Honors Calculus I Quiz 3 Solutions 9/16/5

Question 1
Let $f(x) = \frac{1}{x^2}$ and $g(x) = x^3 + 1$.

- What are the domains and ranges of f and g?

 - The function f is defined for $x \neq 0$ and has range \mathbb{R}^+, the set of all positive real numbers, since its outputs are clearly strictly positive real numbers and since given any $y > 0$, we have:

 $$f\left(\frac{1}{\sqrt{y}}\right) = \frac{1}{\left(\frac{1}{\sqrt{y}}\right)^2} = \frac{1}{\frac{1}{y}} = y.$$

 So f gives a surjective map $f : \mathbb{R} - \{0\} \to \mathbb{R}^+$.

 - The function g is defined for all real x and has range \mathbb{R}, the set of all real numbers, since given any real number y, we have $g(\sqrt[3]{y - 1}) = (\sqrt[3]{y - 1})^3 + 1 = y - 1 + 1 = y$, so g gives a surjective map $g : \mathbb{R} \to \mathbb{R}$.

- One of these maps is invertible and one is not. Which is which and why?

 - The map f is not invertible, since $f(1) = f(-1) = 1$, so the inputs -1 and 1 both give the same output and f is not one-to-one.

 - The map g is invertible since the equation $y = x^3 + 1$ has the unique real solutions for x given y:

 $$x = \sqrt[3]{y - 1}.$$

 So the inverse function is $g^{-1}(x) = \sqrt[3]{x - 1}$.

Check:

Both the functions g and g^{-1} are well defined for all real inputs and we have, for any real number x:

$$g(g^{-1}(x)) = g(\sqrt[3]{x - 1}) = (\sqrt[3]{x - 1})^3 + 1 = x - 1 + 1 = x,$$

$$g^{-1}(g(x)) = \sqrt[3]{(g(x) - 1)} = \sqrt[3]{x^3 + 1 - 1} = \sqrt[3]{x^3} = x.$$
• Give formulas for the compositions \(f \circ f, f \circ g, g \circ g \) and \(g \circ f \) and obtain the derivatives of each of those compositions. Note that we have \(f'(x) = -2x^{-3} \) and \(g'(x) = 3x^2 \).

- We have, for any real \(x \neq 0 \):
 \[
 (f \circ f)(x) = f(f(x)) = \frac{1}{(f(x))^2} = \frac{1}{\left(\frac{1}{x^4}\right)^2} = \frac{1}{x^8} = x^4,
 \]
 \[
 (f \circ f)'(x) = 4x^3.
 \]
 Alternatively we can use the chain rule to determine \((f \circ f)'(x) \):
 \[
 (f \circ f)'(x) = f'(f(x))f'(x) = \left(\frac{-2}{f(x)^3}\right)\left(-\frac{2}{x^3}\right) = \frac{-2}{x^3}\left(-\frac{2}{x^3}\right) = -2x^6\left(-\frac{2}{x^3}\right) = 4x^3.
 \]

- We have, for any real \(x \neq -1 \):
 \[
 (f \circ g)(x) = f(g(x)) = \frac{1}{(g(x))^2} = \frac{1}{(x^3 + 1)^2},
 \]
 \[
 (f \circ g)'(x) = -2(x^3 + 1)^{-3}(3x^2) = -6x^2(x^3 + 1)^{-3}.
 \]
 Alternatively we can use the chain rule to determine \((f \circ g)'(x) \):
 \[
 (f \circ g)'(x) = f'(g(x))g'(x) = \left(\frac{-2}{(g(x))^3}\right)3x^2 = -2(x^3+1)^{-3}(3x^2) = -6x^2(x^3+1)^{-3}.
 \]

- We have, for any real \(x \neq 0 \):
 \[
 (g \circ f)(x) = g(f(x)) = (f(x))^3 + 1 = (x^{-2})^3 + 1 = x^{-6} + 1,
 \]
 \[
 (g \circ f)'(x) = -6x^{-7}.
 \]
 Alternatively we can use the chain rule to determine \((g \circ f)'(x) \):
 \[
 (g \circ f)'(x) = g'(f(x))f'(x) = 3(f(x))^2\left(-\frac{2}{x^3}\right) = 3x^{-4}(-2x^{-3}) = -6x^{-7}.
 \]

- We have, for any real \(x \):
 \[
 (g \circ g)(x) = g(g(x)) = (g(x))^3 + 1 = (x^3 + 1)^3 + 1,
 \]
 \[
 (g \circ g)'(x) = 3(x^3 + 1)^2(3x^2) = 9x^2(x^3 + 1)^2.
 \]
 Alternatively we can use the chain rule to determine \((g \circ g)'(x) \):
 \[
 (g \circ g)'(x) = g'(g(x))g'(x) = 3(g(x))^2(3x^2) = 3(x^3+1)^2(3x^2) = 9x^2(x^3+1)^2.
 \]
Question 2

Let \(f'(t) = g(t) \) and \(g'(t) = -f(t) \).

