Honors Calculus Quiz 9 Solutions 12/2/5

Question 1
Find the centroid of the region \mathcal{R} bounded by the curves $10y - y^2 + 2 = x$ and $2y^2 - 20y + 50 = x$.
Also determine the volumes of revolution of the region \mathcal{R} about the coordinate axes.

We first find where the two parabolas meet:

\begin{align*}
10y - y^2 + 2 &= 2y^2 - 20y + 50, \\
0 &= 3y^2 - 30y + 48, \\
0 &= y^2 - 10y + 16, \\
0 &= (y - 2)(y - 8).
\end{align*}

So $y = 2, x = 18$ or $y = 8, x = 18$.

Plotting we see the region \mathcal{R} lies between the two parabolas with the curve $x_- = 2y^2 - 20y + 50$ on the left and $x_+ = 10y - y^2 + 2$ on the right.
Also we see that the region is symmetrical about the line $y = 5$, so the centroid C of \mathcal{R} lies on that line, so $C = [X, 5]$ for some X.
To verify the symmetry we put $y = t + 5$, then we have:

\begin{align*}
x_+ &= 10y - y^2 + 2 = 10(t + 5) - (t + 5)^2 + 2 \\
&= 10t + 50 - (t^2 + 10t + 25) + 2 = 27 - t^2, \\
x_- &= 2y^2 - 20y + 50 = 2(t + 5)^2 - 20(t + 5) + 50 \\
&= 2(t^2 + 10t + 25) - 20t - 100 + 50 \\
&= 2t^2.
\end{align*}

Since clearly both of these parabolas are symmetrical under $t \to -t$, the original graphs are symmetrical about the line $y = 5$, as required.
The area A of R is, using horizontal strips:

$$A = \int_2^8 (x_+ - x_-)dy$$

$$= \int_2^8 ((10y - y^2 + 2) - (2y^2 - 20y + 50))dy$$

$$= \int_2^8 (30y - 3y^2 - 48)dy$$

$$= [15y^2 - y^3 - 48y]_2^8 = 15(8^2) - 8^3 - 48(8) - (15(2^2) - 2^3 - 48(2))$$

$$= 8^2(15 - 8 - 6) - (60 - 8 - 96)$$

$$= 64 + 44 = 108.$$

If V_x is the volume obtained by rotating about the x-axis and V_y is the volume obtained by rotating around the y-axis, then we have by Pappus’ Theorem:

$$[V_y, V_x] = 2\pi AC = 216\pi [X, 5],$$

$$V_y = 216\pi X,$$

$$V_x = 1080\pi = 3392.92.$$

Finally, using horizontal washers, we get for V_y:

$$V_y = \pi \int_2^8 (x_+^2 - x_-^2)dy = \pi \int_{-3}^3 ((27 - t^3) - (2t^2)^2)dt$$

$$= \pi \int_{-3}^3 (729 - 54t^2 - 3t^4)dt = 6\pi \int_{0}^3 (243 - 18t^2 - t^4)dt$$

$$= 6\pi \left[243t - 6t^3 - \frac{t^5}{5} \right]_0^3 = 6\pi(3) \left(243 - 6(9) - \frac{3^4}{5} \right)$$

$$= 6\pi(27) \left(27 - 6 - \frac{9}{5} \right) = \frac{1}{5} 6\pi(27)(105 - 9) = \frac{\pi}{5}(15552) = 9771.61$$

Then we have:

$$X = \frac{V_y}{216\pi} = \frac{15552\pi}{5(216\pi)} = \frac{2592}{5(36)} = \frac{432}{5(6)} = \frac{72}{5} = 14.4.$$

So the centroid of the region R is at $C = \frac{1}{5}[72, 25] = [14.4, 5]$.

2
Question 2

Discuss the convergence of the following series and see if you can find a formula for the sum explicitly when the series converges.

