Problem: Evaluate \(I = \iint_S \text{curl} \vec{F} \cdot d\vec{S} \), where \(\vec{F} = xyz \vec{i} + x \vec{j} + e^{xy} \cos z \vec{k} \), and \(S \) is hemisphere \(x^2 + y^2 + z^2 = 1, \; z \geq 0 \) oriented upward.

Solution: By Stoke’s theorem \(I = \iint_S \text{curl} \vec{F} \cdot d\vec{S} = \oint_C \vec{F} \cdot d\vec{r} \), where \(C \) is the circle \(x^2 + y^2 = 1 \) oriented counterclockwise. Its parametrization is \(\vec{r}(t) = \langle \cos t, \sin t, 0 \rangle \). Then \(\vec{r}'(t) = \langle -\sin t, \cos t, 0 \rangle \), \(\vec{F}(\vec{r}(t)) = \langle 0, \cos t, e^{\cos t \sin t} \rangle \), \(\vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) = \cos^2 t \).

\[
I = \int_0^{2\pi} \cos^2 t \, dt = \int_0^{2\pi} \frac{1}{2} (1 + \cos 2t) \, dt = \left[\frac{1}{2} t + \frac{1}{4} \sin 2t \right]_0^{2\pi} = \pi
\]

Problem: Use Stoke’s theorem to evaluate \(I = \oint_C \vec{F} \cdot d\vec{r} \), where \(\vec{F} = x \vec{i} + y \vec{j} + (x^2 + y^2) \vec{k} \), and \(C \) is the boundary of the part of a paraboloid \(z = 1 - x^2 - y^2 \) in the first octant oriented counterclockwise as viewed from above.

Solution: By Stoke’s theorem \(I = \oint_C \vec{F} \cdot d\vec{r} = \iint_S \text{curl} \vec{F} \cdot d\vec{S} \)

where \(\text{curl} \vec{F} = 2y \vec{i} - 2x \vec{j} + 0 \vec{k} \), \(S: \; z = 1 - x^2 - y^2 = g(x,y) \), \(\vec{n} = \frac{\langle 2x, 2y, 1 \rangle}{\sqrt{4x^2 + 4y^2 + 1}} \).

Then \(\text{curl} \vec{F} \cdot \vec{n} = 0 \) and \(I = \iint_S 0 \, dS = 0 \)

Problem: Use the Divergence theorem to evaluate \(I = \iiint_B \text{div} \vec{F} \, dV \), where \(\vec{F} = x^4 z \vec{i} + 2x^3 yz \vec{j} + x^3 z^2 \vec{k} \) and \(S \) is the boundary surface of the box \(B \) with vertices \((0,0,0),(1,0,0),(0,2,0),(0,0,3),(1,2,0),(1,0,3),(0,2,3)\), and \((1,2,3)\) with outwards pointing normal vector.

Solution: By the Divergence theorem \(I = \iiint_B \text{div} \vec{F} \, dV = \iiint_S \vec{F} \cdot d\vec{S} \)

where \(\text{div} \vec{F} = 4x^3 z + 2x^3 z + 2x^3 z = 8x^3 z \), \(B = \{(x,y,z) \mid 0 \leq x \leq 1, 0 \leq y \leq 2, 0 \leq z \leq 3\} \).
Hence,
\[I = \int_0^1 \int_0^2 \int_0^3 8x^3z \, dz \, dy \, dx = 8 \int_0^1 x^3 \, dx \int_0^2 dy \int_0^3 z \, dz = 8 \cdot \frac{1}{4} \cdot 2 \cdot \frac{9}{2} = 18 \]

Problem: Use the Divergence theorem to evaluate \(I = \iiint_S \bar{F} \cdot d\bar{S} \), where
\[\bar{F} = y^2 z \bar{i} + y^3 \bar{j} + xz \bar{k} \] and \(S \) is the boundary surface of the box \(B \) defined by \(-1 \leq x \leq 1,\ 0 \leq y \leq 1,\ \text{and} \ 0 \leq z \leq 2 \) with outwards pointing normal vector.

Solution: By the Divergence theorem
\[I = \iiint_S \bar{F} \cdot d\bar{S} = \iiint_B \text{div} \bar{F} \, dV \]

where \(\text{div} \bar{F} = 0 + 3y^2 + x = x + 3y^2 \). \(B = \{(x, y, z) \mid -1 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 2\} \). Hence,
\[I = \int_{-1}^1 \int_0^2 \int_0^3 (x + 3y^2) \, dz \, dy \, dx = 2 \int_{-1}^1 \int_0^2 (x + 3y^2) \, dy \, dx = 2 \int_{-1}^1 (x + 1) \, dx = 4 \]

Bonus problem: Evaluate the flux of the vector field \(\bar{F} = \langle x^2 y^2, -xy^3, xy^2 z - e^{x+y} \rangle \) across the surface \(S \) of the solid \(E \) bounded by the hyperboloid \(x^2 + y^2 - z^2 = -1 \) and the paraboloid \(z = 4 - x^2 - y^2 \), when \(z \geq 0 \).
[:-) Have a wonderful day!]

Solution: The flux is the surface integral \(\iint_S \bar{F} \cdot d\bar{S} \).
\[\text{div} \bar{F} = 2xy^2 - 3xy^2 + xy^2 = 0 \]

By the Divergence theorem
\[\iint_S \bar{F} \cdot d\bar{S} = \iiint_E 0 \, dV = 0. \]