Complex variables: Quiz 3 7/5/5

Name: Signature:
Show your work

Question 1
Consider the transformation \(z \to (1 + i)z + 2 + i \), defined for any \(z \in \mathbb{C} \).

- Describe the transformation geometrically.
- Find the fixed points of the transformation, if any.
- Find a formula for the inverse transformation.
- Find the images under the transformation of the lines \(\mathcal{L} \) and \(\mathcal{M} \) with the following parametric equations, where \(s \) and \(t \) are real parameters:

 \[\mathcal{L} : z = 4 + (1 + i)t \quad \text{and} \quad \mathcal{M} : z = is. \]

Also sketch the lines \(\mathcal{L} \) and \(\mathcal{M} \) and their images on the same complex plane.
Verify that the angle between the lines \(\mathcal{L} \) and \(\mathcal{M} \) is the same as the angle between their respective image lines.

- Find the image under the transformation of the circle \(|z - 1 + i| = 3 \) and sketch the circle and its image on the complex plane.

Question 2
Let functions \(u(x, y) \) and \(v(x, y) \) be given by the formulas, for \(x \) and \(y \) real:

\[u = x^2 - y^2 - 2x + 4y, \quad v = 2xy - 4x - 2y. \]

- Show that the pair \((u, v) \) obeys the Cauchy-Riemann equations.
- Verify that \(u \) and \(v \) are harmonic functions.
- Show that the function \(u + iv \) may be expressed as a polynomial in the variable \(z = x + iy \).
- Hence factor the polynomial \(u^2 + v^2 \) as a product of linear factors in the variables \(x \) and \(y \).