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Purpose of review

Trauma and infection elicit an acute inflammatory response. In
certain circumstances the degree of the acute inflammatory
response may result in pathologic manifestations, namely,
sepsis and multiple organ failure. Despite an extensive series
of clinical trials designed to modulate inflammation in sepsis,
only one compound, activated protein C, has emerged from
more than 250 failed trials. There is a growing recognition that
the complexity of the acute inflammatory response precludes
the efficient development of therapies for sepsis and multiple
organ failure until systems approaches are brought to bear on
this problem.
Recent findings

Work carried out by the authors’ groups suggests that
mathematical modeling can provide a means by which in vitro
and in vivo data can be synthesized into system-level analytic
models of the acute inflammatory response. The authors have
focused on agent-based modeling and modeling with ordinary
differential equations. Some of the advantages and
disadvantages of these modeling approaches are presented,
and methods for calibration and validation of these models are
discussed. Finally, the usefulness of mathematical models to
evaluate the prospective therapeutic strategies in clinical trials
of sepsis and trauma is examined.
Summary

Simulations using various methods can shed insight into the
pathophysiology of the acute inflammatory response and may
lead to better design of clinical trials in sepsis and trauma.
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Introduction
The management of sepsis and its related conditions

systemic inflammatory response (SIRS) and multiple or-

gan failure (MOF) remains the greatest clinical challenge

in critical care [1]. Similarly, the search for effective phar-

macologic therapies for sepsis/SIRS/MOF remains the

primary focus of the vast majority of basic science re-

search in the critical care community. Much has been

learned regarding the cellular and molecular mechanisms

of the acute inflammatory response (AIR). However, ex-

cept for recombinant human activated protein C

(drotrecogin-� [activated]), this knowledge has not led to

effective therapies for inflammation-induced shock

[2–4]. Despite showing promise in animal and early-

phase human studies, virtually all attempted anti-

inflammatory strategies have failed to improve outcome

in large, randomized clinical trials [5–8].

Clinical trials of mediator-directed

therapies: what is missing?
We propose that one potential reason for this dearth of

therapeutic options is the relatively recent recognition

that the inflammatory system demonstrates complex,

nonlinear behavior [9–13]. The complexity of the AIR

calls into question the applicability of the traditional sci-

entific paradigm of reductionism, which focuses on re-

ducing a system into its constituent parts and assuming

that the behavior of the full system can then be inferred

from recombining these constituent parts. This approach

is successful only for systems that behave linearly so that

the results of various independent experiments can be

linearly summed to obtain the behavior of the whole

system.

Systems such as the AIR that have multiple feedback

loops and saturating dose response kinetics are inher-

ently nonlinear. Analyzing individual components in iso-

lation may not illuminate how the entire system will
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behave. These processes must be examined with tech-

niques of nonlinear analysis. It is now recognized that

such an approach is necessary to understand complex

biologic processes [9–11,14,15].

The inherent nonlinearity and complexity of the AIR

makes it difficult, if not impossible, to predict the effect

of modulating a given pathway or mediator of inflamma-

tion given only the knowledge of that pathway or me-

diator in isolation. This fact is borne out by the general

failure of therapies for SIRS/MOF that modulate inflam-

mation [5–8]. Furthermore, redundancies in the immune

system suggest the need for therapeutic strategies that

target multiple pathways and mediators (ie, combination

therapies) [16•]. However, such multimodal approaches

require an understanding not only of how all the pieces

fit together but also of how they behave together over

time. This understanding is necessary to make informed

decisions regarding the targets and timing of such pro-

spective regimens [16•]. With these concerns in mind,

we propose the use of mathematical modeling to im-

prove the characterization of the AIR and its disease

states of sepsis/SIRS/MOF.

Rationale for mathematical modeling of

the acute inflammatory response
Scientists intuitively create mental models. In some dis-

ciplines, such as physics, these mental models can be

formalized into mathematical equations. Chemistry, as

well, can be characterized in terms of mathematical re-

lations. These equations can then be solved analytically

or numerically on computers. However, biology has for

the most part resisted mathematical characterization.

The aforementioned nonlinearities associated with biol-

ogy in general and human physiology in particular have

made that task daunting. Biologic systems display het-

erogeneity of behavior that resists reduction to simple

quantifiable principles. Furthermore, the dense quanti-

tative data necessary for mathematical modeling have

been, until recently, mostly unavailable.

