)$, then $g(0) < g(1)$.
So at worst by replacing f by g, we map assume, henceforth, without loss of generality that $f(0) < f(1)$.
We will show that f is necessarily strictly increasing.
Let $0 < x < 1$.

- First we have: $f(x) \neq f(0)$ and $f(x) \neq f(1)$, by injectivity of f.
- Next if $f(x) < f(0)$, by the intermediate value theorem, applied to the interval $[x, 1]$, there is a point y in the interval $(x, 1)$ with $f(y) = f(0)$, contrary to injectivity of f.
- Next if $f(x) > f(1)$, by the intermediate value theorem, applied to the interval $[0, x]$, there is a point z in the interval $(0, x)$ with $f(z) = f(1)$, contrary to injectivity of f.

So $0 < x < 1$ implies that $f(0) < f(x) < f(1)$.

Now suppose that $0 < x < y < 1$.

Then we have $f(0) < f(x) < f(1)$ and $f(0) < f(y) < f(1)$ and $f(x) \neq f(y)$ (by injectivity of f).

If it were always the case that $f(x) < f(y)$, then f would be strictly increasing on $[0, 1]$.

So if f is not strictly increasing, real numbers p and q must exist with $0 < p < q < 1$ and $f(0) < f(q) < f(p) < f(1)$.

Then by the intermediate value theorem, applied to the interval $[0, p)$, some point r exists with $0 < r < p$ and $f(r) = f(q)$, but $r < p < q$, so $r < q$, contrary to injectivity of f.

So f is strictly increasing, so, a fortiori, strictly monotonic and we are done.
Question 2

Let \(f(x) = 2x^3 \) if \(x \) is rational, whereas \(f(x) = x^4 + x^2 \) if \(x \) is irrational.

- Determine, with proof, all points at which \(f \) is differentiable.

If \(x = c \) gives a point of differentiability, the function \(f(x) \) must be continuous at \(c \).

Let \(x_n \) be a sequence of rationals with \(x_n \to c \).
Then we need \(f(x_n) \to f(c) \), so \(2x_n^3 \to f(c) \).
But \(2x_n^3 \to 2c^3 \), so \(f(c) = 2c^3 \).

Let \(y_n \) be a sequence of irrationals with \(y_n \to c \).
Then we need \(f(y_n) \to f(c) \), so \(x_n^4 + x_n^2 \to f(c) \).
But \(x_n^4 + x_n^2 \to c^4 + c^2 \), so \(f(c) = c^4 + c^2 \).

So if \(c \) is a point of continuity of \(f \), we need \(2c^3 = c^4 + c^2 \), which gives:
\[
0 = c^4 - 2c^3 + c^2 = c^2(c^2 - 2c + 1) = c^2(c - 1)^2, \quad \text{so} \quad c = 0, \quad \text{or} \quad c = 1.
\]

- When \(x = 1 \), we have \(f(1) = 2 \) and then we get:

\[
f(1) = \lim_{x \to 1} g(x),
\]

\[
g(x) = \frac{f(x) - f(1)}{x - 1} = \frac{f(x) - 2}{x - 1}, \quad x \neq 1.
\]

Put \(g_1(x) = 2(x^2 + x + 1) \) and \(g_2(x) = x^3 + x^2 + 2x + 2 \), for any real \(x \).

When \(1 \neq x \) is rational, we have:

\[
g(x) = 2 \left(\frac{x^3 - 1}{x - 1} \right) = 2 \left(\frac{x^3 - x^2 + x^2 - x + x - 1}{x - 1} \right) = 2(x^2 + x + 1) = g_1(x).
\]

When \(x \) is irrational, we have:

\[
g(x) = \frac{x^4 + x^2 - 2}{x - 1} = \frac{x^4 - x^3 + x^3 - x^2 + 2x^2 - 2x + 2x - 2}{x - 1} = x^3 + x^2 + 2x + 2 = g_2(x).
\]

Now we have \(\lim_{x \to 1} g_1(x) = g_1(1) = 6 = g_2(1) = \lim_{x \to 1} g_2(x) \).

So for given \(\epsilon > 0 \), we can choose \(\delta(\epsilon) > 0 \), so that if \(|x - 1| < \delta(\epsilon) \),
then we have both \(|g_1(x) - 6| < \epsilon \) and \(|g_2(x) - 6| < \epsilon \).

Then we have also, if \(|x - 1| < \delta(\epsilon) \), \(|g(x) - 6| < \epsilon \).

