Complex Variables, Summer 2005
Homework Assignments
Homework 1, due for discussion Tuesday June 21st and to be turned in Wednesday June 22nd

• Let \(a = 2 + 3i \) and \(b = 4 + 5i \).
 Sketch the complex numbers \(a, b, a^2, ab, ba, b^2, \frac{a}{b} \) and \(\frac{b}{a} \).
 For each determine their size (modulus) and determine the angle that the vector from the origin to the complex number in question makes with the positive \(x \)-axis.
 Discuss your results.

• Find the solutions of the equations \(x^3 = 1 \) and \(x^6 = 1 \) and plot the solutions in the complex plane.
 Discuss your results.

• A complex number \(z \) obeys the relations \(|z - i| = 3\sqrt{2} \) and \(|z + 3| = 4 \).
 What can we say about the number \(z \)?
 In particular is \(z \) unique?
 Explain your answer graphically.
Homework 2, due for discussion Monday June 27th and
to be turned in Tuesday June 28th

- Let \(z, w \) and \(t \) be complex numbers representing points \(A, B \) and \(C \),
in the complex plane, respectively.
 Show that the complex number \(\frac{1}{2}(z + w) \) represents the midpoint of the
 segment \(AB \) and that the complex number \(\frac{1}{3}(z + w + t) \) represents the
 centroid of the triangle \(ABC \).

- Prove that \(|z - w|^2 = |z|^2 + |w|^2 - 2\Re(z\overline{w}) \), for any complex numbers
 \(z \) and \(w \).

- Let \(\omega \) be a cube root of 1 that is not 1 itself (so \(\omega^3 = 1 \), but \(\omega \neq 1 \)).
 Show that \(\omega^2 - \omega + 1 = 0 \).
 Show that \(\omega^2 \) is also a cube root of 1 that is not 1.
 Also express \(\frac{\omega + 1}{\omega - 1} \) as a linear combination of \(\omega \) and 1 with real coe-
 cients.

- Write \(a = \sqrt{3} - i \) and \(b = 1 + i \) in polar form.
 Hence obtain the polar representations of \(a^2 \), \(b^2 \) and \(\frac{a}{b} \) and verify that
 your answers are correct, by comparing with the direct evaluation of
 these quantities.
 Find the smallest positive integer \(n \) such that \(a^n \) and \(b^n \) are both real
 and positive.
 Also illustrate your results in the complex plane.

- Find all square roots of \(3 + 4i \) and illustrate your results in the complex
 plane.
Homework 3, due Tuesday July 5th

- Let \(f(z) = \frac{z + 2 - i}{z - 1 + i} \).
 Give the domain of \(f(z) \) and write \(f(z) \) as \(u + iv \), where \(u \) and \(v \) are functions of the real variables \(x \) and \(y \), with \(z = x + iy \).

- The electric field at a point \(z \) of the complex plane, due to a charged line carrying charge \(q \), perpendicular to the plane and passing through the plane at point \(w \) is \(\frac{q}{z - w} \), where \(z \neq w \).
 The total electric field due to an assemblage of such charged lines is the sum of the individual fields.
 One line of charge \(q \) passes through the origin, and two others, each carrying charge \(2q \) pass through the points \(2 + i \) and \(2 - i \).
 Where is the total field zero?

- Let \(w = (1 - i)z + 1 - 2i \), defined for any complex \(z \).
 Find the image in the \(w \)-plane of the following sets:
 - \(\{ z : \Im(z) > 1 \} \)
 - \(\{ z : \Re(z) = \Im(z) \} \)
 - \(\{ z : |z| = 1 \} \).

- Let \(w = z^2 \), defined for any complex \(z \).
 Find the image in the \(w \)-plane of the following sets:
 - \(\{ z : \Im(z) > 1 \} \)
 - \(\{ z : 1 < |z| < 2 \text{ and } -\frac{\pi}{3} \leq \Arg(z) < \frac{\pi}{2} \} \)
 - \(\{ z : z^5 = 1 \} \).

- Let \(w = \frac{1}{z} \), defined for any complex \(z \neq 0 \).
 Find the image of the following sets:
 - \(\{ z : |z| = 1 \} \)
 - \(\{ z : |z| = 2 \} \)
 - \(\{ z : \Re(z) = 1 \} \)
 - \(\{ z : \Re(z) + \Im(z) = 1 \} \)
 - \(\{ z : |z - i| = 1 \} \).
Homework 4, due Tuesday July 12th

- Find the image under the transformation $z \mapsto \frac{z+1}{z+2}$ of the circle center $2+2i$, radius 2 and of the straightline $z = 1 - it$.

- Let $f(x, y) = \frac{2xy}{x^2 + y^2}$ for $(x, y) \neq (0, 0)$. Does $\lim_{(x,y)\to(0,0)} f(x, y)$ exist? Explain.

- Let $f(z) = \frac{z^2}{|z|^2}$, for any complex $z \neq 0$. Find the limit of $f(z)$ as z goes to zero along each of the following curves:
 - The line $y = x$.
 - Along the line $y = 2x$.
 - Along the parabola $y = x^2$.

 What can you conclude about the limit of $f(z)$ as $z \to 0$?

- Find the following limits:

 - $\lim_{z \to i} \frac{z^4 - 1}{z - i}$.

 - $\lim_{z \to -i} \frac{z^6 + 1}{z + i}$.

 - $\lim_{z \to 1+i} \frac{z^4 + 4}{z^2 - 2z + 2}$.

