Calculus I, Quiz 3, 2/9/7

Name:

Question 1

Using the various derivative rules, compute the derivatives of the following functions:

- \(a(x) = 4x^3 - 6x^5 + 4x^{-4} - x^{1/2} \)
- \(b(x) = \frac{x^2 - 1}{x^3 + 1} \)
- \(c(x) = (1 + x + x^2)^{100} \)

Question 2

Let functions \(f(x) \) and \(g(x) \) obey the following properties:

\[f(3) = 4, \quad f'(3) = -2, \quad g(3) = -5, \quad g'(3) = -1. \]

- Find the equation of the tangent line to the curve \(y = f(x)g(x) \) at \(x = 3 \).
- Let \(p(x) = f^3(x) + g^3(x) \).
 - Find \(p'(3) \).
- Let \(q(x) = \frac{f(x)}{g(x)} \).
 - Find \(q'(3) \).

Question 3

The function \(m(x) \) is defined by the following formulas:

- If \(x < 1 \), then \(m(x) = (x - 1)^2 \)
- If \(x \geq 1 \), \(m(x) = x^2 + 2x - 3 \)

Sketch the graph of the function \(m \) and its derivative on one graph. Also determine the domains and ranges of the functions \(m \) and \(m' \). Show that \(m \) is everywhere continuous. Also explain why \(m \) is not everywhere differentiable.