So \(\lim_{x \to 1} g(x) = 6 \) and \(f'(1) = 6 \).
• When \(x = 0 \), we have \(f(0) = 0 \) and then we get:

\[
f'(0) = \lim_{x \to 0} h(x),
\]

\[
h(x) = \frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x}, \quad x \neq 0.
\]

Put \(h_1(x) = 2x^2 \) and \(h_2(x) = x^3 + x \), for any real \(x \).
When \(0 \neq x \) is rational, we have:

\[
h(x) = \frac{2x^3}{x} = 2x^2 = h_1(x).
\]

When \(x \) is irrational, we have:

\[
h(x) = \frac{x^4 + x^2}{x} = x^3 + x = h_2(x).
\]

Now we have \(\lim_{x \to 0} h_1(x) = h_1(0) = 0 = h_2(0) = \lim_{x \to 0} h_2(x) \).
So for given \(\epsilon > 0 \), we can choose \(\delta(\epsilon) > 0 \), so that if \(|x| < \delta(\epsilon) \), then we have both \(|h_1(x)| < \epsilon \) and \(|h_2(x)| < \epsilon \).
Then we have also, if \(|x| < \delta(\epsilon) \), \(|h(x)| < \epsilon \).
So \(\lim_{x \to 0} h(x) = 0 \) and \(f'(0) = 0 \).

So the given function is differentiable only at the points \(x = 0 \) and \(x = 1 \), with derivatives \(f'(0) = 0 \) and \(f'(1) = 6 \).
Question 3

Determine from first principles (by computing an appropriate limit), the following derivatives, or prove that the derivative in question does not exist:

- $f(x) = \frac{1}{\sqrt{x}}$.

 Find $f'(9)$.

 We have $f(9) = \frac{1}{\sqrt{9}} = \frac{1}{3}$ and $x - 9 = (\sqrt{x} - 3)(\sqrt{x} + 3)$, for any $x > 0$, so we get:

 $$f'(9) = \lim_{x \to 9} \left(\frac{f(x) - f(9)}{x - 9} \right)$$

 $$= \lim_{x \to 9} \left(\frac{\frac{1}{\sqrt{x}} - \frac{1}{3}}{x - 9} \right) = \lim_{x \to 9} \frac{3 - \sqrt{x}}{(\sqrt{x} - 3)(\sqrt{x} + 3)3\sqrt{x}}$$

 $$= -\lim_{x \to 9} \frac{1}{(\sqrt{x} + 3)3\sqrt{x}} = -\frac{1}{(\sqrt{9} + 3)3\sqrt{9}} = -\frac{1}{54}.$$

- $g(x) = \left(x - \frac{2}{x} \right)^2$.

 Find $g'(1)$.

 We have $g(1) = (-1)^2 = 1$, so we get:

 $$g'(1) = \lim_{x \to 1} \left(\frac{g(x) - 1}{x - 1} \right) = \lim_{x \to 1} \frac{\left(x - \frac{2}{x} \right)^2 - 1}{x - 1}$$

 $$= \lim_{x \to 1} \frac{(x - 2) (x - 1)}{x - 1}$$

 $$= \lim_{x \to 1} \frac{(x^2 - x - 2) (x + 2)}{x^2(x - 1)} = \lim_{x \to 1} \frac{1}{x^2} \frac{(x^2 - x - 2) (x + 2)}{(x - 1)(x + 2)}$$

 $$= \lim_{x \to 1} \frac{(x^2 - x - 2) (x + 2)}{x^2} = \lim_{x \to 1} \frac{1 - 2}{1^2} = -6.$$
• \(h(x) = |x|^{\frac{2}{3}}. \)

Find \(h'(0) \).

We have \(h(0) = 0 \), so we get:

\[
h'(0) = \lim_{{x \to 0}} j(x),
\]

\[
j(x) = \frac{h(x) - h(0)}{x - 0} = \frac{|x|^{\frac{2}{3}}}{x}, \quad 0 \neq x.
\]

Put \(x_n = n^{-3} > 0 \), for any \(n \in \mathbb{N} \).
Then \(x_n \to 0 \), as \(n \to \infty \).
But we have:

\[
j(x_n) = \frac{|x_n|^{\frac{2}{3}}}{x_n} = x_n^{-\frac{1}{3}} = n.
\]

So \(j(x_n) \to \infty \) as \(n \to \infty \).
So \(\lim_{{x \to 0}} j(x) \) does not exist.
So the function \(h(x) \) is not differentiable at \(x = 0 \).
Question 4

Let \(f(x) = \frac{1}{3 - x^2} \) and \(g(x) = \tan \left(\frac{\pi x}{4} \right) \).