- Show that $f(z) = e^{-y}(\cos(x) + i \sin(x))$ obeys the Cauchy-Riemann equations.

- The function $x^3 - 3x^2 - 3xy^2 + 3ix^2y - 6ixy + g(y)$ obeys the Cauchy-Riemann equations. What is the function $g(y)$? Explain.
Homework 5, due Thursday July 14th

- Show that the function \(f(z) = x^3 + 3xy^2 + i(y^3 + 3x^2y) \) is complex differentiable on the \(x \) and \(y \) axes, but is analytic nowhere.

- Show that the function \(f(z) = \frac{1}{z} \), defined for all non-zero complex numbers \(z \), is analytic everywhere in its domain of definition.

- Show that the function \(u(x, y) = e^{-x} \cos(y) \) is harmonic and determine, with proof a function \(v(x, y) \) such that \(f(z) = u(x, y) + iv(x, y) \) is analytic.

- Prove that the functions \(\arctan\left(\frac{y}{x}\right) \) and \(\ln\left(\sqrt{x^2 + y^2}\right) \) are harmonic. Are these functions essentially harmonic conjugates of each other? Explain.

- Show that the function \(f(z) = \frac{\overline{z}^2}{z} \), for \(z \neq 0 \) and \(f(0) = 0 \) obeys the Cauchy-Riemann equations at the origin, but is nowhere differentiable.
Homework 6, due Tuesday July 19th

- Does \(\lim_{n \to \infty} \left(\frac{1 + i}{\sqrt{2}} \right)^n \) exist? Explain.

- Show that \(\sum_{n=0}^{\infty} \left(\frac{1}{n + 1 + i} - \frac{1}{n + i} \right) = i. \)

- Prove that if \(S = \sum_{n=0}^{\infty} |z_n| \) converges, then so does \(T = \sum_{n=0}^{\infty} z_n \) and then we have \(|T| \leq S. \)

- Show that each of the following series converges and determine its sum, if possible:

 - \(- \sum_{n=0}^{\infty} \left(\frac{1}{2 + i} \right)^n \)
 - \(- \sum_{n=0}^{\infty} \left(\frac{1 + i}{2} \right)^n \)
 - \(- \sum_{n=1}^{\infty} \frac{(1 + i)^n}{n(2 + i)^n} \)
 - \(- \sum_{n=1}^{\infty} \frac{(1 + i)^n}{n!} \)
 - \(- \sum_{n=0}^{\infty} \frac{(1 + i)^n}{(2n + 1)!} \)

- Find the disc of convergence of the following geometric series and sum each series in its disc of convergence:

 - \(- \sum_{n=0}^{\infty} (1 + i)^n z^n \)
 - \(- \sum_{n=0}^{\infty} \frac{z^n}{(1 + 2i)^{2n}} \)
 - \(- \sum_{n=0}^{\infty} 2^{-n}(z - 3 - 4i)^n \)
Homework 7, due Thursday July 21st

- Determine the disc of convergence of each of the following series and give a simple formula for its sum, if possible.

\[\sum_{n=0}^{\infty} \frac{(z - i)^n}{2^n} \]
\[\sum_{n=0}^{\infty} \frac{(z - 3)^n}{n!} \]
\[\sum_{n=0}^{\infty} (2^n + 3^n)z^n \]
\[\sum_{n=0}^{\infty} \frac{n(z - 1)^n}{(n + 1)^2} \]

- Let \(A(z) = \sum_{n=0}^{\infty} \frac{z^n}{2^n(n + 1)} \).

 - Determine the convergence disc of \(A(z) \).
 - Give formulas for the first two derivatives of \(A(z) \). Do they converge for the same \(z \)-values as does \(A(z) \)? Explain.
 - Give a formula for the series \(B(z) \), such that \(B'(z) = A(z) \) and \(B(0) = 0 \). Does the series \(B(z) \) converge for the same \(z \)-values as does \(A(z) \)? Explain.
 - Can you give a simple expression for the sum \(A(z) \)?
Homework 8, due Wednesday July 27th

- Compute \(\ln(-2+3i) + \ln(1+4i) - \ln((-2+3i)(1+4i)) \) and explain graphically why the result is non-zero.

- Find all values of \((1 + i)^{2-3i}\) and \(i^{\frac{3}{2}}\).

- Compute the integrals:
 \[
 \int_{0}^{2} \frac{t}{t+i} dt, \\
 \int_{0}^{\infty} e^{-zt} dt, \text{ where } \Re(z) > 0.
 \]

- Evaluate the integrals \(\int_{\Gamma_1} zdz\) and \(\int_{\Gamma_2} zdz\), where \(\Gamma_1\) is the upper half of the circle in the complex plane centered at the origin of radius 1, traced counter-clockwise and \(\Gamma_2\) is the polygonal path starting at \(z = 1\) going first in a straight line to \(z = 1+i\), then in a straight line to \(z = i\), then in a straight line to \(z = -1\).

- Determine the integrals around the unit circle centered at the origin, traced once, counterclockwise, of the following functions:
 - \(f_1(z) = \frac{z}{z^2+2}\)
 - \(f_2(z) = \frac{1}{z^2+2z+2}\)
 - \(f_3(z) = \frac{1}{4z^2+1}\)

- Find the integral of \(z^{-1}(z-2)^{-1} \exp(z)\) around the circle center the origin radius \(\frac{1}{2}\) traced once counterclockwise.

 If instead the circle has radius \(r\) center the origin, which values of \(r\) will give a result for the integral of zero?