Prove that \(f^2 + g^2 = C \) is constant.

If \(f(0) = 0 \) and \(f'(0) = 1 \), evaluate the constant \(C \).

Also compute the derivative of the function \(h(t) = \frac{f(t)}{g(t)} \).

We have:

\[
\frac{d}{dt}(f^2(t) + g^2(t)) = 2f(t)f'(t) + 2g(t)g'(t) = 2f(t)g(t) + 2g(t)(-f(t)) = 0.
\]

So the function \(f^2 + g^2 \) has zero derivative, so is constant on any open interval of its definition.

We have \(C = f^2(0) + g^2(0) = f^2(0) + (f'(0))^2 \).

Putting \(t = 0 \) gives \(C = f^2(0) + (f'(0))^2 = 0^2 + 1^2 = 1 \).

Finally we have, by the division rule:

\[
h' = \left(\frac{f}{g} \right)' = \frac{f'g - g'f}{g^2} = \frac{g(g) - (-f)f}{g^2} = \frac{g^2 + f^2}{g^2} = \frac{1}{g^2}.
\]

The model here is \(f = \sin(t) \) and \(g = \cos(t) \), since we have the required relations:

- \(f'(t) = \sin'(t) = \cos(t) = g(t) \),
- \(g'(t) = \cos'(t) = -\sin(t) = -f(t) \),
- \(f(0) = \sin(0) = 0 \) and \(f'(0) = g(0) = \cos(0) = 1 \).

Then the calculation above proves the trigonometric identity:

\[
\sin^2(t) + \cos^2(t) = 1.
\]

Then \(h(t) = \frac{\sin(t)}{\cos(t)} = \tan(t) \) and the calculation of \(h' \) shows that:

\[
h'(t) = \tan'(t) = \frac{1}{g^2(t)} = \frac{1}{\cos^2(t)} = \sec^2(t).
\]
Question 3

Find the linear approximation to the function \(f(x) = (1 + 2x)^{-\frac{2}{3}} \) based at the origin and use it estimate the value of \(f(0.1) = (1.2)^{-\frac{2}{3}} \).

By sketching the graphs of the function \(f(x) \) and its linear approximation on the same graph, determine if your estimate is an under-estimate or an over-estimate.

The linear approximation, \(f_1(x) \) based at \(x = a \) to the function \(f(x) \) is given by the formula:

\[
f_1(x) = f(a) + f'(a)(x - a).
\]

Here we have:

- \(a = 0 \),
- \(f(x) = (1 + 2x)^{-\frac{2}{3}}, \quad f(a) = f(0) = 1 \),
- \(f'(x) = -\frac{2}{3}(1 + 2x)^{-\frac{5}{3}}(2) = -\frac{4}{3}(1 + 2x)^{-\frac{5}{3}}, \quad f'(a) = f'(0) = -\frac{4}{3} \).

So we get:

\[
f_1(x) = f(0) + f'(0)(x - 0) = 1 - \frac{4}{3}x = \frac{1}{3}(3 - 4x).
\]

Putting \(x = 0.1 \), we estimate \((1.2)^{-\frac{2}{3}}\) as:

\[
f_1(0.1) = \frac{1}{3}(3 - 4(0.1)) = \frac{1}{3}(3 - \frac{2}{5}) = \frac{1}{3}\left(\frac{13}{5}\right) = \frac{13}{15} = 0.866\overline{6}.
\]

The graph of the function \(f(x) \) on the interval \([-0.2, 0.2]\) show a gently decreasing curve that is concave up, so the tangent line at the origin lies below the curve, so our estimate using \(f_1(x) \) is an under-estimate.

Alternatively, we compute the second derivative at the origin:

\[
f''(x) = \frac{d}{dx}f'(x) = \frac{d}{dx}\left(-\frac{4}{3}(1 + 2x)^{-\frac{5}{3}}\right)
= -\frac{4}{3}\left(-\frac{5}{3}\right)(1 + 2x)^{-\frac{8}{3}}(2) = \frac{40}{9}(1 + 2x)^{-\frac{8}{3}}, \quad f''(0) = \frac{40}{9} > 0.
\]

Since \(f''(0) \) is positive, the graph is concave up at the origin and the tangent line at the origin lies below the curve, so our estimate is an under-estimate.

Using Maple, we have \((1.2)^{-\frac{2}{3}} = 0.8855488\), so the true value of \((1.2)^{-\frac{2}{3}}\) is higher, as expected; the percentage error in our estimate is 2.132 percent.

Alternatively, we have \((1.2)^{-\frac{2}{3}} > \frac{13}{15} \) iff \((\frac{6}{5})^{-2} > (\frac{13}{15})^3 \) iff 25(15^3) > 36(13^3) iff 25(25)(15) > 4(2097) iff 9375 > 8388, which is true.