The advent of plentiful computing power and the avail-

ability of more quantitative data has made the prospect

of mathematical modeling of biologic systems more fea-

sible. Mathematical tools from the fields of nonlinear

analysis, complexity theory, machine learning, Bayesian

analysis, and fuzzy logic have recently been used in this

endeavor [11,17]. Two standard approaches for under-

standing the dynamics of complex systems (not just bio-

logic systems) are agent-based modeling (ABM) and

modeling with ordinary differential equations (ODE). In

recent years, these approaches have moved toward com-

mercial applications as companies such as Entelos, Inc.

(www.entelos.com), and Immunetrics, Inc. (Pittsburgh,

PA, USA) (www.immunetrics.com) have begun to carry

out simulated clinical trials such as those described be-

low [18,19•]. Herein we describe some initial experience

with using these methods to address the complexities of

sepsis/SIRS/MOF.

Examples of mathematical modeling
Various approaches have been used to construct simula-

tions of complex biologic processes. All these methods

have distinct advantages and disadvantages. Below, we

discuss two such approaches and present examples of

models of the AIR.

Ordinary differential equations

The ODE type of modeling consists of establishing a

series of differential equations that describe the sequen-

tial change in the states of the components of the system

over time. The differential equations are derived from

known and hypothesized kinetics of the components of

the biologic system. This approach has been used for

many years to describe chemical systems, for example

Michaelis-Menton kinetics. The variables of the equa-

tions generally represent average concentrations of the

various components. These equations rely on large num-

bers of individuals of these components. When the num-

bers become small, differential equation descriptions

break down. If spatial dynamics can be ignored, the be-

havior of the system can be characterized with ODE. If

simple enough, ODE can be solved analytically. If not,

they can be easily solved computationally. Additionally,

methods from nonlinear analysis can explore the proper-

ties of ODE without completely solving them. Because

these equations are based on biologic interactions, these

models can potentially predict outcomes beyond the

range of available data. Furthermore, manipulation of a

biologic mechanism can be entered into the model and

an outcome derived.

Agent-based modeling

The ABM type of modeling focuses on the rules and

mechanisms of behavior of the individual components of

a system. The components of a system are classified into

types of “agents” by virtue of shared mechanisms that

have been identified experimentally. The mechanisms

are expressed as a series of conditional (“if-then”) state-

ments, and computer programs are written to describe

the rules of behavior. An example would be the se-

quence of receptor activation involved in neutrophil ad-

hesion. The model defines a “virtual world” based on

characteristics of the reference system and generates

populations of the various types of agents. The agents

interact based on responses (defined by their rule sys-

tems) to inputs and outputs from their environment. For

example, simulated cells would respond to variables in

their immediate neighborhood, representing the extent

of a cell’s interaction with its extracellular milieu. The

agents run in a parallel fashion to simulate simultaneous

behavior, and the dynamics of the system are allowed to

emerge from the multiple interactions between the

agents over time. This type of modeling is “bottom up,”
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inasmuch as all measured parameters and outcomes from

the model are generated by the actions of the agents.

Agents should ideally have well-identified, confirmed,

simple rules. Because ABMs are mechanistic models, any

intervention that deals with a defined mechanism in the

model can be simulated. Because they are based on

rules, ABMs are often more intuitive to nonmathemati-

cians.

It needs to be emphasized that the methods of modeling

described above are complementary, and ideally, both

would be used to provide mathematical characterization

of a complex dynamical system. Ordinary differential

equation models focus on the collective behavior of a

population of individual components (eg, concentrations).

Agent-based models simulate the behavior of actual in-

dividuals and can easily encode complicated history-

dependent internal states of cells that are not easily cap-

tured in ODE models. Additionally, the ABM approach

provides a very intuitive means of translation of basic

science data (for a nonmathematician) and allows flex-

ibility in proposing interventions. The downside is that

extensive computational power may be required to simu-

late large numbers representative of real systems, and

thus ABM can be difficult to validate and calibrate with

experimental data. The recognition that both approaches

have their advantages and limitations has placed empha-

sis on cross-platform validation (see below). The follow-

ing sections will describe specific models of the AIR

using ODE and ABM, validation strategies for both, and

a series of in silico (“in computer,” ie, simulated) experi-

ments and results that demonstrate the potential uses of

these forms of analysis.