Determine, with proof, the following derivatives:

- \((f \circ f)'(2)\).
- \((g \circ f)'(2)\).
- \((f \circ g)'(1)\).

We have \(f(2) = -1 \) and \(g(1) = \tan \left(\frac{\pi}{4} \right) = 1 \).

Also we have, by the chain rule:

\[
\begin{align*}
f'(x) &= 2x(3 - x^2)^{-2}, \\
f'(-1) &= -2(2^{-2}) = -\frac{1}{2}, \\
f'(1) &= 2(2^{-2}) = \frac{1}{2}, \\
f'(2) &= 4, \\
g'(x) &= \frac{\pi}{4} \sec^2 \left(\frac{\pi x}{4} \right), \\
g'(1) &= g'(-1) = \frac{\pi}{4 \cos^2 \left(\frac{\pi}{4} \right)} = \frac{\pi}{2}.
\end{align*}
\]

Then by the chain rule, we have:

- \((f \circ f)'(2) = f'(f(2))f'(2) = f'(-1)f'(2) = -2,\)
- \((g \circ f)'(2) = g'(f(2))f'(2) = g'(-1)f'(2) = 2\pi,\)
- \((f \circ g)'(1) = f'(g(1))g'(1) = f'(1)g'(1) = \frac{\pi}{4}.\)
Question 5

Let \(f(x) \) and \(g(x) \) be differentiable functions, such that:
\(f(4) = 5, \ g(5) = 4, \ f'(4) = 2 \) and \(g'(5) = -2 \).
Determine, with proof the following derivatives:

- \(h(x) = f(x^2 - 5); \) find \(h'(3) \).

By the chain rule, we have:
\[
h'(x) = 2xf'(x^2 - 5),
\]
\[
h'(3) = 2(3)f'(3^2 - 5) = 6f'(4) = 12.
\]

- \(j(x) = f^{-2}(x) + g^2(x^2 - 11); \) find \(j'(4) \).

By the chain rule, we have:
\[
j'(x) = -2f^{-3}(x)f'(x) + 2(2x)g(x^2 - 11)g'(x^2 - 11),
\]
\[
j'(4) = -2(5^{-3})(2) + 2(8)g(5)g'(5) = -\frac{4}{125} + 16(4)(-2) = -128 - \frac{32}{1000} = -128.032.
\]

- \(k(x) = (g \circ f)(x^2); \) find \(k'(2) \).

By the chain rule, we have:
\[
k'(x) = g'(f(x^2))f'(x^2)(2x),
\]
\[
k'(2) = g'(f(4))f'(4)(4) = 4g'(5)(2) = 4(-2)(2) = -16.
\]
Question 6

Let $f(x) = x^3 - 3x + 2$.
Find, with proof, the range of f on the interval $[-3, 2]$.
Also determine, with proof, all real open intervals, on which f is invertible.

We first note that f is everywhere continuous and everywhere differentiable.

Next we have:

$$f(-3) = -27 + 9 + 2 = -16,$$
$$f(-1) = -1 + 3 + 2 = 4,$$
$$f(1) = 1 - 3 + 2 = 0,$$
$$f(2) = 8 - 6 + 2 = 4.$$

Next, we have:

$$f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x - 1)(x + 1).$$

- When $x \geq 1$, $f'(x) \geq 0$, so $f'(x) \geq 0$ on the interval $[1, 2]$, so f is increasing on that interval so, by the intermediate value theorem, f has range $[f(1), f(2)] = [0, 4]$.

- When $x \leq -1$, $f'(x) \geq 0$, so $f'(x) \geq 0$ on the interval $[-3, -1]$, so f is increasing on that interval so, by the intermediate value theorem, f has range $[f(-3), f(-1)] = [-16, 4]$.

- When $-1 \leq x \leq 1$, $f'(x) \leq 0$, so f is decreasing on the interval $[-1, 1]$, so, by the intermediate value theorem, has range $[f(1), f(-1)] = [0, 4]$.

So the range of f on the interval $[-3, 2]$ is the union of the intervals $[0, 4]$, $[0, 4]$ and $[-16, 4]$, so is the closed interval $[-16, 4]$.

For the last part:

- \(f \) is not invertible on any open interval containing the point \(x = -1 \), since on any interval of the form \((a, b)\) with \(a < -1 < b \), we have \(f \) increasing on the interval \((a, -1]\), so it has range \((f(a), 4]\) on that interval, where \(f(a) < 4 \) and we have \(f \) decreasing on the interval \([4, c)\), where \(c = \min(b, 1) \), so it has range \((f(c), 4]\) on that interval, where \(f(c) < 4 \).