- \[\sum_{n=1}^{\infty} \frac{1}{n(n+2)} \]

We use partial fractions:

\[\frac{1}{n(n+2)} = \frac{A}{n} + \frac{B}{n+2}, \]

\[1 = A(n + 2) + B(n), \]

\[1 = -2B, \]

\[1 = 2A, \]

\[\frac{1}{n(n+2)} = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right). \]

Writing out the series we get for the first \(n \) terms:

\[\frac{1}{2} \left(\left(1 - \frac{1}{3} \right) + \left(\frac{1}{2} - \frac{1}{4} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \left(\frac{1}{4} - \frac{1}{6} \right) + \cdots + \left(\frac{1}{n} - \frac{1}{n+2} \right) \right). \]

This telescopes, with each negative term cancelling with the next but one positive term, so the \(n \)-partial sum, \(s_n \) is:

\[s_n = \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) \]

\[= \frac{1}{4(n+1)(n+2)}(3(n+1)(n+2) - 2(n+2) - 2(n+1)) \]

\[= \frac{1}{4(n+1)(n+2)}(3n^2 + 9n + 6 - 2n - 4 - 2n - 2) \]

\[= \frac{n(3n+5)}{4(n+1)(n+2)}. \]

Then the series sum \(s \) is the limit of \(s_n \) as \(n \to \infty \) so is \(s = \frac{3}{4} \).
\[
\sum_{n=1}^{\infty} \frac{n4^n}{3^{2n}}
\]

The ratio test gives:
\[
a_n = \frac{n4^n}{3^{2n}}, \quad a_{n+1} = \frac{(n+1)4^{n+1}}{3^{2(n+1)}}
\]
\[
r_n = \frac{a_{n+1}}{a_n} = \frac{(n+1)4^{n+1}}{3^{2(n+1)}} \cdot \frac{3^{2n}}{n4^n} = \frac{4(n+1)}{9n}.
\]

As \(n \to \infty\), we get the limiting ratio \(|r_n| \to r = \frac{4}{9}\), which is less than 1, so the series converges by the ratio test.

For the sum, see below.

\[
\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{4^n(2n + 1)!}
\]

The standard series of \(\sin(y)\) is, valid for any \(y\) (real or complex, in fact):
\[
\sin(y) = \sum_{n=0}^{\infty} \frac{(-1)^n y^{2n+1}}{(2n + 1)!}.
\]

Substitute \(y = \frac{x}{2}\) and we get:
\[
\sin \left(\frac{x}{2}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2^{2n+1}(2n + 1)!}.
\]

Since \(2^{2n+1} = 2(4^n)\), this is one-half of the given sum, so the given sum is \(2 \sin \left(\frac{x}{2}\right)\), for any \(x\).
\begin{itemize}
 \item \(f(x) = \sum_{n=0}^{\infty} \frac{(n+1)x^n}{2^n} \).
\end{itemize}

Define \(G(y) \) by the formula:
\[
G(y) = \sum_{n=0}^{\infty} (n+1)y^n = 1 + 2y + 3y^2 + 4y^3 + \ldots.
\]

Then the given series is \(f(x) = G \left(\frac{x}{2} \right) \).

Note that if \(|y| \geq 1 \), the individual terms in the series \(G(y) \) have sizes larger than \(n \), which goes to infinity as \(n \) goes to infinity, so the series diverges.

So we may assume that \(|y| < 1 \).

We see that for \(y \neq 1 \), the \(n \)-th partial sum is:
\[
G_n(y) = 1 + 2y + 3y^2 + \cdots + ny^{n-1}
= \frac{d}{dy} (1 + y + y^2 + \cdots + y^n)
= \frac{d}{dy} \left(\frac{y^{n+1} - 1}{y - 1} \right)
= \frac{1}{(y-1)^2} \left((n+1)y^n(y-1) - 1(y^{n+1} - 1) \right)
= \frac{1}{(y-1)^2} (ny^{n+1} - (n+1)y^n + 1).
\]