Ordinary differential equations model of

acute inflammation
Clermont et al. [19•] and Vodovotz et al. [20•] have de-

veloped and calibrated an ODE model of acute inflam-

mation based on the kinetics of well-accepted constitu-

ents of the AIR. The model was initially designed to

simulate inflammation in the peritoneal cavity with spill-

over into the circulation; this mimics the situation both in

many clinical scenarios and in well-accepted animal

models. In this ODE model, neutrophils and macro-

phages are activated directly by bacterial endotoxin (li-

popolysaccharide) or indirectly by various stimuli elicited

systemically upon trauma and hemorrhage. These

stimuli affect both the systemic circulation and injured or

ischemic tissue [21,22].

Once activated, macrophages and neutrophils produce

and secrete both proinflammatory and antiinflammatory

cytokines that together serve to restore homeostasis after

clearing the initial infection or withstanding the initial

injury. This homeostasis leads either to a restoration of

the conditions preceding the insult to the organism or;

alternatively, to the establishment of a new, “healed”

equilibrium. However, when overproduced, antiinflam-

Figure 1. Calibration of ordinary differential equations model of acute inflammation

Mice received 6 mg/kg lipopolysaccharide intraperitoneally. At various time points after this injection, the mice were killed and sera obtained. Serum tumor necrosis
factor (A) and interleukin-10 (B) were measured by specific enzyme-linked immunoassay. Black symbols represent mean ± SD for 3 to 8 separate animals. Black line
indicates prediction of mathematical model.

In silico modeling in sepsis and trauma Vodovotz et al. 385



matory cytokines lead to detrimental immunosuppres-

sion [23–25]. Both proinflammatory and antiinflamma-

tory cytokines in this model are elaborated with distinct

temporal characteristics, with “waves” of cytokines oc-

curring both early and later after the initial challenge.

Proinflammatory cytokines also induce macrophages and

neutrophils to produce free radicals, such as superoxide

NO, which are toxic to bacteria and indirectly to host

tissue [26–28]. The induced damage can incite more in-

flammation by activating macrophages and neutrophils

[29]. However, NO can also protect tissue from damage

induced by shock, even though overproduction of this

free radical causes hypotension [27,30–32]. Simultaneous

numeric solution of the equations of this general model

generates predictions of the time courses of these ele-

ments (Fig. 1).

Agent-based model of the acute

inflammatory response
An [15,33•] has produced a very abstracted ABM of the

AIR that is based at the cellular level. The entire model,

as well as extensive documentation, is available online

through the following portal: http://ccl.sesp.northwestern.

edu/cm/models/community/. A brief summary of the

model and its actions follows here.

The model focuses on the interactions that occur at the

interface between endothelial cells and blood-borne in-

flammatory cells and mediators. Cells were selected as

the agent level because cells can readily be subgrouped

based on common behavioral rules and the responses of

single types of cells to various mediators are extensively

characterized in the basic science literature. The endo-

thelial-blood interface was chosen because endothelial

injury and activation initiate nearly all inflammatory pro-

cesses, and propagation of inflammation requires the cir-

culating components of the AIR in the blood. The model

is designed to respond to insults that simulate both in-

fection and noninfectious tissue injury such as trauma; as

in the ODE model described above, this premise is

based on the idea that similar pathways and actions are

responsible for the propagation of inflammation once the

process has been initiated.

Agents that represent endothelial cells populate the

background grid, and agents that represent neutrophils

and circulating monocytes move over the surface of this

grid. An injury pattern is induced on the endothelial

surface, and as a result the injured endothelial cells ex-

press variables that simulate the activation of cell surface

receptors and produce variables that simulate mediators

that diffuse across the endothelial surface. Neutrophils

or monocytes respond to these values by initiating their

own activation rules. Activated neutrophils undergo an

adhesion and migration sequence, culminating in a simu-

lated respiratory burst. These variables will eliminate

infectious vectors in their vicinity but will also cause

some degree of damage to surrounding endothelial cells.