Since \((f(a), 4]\) \(\cap\) \((f(c), 4]\) = \((m, 4]\), where \(m = \max(f(a), f(c)) \) < 4, we see that the number \(\frac{m + 4}{2} < 4 \) and lies in the range of \(f \) on the interval \((a, -1]\) and on the interval \((-1, c) \subset (-1, b)\), so the horizontal line rule is not obeyed by \(f \) on the interval \((a, b)\) and \(f \) is not invertible on that interval.

- \(f \) is not invertible on any open interval containing the point \(x = 1 \), since on any interval of the form \((p, q)\) with \(p < 1 < q \), we have \(f \) increasing on the interval \([1, q]\), so it has range \([0, f(q)]\) on that interval, where \(f(q) > 0 \) and we have \(f \) decreasing on the interval \([r, 1]\), where \(r = \max(p, -1)\), so it has range \([0, f(r)]\) on that interval, where \(f(r) > 0 \).

Since \([0, f(q)] \cap [0, f(r)] = [0, s]\), where \(s = \min(f(q), f(r)) > 0 \), we see that the number \(\frac{s}{2} > 0 \) and lies in the range of \(f \) on the interval \((1, q)\) and on the interval \((r, 1) \subset (p, 1)\), so the horizontal line rule is not obeyed by \(f \) on the interval \((p, q)\) and \(f \) is not invertible on that interval.

- If \(U \) is any open interval, containing neither the point \(-1\), nor the point \(1 \), then \(U \) is an open subset of one of the intervals \(A = (-\infty, -1) \), \(B = (-1, 1) \), or \(C = (1, \infty) \).

On each of these intervals \(f' \) is never zero and has a fixed sign (positive on \(A \) and on \(C \), negative on \(B \)), so on each of these intervals \(f \) is strictly monotonic, so has an inverse.

So \(f \) is invertible on an open interval \(U \) if and only if \(U \) contains neither the real \(-1\), nor the real \(1 \) as an element.
Question 7

Let a function $f(x)$ be given by the formulas:

$$f(x) = x^2 + x^3 \cos \left(\frac{1}{x} \right), \text{ for any real } x \neq 0 \text{ and } f(0) = 0.$$

Find all points where f is differentiable and all points where the derivative of f is continuous, with proof.

When $x \neq 0$, the function f is clearly differentiable with continuous derivative, using the various derivative formulas:

$$f'(x) = 2x + 3x^2 \cos(x^{-1}) - x^3 \sin(x^{-1})(-x^{-2}) = 2x + 3x^2 \cos(x^{-1}) + x \sin(x^{-1}).$$

We note that $\lim_{x \to 0} f'(x) = 0$, since the terms $2x$, $3x^2$ and x all go to zero as x goes to zero, whereas the trigonometric terms are bounded.

Lastly, we compute the derivative of f at the origin:

$$f'(0) = \lim_{x \to 0} \left(\frac{f(x) - f(0)}{x - 0} \right)$$

$$= \lim_{x \to 0} \left(\frac{f(x) - 0}{x} \right)$$

$$= \lim_{x \to 0} \left(\frac{f(x)}{x} \right)$$

$$= \lim_{x \to 0} \left(\frac{x^2 + x^3 \cos \left(\frac{1}{x} \right)}{x} \right)$$

$$= \lim_{x \to 0} \left(x + x^2 \cos \left(\frac{1}{x} \right) \right) = 0.$$

Here we used that the terms x and x^2 both go to zero, whereas the trigonometric term is bounded, as $x \to 0$.

Since we also have $\lim_{x \to 0} f'(x) = 0 = f'(0)$, we see that f' is continuous at the origin, so f is everywhere continuously differentiable and we are done.
Question 8

Suppose that f is twice continuously differentiable and on the interval $[0, 2]$ we have $0 \leq f''(x) \leq 2$ and on the interval $[2, 4]$, we have $2 \leq f'(x) \leq 4$.
Given that $f(0) = 0$ and $f'(0) = -2$, what can we say about the possible values of $f(4)$? Explain your answer.

