Honors Calculus Homework 4 Solutions, due 9/29/5

Question 1

Calculate the derivative of each of the following functions:

• \(a(t) = \ln(\sin(t)) \).

We use the rules \(\ln'(t) = \frac{1}{t} \), \(\sin'(t) = \cos(t) \) and the chain rule formula:

\[
\frac{d}{dt} \ln(u(t)) = \frac{u'(t)}{u(t)};
\]

\[
a'(t) = \frac{1}{\sin(t)} \sin'(t) = \frac{\cos(t)}{\sin(t)} = \cot(t).
\]

• \(b(x) = \arcsin(x^2) \).

We use the rules \(\arcsin'(x) = \frac{1}{\sqrt{1-x^2}} \) and the chain rule:

\[
b'(x) = \frac{1}{\sqrt{1-(x^2)^2}} (2x) = \frac{2x}{\sqrt{1-x^4}}.
\]

• \(c(t) = \arctan(\sqrt{2t}) \).

We use the rules \(\arctan'(t) = \frac{1}{1+t^2} \) and the chain rule:

\[
c'(t) = \frac{1}{1+(\sqrt{2t})^2} \frac{d}{dt} (\sqrt{2t}) = \frac{(2t)^{-\frac{1}{2}}}{1 + 2t}.
\]

• \(p(x) = \ln(x + \sqrt{1+x^2}) \).

We have:

\[
p'(x) = \left(\frac{1}{x + \sqrt{1+x^2}} \right) \frac{d}{dx} (x + \sqrt{1+x^2})
\]

\[
= \left(\frac{1}{x + \sqrt{1+x^2}} \right) \left(1 + \frac{x}{\sqrt{1+x^2}} \right)
\]

\[
= \left(\frac{1}{x + \sqrt{1+x^2}} \right) \left(\frac{\sqrt{1+x^2} + x}{\sqrt{1+x^2}} \right)
\]

\[
= \frac{1}{\sqrt{1+x^2}}.
\]
Question 2

Define a number c by the formula:

$$c = \lim_{h \to 0} \frac{3^h - 1}{h}.$$

- Show that c can be interpreted as the slope of the curve $y = 3^x$ at $x = 0$. If $f(x) = 3^x$, note that $f(0) = 3^0 = 1$.

Then its slope at the origin is, by definition:

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \frac{3^h - 3^0}{h} = \frac{3^h - 1}{h} = c.$$

- Show that:

$$2c = \lim_{h \to 0} \frac{9^h - 1}{h},$$

We have:

$$\lim_{h \to 0} \frac{9^h - 1}{h} = \lim_{h \to 0} \frac{3^{2h} - 1}{h} = \lim_{h \to 0} \frac{(3^h)^2 - 1}{h} = \lim_{h \to 0} \frac{(3^h - 1)(3^h + 1)}{h} = c(3^0 + 1) = 2c.$$

$$3c = \lim_{h \to 0} \frac{(27)^h - 1}{h},$$

We have:

$$\lim_{h \to 0} \frac{27^h - 1}{h} = \lim_{h \to 0} \frac{3^{3h} - 1}{h} = \lim_{h \to 0} \frac{(3^h)^3 - 1}{h} = \lim_{h \to 0} \frac{(3^h - 1)((3^h)^2 + 3^h + 1)}{h} = c((3^0)^2 + 3^0 + 1) = c(3^2 + 3^0 + 1) = 3c.$$

- Show that the function $f(x) = 3^x$ obeys the relation:

$$f'(x) = cf(x).$$

We have:

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{3^{x+h} - 3^x}{h}$$

$$= \lim_{h \to 0} \frac{3^x(3^h - 1)}{h} = c(3^x) = cf(x).$$

- By using appropriate numerical estimation, or by plotting the graph $y = 3^x$ near $x = 0$, estimate the quantity c.

Using Maple, we estimate the slope to be approximately 1.099.
Question 3

Write out the proof that \(\lim_{x \to 5} x^2 = 25 \).

We first solve the inequality \(|x^2 - 25| < \epsilon\), given \(\epsilon > 0\), where without loss of generality, we take \(x > 0\) (since we need \(x\) near 5) and \(\epsilon < 25\):

\[
|x^2 - 25| < \epsilon,
-\epsilon < x^2 - 25 < \epsilon,
25 - \epsilon < x^2 < 25 + \epsilon,
\sqrt{25 - \epsilon} < x < \sqrt{25 + \epsilon}.
\]

For \(0 < \epsilon < 25\), put \(J_\epsilon = (\sqrt{25 - \epsilon}, \sqrt{25 + \epsilon})\).