The monocytes produce further activating and potenti-

ating mediators that augment neutrophil function, and

they also execute an abstracted “heal” function that

simulates phagocytosis and repair of damaged endothe-

lial cells. The result is the creation of a “virtual organ-

ism” that mimics the basic processes of the AIR. Obvi-

ously, this is a very abstract approximation of a real

organism; it is actually more akin to a giant endothelial

cell culture model because there is no tissue differentia-

tion or organ function. However, it is believed that the

model captures the essence of the processes and behav-

ior of the AIR.

As we describe below, both models, which were derived

independently and focus on slightly different mecha-

nisms occurring in different anatomic regions, often pre-

dict similar results both in individuals and in simulated

Figure 2. An in silico observational trial of cardiopulmonary

bypass–induced inflammation and mortality

The ordinary differential equations model of inflammation was used to generate a
simulated clinical trial, as described in the text. Elevated interleukin-6 levels (A)
and hypotension (B) 6 hours after cardiopulmonary bypass are associated with
mortality at 48 hours.
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clinical trials. This “virtual organism” can now be used to

run in silico experiments to integrate hypotheses based

on the results of basic science studies.

Validation strategies
The key for any model, be it cell culture, animal, clinical,

or mathematical, is the relation between the model and

the real-world process that is being modeled. Hence, a

systematic means of validation of the models is neces-

sary. Validation of a mathematical model is focused at

two basic levels: the assumptions that go into the con-

struction of the model, and the subsequent behavior of

the model.

The validation of the assumptions of the model can be

addressed through transparency: making explicit the pro-

cess by which the architecture and rules of the model are

chosen and implemented, because all models represent

some degree of abstraction, and the degree is the choice

of the modeler. In the models described above and in the

publications cited, the assumptions and interactions are

stated, and the models themselves are made available for

review. As new mechanisms of inflammation become es-

tablished, and their role demonstrated reproducibly,

these mechanisms can be incorporated into both the

ABM and the ODE models. For example, the contribu-

tions of the autonomic nervous system to the production

of cytokines such as interleukin (IL)-10 are currently

being integrated into the ODE model, and the effects of

newer mediators such as HMGB-1 are being added into

the ABM.

Validation of the behavior of the model can be ap-

proached through a series of strategies, some of them

specific to the type of model being examined. All these

strategies, to some degree, consist of comparing the be-

havior of the model with some real-world data set of

expected behavior. When the behavior of the model

matches the real-world data set, then the model is

deemed valid for that particular test. If the model does

not match, then the model is reexamined, and either the

basic structure of the model is reconfigured, or specific

variables and relations are fine-tuned through a calibra-

tion process. One immediately apparent problem in-

volves determining when a lack of fit is due to calibration

or to an error in the basic structure of the model, and this

Figure 3. Individual runs with progressing initial levels of infection, demonstrating various outcomes

corresponding to clinical scenarios

(A) Healing, clearing infection, and correcting system damage system. (B) Immune-suppressed systemic inflammatory response/multiple organ failure, clearing
infectious vectors by approximately Time 40 but inability to reduce system damage sufficiently until a “trivial” second hit at approximately Time 100 increased system
damage. (C) Pro-inflammatory systemic inflammatory response, clearing infection but with the forward feedback on the pro-inflammatory actions leading to progressively
increasing system damage. (D) Overwhelming infection, with no clearing of infection or reduction of system damage. Reprinted by permission from [33].
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step often involves extensive literature searches to ob-

tain additional mechanistic insight as well as trial and

error (or more systematic, as described below) calibration

strategies.

The ODE model and parameters were validated and

calibrated in three stages. In the preliminary stage, the

model was constructed so it could reproduce qualita-

tively several different scenarios described in the litera-

ture. The resulting qualitative model was then calibrated

to experimental data in mice, rats, or humans (note that

separate mathematical models were generated for each

species). In the second stage, the model was matched to

experimental data by adjusting parameters for which ex-

act or approximate values were unknown, using litera-

ture information regarding specific biologic mechanisms

together with the dynamics of the model. In the third

stage, the parameters were optimized using a stochastic

gradient descent algorithm that was implemented in pro-

prietary software of Immunetrics, Inc. A statistical analy-

sis of the model’s ability to account for the data was

performed, showing that model fit was not significantly

different from the most optimal regression fit to each

data set. Figure 1 gives a representative example of the

ability of our model to describe the production of tumor

necrosis factor (TNF) and IL-10 in response to 6 mg/kg

endotoxin in C57Bl/6 mice; similar data at 3 and 12 mg/

kg lipopolysaccharide, as well as data on IL-6 and NO2
−/

NO3
−, are not shown.