Since \(|y| < 1 \), the terms \(ny^{n+1} \) and \((n+1)y^n \) go to zero as \(n \) goes to infinity, so the series converges with sum:
\[
G(y) = \lim_{n \to \infty} \frac{1}{(y-1)^2} (ny^{n+1} - (n+1)y^n + 1) = \frac{1}{(1-y)^2}.
\]

So the series for \(f(x) \) converges iff \(|x| < 2 \), so on the open interval \((-2,2)\), with limit:
\[
f(x) = G \left(\frac{x}{2} \right) = \frac{1}{\left(1 - \frac{x}{2} \right)^2} = \frac{4}{(2-x)^2}.
\]
We return to the first series of this problem, the convergent series:

\[A = \sum_{n=1}^{\infty} \frac{n4^n}{32n}. \]

If we write out the terms of this series, we get:

\[
A = \frac{4}{9} + 2 \left(\frac{4}{9} \right)^2 + 3 \left(\frac{4}{9} \right)^3 + 4 \left(\frac{4}{9} \right)^4 + \ldots
\]

\[
= \frac{4}{9} \left(1 + 2 \left(\frac{4}{9} \right) + 3 \left(\frac{4}{9} \right)^2 + 4 \left(\frac{4}{9} \right)^3 + \ldots \right)
\]

\[
= \frac{4}{9} \cdot \frac{G(\frac{4}{9})}{9}
\]

\[
= \frac{4}{9} \cdot \frac{1}{(1 - \frac{4}{9})^2}
\]

\[
= \frac{4}{9} \left(\frac{81}{(9 - 4)^2} \right)
\]

\[
= \frac{36}{25} = 1.44.
\]
Question 3

Solve each of the following differential equations and discuss the behavior of each solution:

- \(\frac{dy}{dt} + 3y = 2 \cos(2t) \), \(y(0) = 4 \).

We first find a particular solution.

We try \(y = A \cos(2t) + B \sin(2t) \).

Then we need:

\[
2 \cos(2t) = y' + 3y = -2A \sin(2t) + 2B \cos(2t) + 3(A \cos(2t) + B \sin(2t)),
\]

\[
0 = \sin(2t)(-2A + 3B) + \cos(2t)(2B + 3A - 2).
\]

So we want \(-2A + 3B = 0\) and \(2B + 3A - 2 = 0\).

The first equation gives \(-6A + 9B = 0\), the second \(4B + 6A - 4 = 0\).

Adding these equations gives: \(13B - 4 = 0\), so \(B = \frac{4}{13}\).

Then \(A = \frac{3B}{2} = \frac{6}{13}\).

So we have the particular solution:

\[
y_p = \frac{2}{13}(3 \cos(2t) + 2 \sin(2t)).
\]

The associated homogeneous problem is:

\[
\frac{dy}{dt} + 3y = 0,
\]

\[
\frac{dy}{dt} = -3y.
\]

We recognize this as a special case of the standard equation for exponential growth/decay, with general solution:

\[
y_h = Ce^{-3t}.
\]

So the general solution of the given problem is:

\[
y = y_h + y_p = Ce^{-3t} + \frac{2}{13}(3 \cos(2t) + 2 \sin(2t)).
\]
For the initial condition, \(y(0) = 4 \), we put \(t = 0 \) and \(y = 4 \), giving:

\[
4 = C + \frac{6}{13},
\]

\[
C = \frac{46}{13}.
\]

So the required solution is:

\[
y = \frac{2}{13} (23e^{-3t} + 3 \cos(2t) + 2 \sin(2t)).
\]

Plotting, we see that for \(t \) negative the graph is always concave up and decreasing and \(y \) goes to infinity as \(t \to -\infty \).

For \(t \) positive, the exponential term quickly dies off and the solution is then an almost perfect sinusoidal curve, of amplitude \(\frac{2}{\sqrt{13}} = 0.55470 \) and period \(\pi \).