Apply the mean-value theorem to the interval $[0, x]$, where $x \leq 2$, for the function $f'(x)$, giving the formula:

$$f'(x) - f'(0) = (x - 0)f''(c), \quad c \in (0, x).$$

Since $0 \leq f''(c) \leq 2$, we get:

$$0 \leq f'(x) + 2 \leq 2x,$$
$$-2 \leq f'(x) \leq 2x - 2, \quad 0 \leq x \leq 2.$$

Putting $x = 2$, we get $-2 \leq f'(2) \leq 2$.
But we are given that $2 \leq f'(2) \leq 4$, so we conclude that $f'(2) = 2$.

Now apply the mean value theorem to the function $h(x) = f'(x) - 2x + 2$ on the interval $[0, x], x \leq 2$.
We have $h(0) = f'(0) + 2 = 0$ and $h'(x) = f''(x) - 2 \leq 0$.

$$h(x) - h(0) = x(f''(c) - 2), \quad c \in (0, x).$$

This gives $h(x) \leq 0$ for $x \in [0, 2]$.
But $h(0) = 0$ and $h(2) = f'(2) - 4 + 2 = 0$, so $h(0) = h(2) = 0$.
Also $h(x)$ is monotonic decreasing, since $h'(x) \leq 0$.

So $h(x)$ must be constant and identically zero.
So on the interval $[0, 2]$ we have $f'(x) = 2x - 2$.
Put $g(x) = f(x) - x^2 + 2x$.
Then $g(0) = f(0) = 0$ and $g'(x) = f'(x) - 2x + 2 = 0$, so $g(x)$ is constant, so is identically zero and we have on the interval $[0, 2], f(x) = x^2 - 2x$.
This gives $f(2) = 0$.
Also we have $f'(2) = 2$ and $f''(2) = 2$.
We now consider \(f \) on the interval \([2, 4]\). We have \(f(2) = 0, f'(2) = 2, f''(2) = 2 \) and \(f \) is twice continuously differentiable.

We apply the mean value theorem to the interval \([2, 4]\), giving the relation:

\[
f(4) - f(2) = (4 - 2)f'(c), \quad c \in (2, 4),
\]

\[
f(4) = 2f'(c), \quad c \in (2, 4).
\]

Since we know that \(2 \leq f'(c) \leq 4 \) we conclude that: \(4 \leq f(4) \leq 8 \).

Next consider the function, with domain \([2, 4]\):

\[
p(x) = f(x) - 4x + 8, \quad x \in [2, 4].
\]

We have \(p(2) = f(2) - 8 + 8 = 0 \) and \(p'(2) = f'(2) - 4 = 2 - 4 = -2 \).

Also on the interval \([2, 4]\), we have \(p'(x) = f'(x) - 4 \), so, since \(2 \leq f'(x) \leq 4 \), we have \(-2 \leq p'(x) \leq 0\).

In particular \(p \) is monotonic decreasing on \([2, 4]\).

Since \(p(2) = 0 \) and \(p'(2) < 0 \), we have \(p(x) < 0 \) on some interval \([2, c]\), for some real \(c \) with \(2 < c \leq 4 \).

In particular \(p(c) < 0 \) and then, since \(p \) is monotonic decreasing on \([c, 4]\), we have \(p(4) \leq p(c) < 0 \).

But \(p(4) = f(4) - 16 + 8 = f(4) - 8 \).

So \(f(4) - 8 < 0 \). So \(f(4) < 8 \).

So we have proved that \(f(4) \) must lie in the range: \(4 \leq f(4) < 8 \).

Next consider the function \(q(x) = f(x) - 2x + 4 \), defined for \(2 \leq x \leq 4 \).

We have \(q(2) = f(2) - 4 + 4 = 0, q'(2) = f'(2) - 2 = 0 \) and \(q''(2) = f''(2) = 2 \).

Also we have \(q'(x) = f'(x) - 2 \geq 0 \).

So \(q \) is monotonic increasing.

Since \(q'(2) = 0 \) and \(q''(2) > 0 \), we see that on some interval \([2, d]\), with \(2 < d \leq 4 \), we have \(q'(x) > 0 \).

It follows that \(q \) is strictly increasing on the interval \([2, d]\).

Since \(q(2) = 0 \), we have \(q(d) > q(2) \), so \(q(d) > 0 \).

Since \(q \) is monotonic increasing, we have \(q(4) \geq q(d) > 0 \), so \(q(4) > 0 \).

But \(q(4) = f(4) - 8 + 4 = f(4) - 4 \).

So \(f(4) - 4 > 0 \), so \(f(4) > 4 \).

So we have proved that \(f(4) \) must lie in the range: \(4 < f(4) < 8 \).

It is fairly easy to convince oneself that all values of \(f(4) \) in the interval \((4, 8)\) are attainable by suitable functions \(f \).