Note that \(\sqrt{25 - \epsilon} < \sqrt{25} = 5 < \sqrt{25 + \epsilon}\), so 5 \(\in J_\epsilon\).

Then we have:

- \(J_\epsilon\) is an open interval.
- 5 \(\in J_\epsilon\).
- If \(x \in J_\epsilon\), then \(|x^2 - 25| < \epsilon\).

So by definition of the limit, we have \(\lim_{x \to 5} x^2 = 25\), as required.
Question 4

Let \(f(x) = \frac{x^3 - x^2 - x + 1}{x + 2} \).

- Give the domain of \(f(x) \).
 Explain why the range of \(f(x) \) is all real numbers.

The domain is \(\mathbb{R} - \{-2\} \): all real \(x \) not equal to \(-2\) or the union of the open intervals: \((-\infty, -2) \cup (-2, \infty)\).

We have \((-2)^3 - (-2)^2 - (-2) + 1 = -8 - 4 + 2 + 1 = -9 < 0\), so as \(x \to -2^+ \), we have \(f(x) \to -\infty \) and as \(x \to -2^- \), we have \(f(x) \to \infty \). Also as \(x \to \infty \), we have \(f(x) \to \infty \).
Since \(f \) is continuous in the interval \((-2, \infty)\), it takes all real values on that interval, so its range is the whole real line.

- Find the derivative of \(f \) and find all points where the graph \(y = f(x) \) has a horizontal tangent.

We have:

\[
 f(x) = \frac{x^3 - x^2 - x + 1}{x + 2} = \frac{x^2(x - 1) - 1(x - 1)}{x + 2} = \frac{(x^2 - 1)(x - 1)}{x + 2}
\]

\[
 = (x + 1)(x - 1)^2(x + 2)^{-1},
\]

\[
f'(x) = (x-1)^2(x+2)^{-1}+2(x+1)(x-1)(x+2)^{-1}-(x+1)(x-1)^2(x+2)^{-2}
\]

\[
 = (x - 1)(x + 2)^{-1}(x - 1 + 2(x + 1) - \frac{(x + 1)(x - 1)}{x + 2})
\]

\[
 = (x - 1)(x + 2)^{-2}((3x + 1)(x + 2) - (x^2 - 1))
\]

\[
 = (x - 1)(x + 2)^{-2}(2x^2 + 7x + 3)
\]

\[
 = \frac{(x - 1)(2x + 1)(x + 3)}{(x + 2)^2}.
\]

So the horizontal tangents occur at \((1, 0)\), \((-3, 32)\) and at \((-\frac{1}{2}, \frac{3}{4})\).
• Plot the graph of the function $y = f(x)$.

The graph decreases steadily until it reaches its local minimum at $(-3, 32)$, then increases to infinity $x \to -2^-$.
It is concave up for $x < -2$. For $x > -2$, it increases from $-\infty$ as $x \to -2^+$, until it reaches a local maximum at $(-\frac{1}{2}, \frac{3}{4})$.
Then it decreases to its local minimum at $(1, 0)$.
Then it increases steadily, going to infinity as $x \to \infty$.
Using Maple we find that the second derivative vanishes only for $x = -2 + \sqrt{9}$, when $y = 15 - 7\sqrt{9}$, so at the point $(0.080083823, 0.43941324)$.
In the intervals $x < -2$ and $x > -2 + \sqrt{9}$, the graph is concave up.
In the interval $(-2, -2 + \sqrt{9})$, the graph is concave down.

• Find the largest domain for f of the form (a, ∞) for a suitable real number a, such that f has an inverse on that domain, explaining your answer.

The number a is the x-value for the local minimum, namely $a = 1$, since $f(x)$ is increasing strictly on the domain $[1, \infty)$, but because $a = 1$ is a local minimum, $f(x)$ is not one to one on any interval of the form (b, ∞) for $b < 1$.
Question 5

Let \(g(t) = \frac{1}{8}(t^3 - 12t) \).

- Plot the graph of the function \(g \).

We have:

\[
- g = \frac{1}{8}(t^3 - 12t) = \frac{1}{8}(t)(t^2 - 12) = \frac{1}{8}(t)(t - 2\sqrt{3})(t + 2\sqrt{3}),
\]

\[
- g' = \frac{3}{8}(t^2 - 4) = \frac{3}{8}(t - 2)(t + 2),
\]

\[
- g'' = \frac{3}{4} t.
\]

This is a standard cubic curve, shaped like the letter s.