Indeed already by the first local maximum, which occurs at \(t = 3.43543 \), gives the \(y \)-value \(y = 0.55482 \), which is very close to the sinusoidal amplitude.
\[\frac{dy}{dt} = \frac{y^3}{ty + 2t}, \quad y(1) = 2. \]

This is separable, we separate and integrate:

\[
\frac{dy}{dt} = \frac{y^3}{ty + 2t} = \frac{y^3}{t(y + 2)},
\]

\[
\frac{(y + 2)dy}{y^3} = \frac{dt}{t},
\]

\[
\int \frac{(y + 2)dy}{y^3} = \int \frac{dt}{t},
\]

\[
\ln(|t|) = \int \left(\frac{1}{y^2} + \frac{2}{y^3} \right) dy = C - y^{-1} - y^{-2},
\]

\[
\ln(|t|) + y^{-1} + y^{-2} = C.
\]

The initial condition \(y(1) = 2 \) gives:

\[
C = \ln(1) + \frac{1}{2} + \frac{1}{4} = \frac{3}{4},
\]

\[
0 = (\ln(|t|) - \frac{3}{4}) + y^{-1} + y^{-2}.
\]

\[
y^2 \left(\ln(|t|) - \frac{3}{4} \right) + y + 1 = 0,
\]

\[
y = \frac{1}{2 \left(\ln(t) - \frac{3}{4} \right)} \left(-1 \pm \sqrt{1 - 4 \left(\ln(|t|) - \frac{3}{4} \right)} \right)
\]

\[
= \frac{2}{(4 \ln(|t|) - 3)} \left(-1 \pm 2 \sqrt{1 - \ln(|t|)} \right)
\]

When \(t = 1 \), \(y \) is positive, which requires the negative square root, giving the required solution as:

\[
y = \frac{2}{3 - 4 \ln(|t|)} \left(1 + 2 \sqrt{1 - \ln(|t|)} \right).
\]
Plotting the graph of the solution we see that it is defined for the interval $|t| < e^{\frac{2}{3}} = 2.117000017$.

The graph is symmetrical about the t-axis.

For positive t it has a cusp of infinite slope at the origin.

Since the slope is infinite there, even though y is well-defined, we should probably regard the solution as being strictly valid for $t > 0$ only, so on the open interval $\left(0, e^{\frac{2}{3}}\right)$.

Then y increases steadily from 0, going to infinity as $t \to \left(e^{\frac{2}{3}}\right)^-$. The graph is initially concave down and switches to concave up at the inflection point: $(0.3538581501, 1.077718305)$.

The y-value of the inflection point is the unique positive root y_+ of the cubic $2y^3 + 5y^2 - 4y - 4 = 0$, then the t-value is $e^{\frac{2}{3} - \frac{1}{y_+} - \frac{1}{y_+^2}}$.

We may give an explicit formula for y_+:

$$y_+ = \frac{1}{6}(-5 + 7\cos(\theta) + 7\sqrt{3}\sin(\theta)),$$

Here θ is given as follows: $3\theta = \arctan\left(\frac{12}{89}\sqrt{762}\right)$.

The cubic arises by taking the logarithmic derivative of the differential equation:

$$y' = \frac{y^3}{t(y + 2)}, \quad \ln(y') = 3\ln(y) - \ln(y + 2) - \ln(t),$$

$$y'' = \frac{3y'}{y} - \frac{y'}{y + 2} - \frac{1}{t}$$

$$= \frac{1}{t} \left(\frac{3y^2}{(y + 2)} - \frac{y^3}{(y + 2)^2} - 1\right)$$

$$= \frac{1}{t(y + 2)^2}(3y^2(y + 2) - y^3 - (y + 2)^2)$$

$$= \frac{1}{t(y + 2)^2}(2y^3 + 5y^2 - 4y - 4),$$

$$y'' = \frac{y^3}{t^2(y + 2)^3}(2y^3 + 5y^2 - 4y - 4).$$

So the inflection point arises, for y given by the positive root of the cubic, as described above.