It increases, passing through the \(t \) axis at \(t = -\sqrt{12} = -2\sqrt{3} \) until \(t = -2 \), where it reaches a local maximum of 2, then decreases, crossing the axes at the origin, until it reaches a local minimum of \(-2 \) at \(t = 2 \).

Then it increases again crossing the \(t \)-axis again at \(t = \sqrt{12} = 2\sqrt{3} \). As \(t \to \pm \infty \), we have \(g(t) \to \pm \infty \).

The graph is concave down for \(t \leq 0 \) and concave up for \(t \geq 0 \).

- Explain why the function \(g \) has an inverse if its domain is restricted to the interval \(J = (-2, 2) \).

What is the range \(K \) of \(g \) on the domain \(J \)?

Explain.

On the interval \(J \), we have \(g'(t) < 0 \), so the function is strictly decreasing and so has an inverse.

Since \(g \) is continuous and decreasing on \(J \), the range is:

\[
K = (g(2), g(-2)) = (-2, 2).
\]

- Let \(g^{-1} : K \to J \) be the inverse function.
• Find the equation of the tangent line to the function \(y = g(t) \) at the point with \(t = 1 \).

We have:

\[
g(1) = \frac{1}{8}(1^3 - 12(1)) = -\frac{11}{8},
\]

\[
g'(1) = \frac{3}{8}(1^2 - 4(1)) = -\frac{9}{8}.
\]

So by the point-slope method the required tangent line is:

\[
y - (-\frac{11}{8}) = -\frac{9}{8}(t - 1),
\]

\[
8y + 11 = -9t + 9,
\]

\[
8y + 9t + 2 = 0.
\]

• Find the equation of the tangent line to the function \(y = g^{-1}(t) \) at the point with \(t = -\frac{11}{8} \).

Since \(g(1) = \frac{11}{8} \), the required tangent line is simply the reflection of the tangent line to the curve \(y = g(t) \) at \(t = 1 \) in the axis \(y = t \).

So the required equation is obtained by interchanging \(y \) and \(t \) in the equation \(8y + 9t + 2 = 0 \), so is: \(8t + 9y + 2 = 0 \).

• Sketch the functions \(y = g(t) \) and \(y = g^{-1}(t) \) and the two tangent lines on one graph, using the same scaling for each axis and discuss your results.
Question 6

Let \(A = [2, 5], \ B = [-3, -7] \) and \(C = [14, 0] \).

- Sketch the triangle \(ABC \).
- Find the lengths of the sides of the triangle \(ABC \).

We have:
\[
BC = C - B = [14, 0] - [-3, -7] = [17, 7],
\]
\[
CA = A - C = [2, 5] - [14, 0] = [-12, 5],
\]
\[
\]

Then the lengths of the sides are:

\[
a = |BC| = ||17, 7|| = \sqrt{17^2 + 7^2} = \sqrt{289 + 49} = \sqrt{338} = \sqrt{(169)(2)} = 13\sqrt{2}
\]

\[
b = |CA| = ||-12, 5|| = \sqrt{(-12)^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13,
\]

\[
c = |CA| = ||-5, -12|| = \sqrt{(-5)^2 + (-12)^2} = \sqrt{25 + 144} = \sqrt{169} = 13.
\]

- Find the angles at the vertices of the triangle \(ABC \).

We notice that \(b = c \), so the triangle is isosceles.
Also \(a^2 = 338 = 169 + 169 = b^2 + c^2 \), so the triangle obeys Pythagoras’ so is right-angled, with hypotenuse \(a \).
The only right-angled isosceles triangle has one angle of 90 degrees and two of 45 degrees.
So the angle at \(A \) is 90 degrees and the angles at \(B \) and \(C \) are each forty-five degrees.
Note that the slope of \(CA \) is \(m_b = -\frac{5}{12} \) and of \(AB \) is \(m_c = \frac{12}{5} \).
Since \(m_b m_c = -1 \), these lines are perpendicular, in agreement with the fact that the angle at \(A \) is 90 degrees.

- Find the area of the triangle \(ABC \).

Since the triangle is right-angled at \(A \), its area \(\Delta \) in units of area is:
\[
\Delta = \frac{1}{2} bc \sin(A) = \frac{1}{2} bc \sin\left(\frac{\pi}{2}\right) = \frac{1}{2} bc = \frac{1}{2} 13^2 = \frac{169}{2} = 84.5.
\]