This model has demonstrated its utility in simulating

acute inflammation induced in mice by endotoxin, sur-

gical trauma, and surgery/hemorrhage. Its predictive abil-

ity was tested in trauma (sham surgery/surgical instru-

mentation) followed or not by hemorrhagic shock +

lipopolysaccharide given 0.5, 3, or 27 hours after the be-

ginning of surgical instrumentation (Lagoa et al., unpub-

lished data). Alhough the model was able to predict to a

large extent the levels of TNF, IL-10, IL-6, and NO

reaction products (NO2
−/NO3

−) in these animals, we

note that in some combinations of insults and at some

time points, the model prediction did not agree with

experimental results. We believe that these discrepan-

cies will help us improve the model by pointing out

incorrect simulations of mechanisms or dynamics.

As an example of the behavior of this model in the set-

ting of population dynamics, we generated an in silico
trial of 100,000 “patients” subjected to randomized lev-

els of surgical trauma (cardiopulmonary bypass) and

hemorrhage (Vodovotz et al., unpublished data). The

“patients” showed the random variations in the produc-

tion of proinflammatory and antiinflammatory cytokines

as well as NO in response to trauma, and they were

“injured” at various random levels. We carried out the

simulation for 48 hours. Death was defined as damage/

dysfunction equal to or greater than 0.15 arbitrary units,

because that was the cutoff point for damage/dysfunction

that was predicted to rise indefinitely. Under these con-

ditions, 3262 “patients” (∼3%) fit this criterion for death,

in agreement with published estimates of mortality after

cardiopulmonary bypass [34]. We examined the charac-

teristics of the “patients” who died and found that, in

agreement with published studies in both rodents and

humans, death tended to occur in those cases in which

IL-6 (examined at 6 hours) and early hypotension were

evident (Fig. 2) [35,36].

Furthermore, the ODE model was used to simulate an

anti-TNF trial, demonstrating a lack of efficacy of

therapy administered randomly to sepsis patients with 30

to 40% mortality in the control population. Interestingly,

this therapy might have demonstrated efficacy if the

ODE model had been used to establish inclusion and

exclusion criteria for administration. For example, “pa-

tients” helped by anti-TNF treatment in this simulation

had higher peak levels of TNF and IL-6 and more se-

vere infections, whereas those hurt by this intervention

tended to have infections of moderate severity but were

low TNF responders and high antiinflammatory re-

sponders [37].

In the ABM, validation can be accomplished at three

levels: the level of individual response (individual dy-

namic), the level of the behavior of a population with

respect to intrinsic variables (population dynamic), and

finally the behavior of the population with respect to an

intervention (population response).

In evaluating the individual dynamic, a single run of the

ABM is considered the equivalent of the behavior of a

single patient, with the focus on the pattern of system

damage and clearance of infection. The ABM is able to

Figure 4. Patterns of mean cytokine levels (tumor necrosis

factor and interleukin-10) over 7 days in populations of runs

with mortality rate of 38%

Model is qualitative only, and therefore the actual numeric values of the cytokine
levels are dimensionless. Reprinted by permission from [33].
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reproduce the basic responses and behaviors seen in the

clinical setting: “healing,” “proinflammatory predomi-

nant SIRS,” “immune-suppressed SIRS/MOF,” and

“overwhelming infection.” The graphs demonstrating

these dynamics can be seen in Figure 3.

With respect to the population dynamic, the ABM is able

to reproduce the patterns of cytokine expression seen in

a matched clinical group. Figure 4 demonstrates the

patterns of values of variables that represent TNF and

IL-10 for a simulated population with a mortality rate

of 38%.

Evaluation of the population response consisted of car-

rying out in silico experiments of therapeutic interven-

tions. In the validation arm, the ABM was used to repro-

duce the results of existing clinical mediator-directed

therapies, namely, anti-TNF, anti-IL-1, and GCSF

supplementation [38,39,40•]. The reported pharmaco-

logic action of each of these drugs was taken into ac-

count, their effects were simulated in the base model,

and none of them resulted in a positive treatment effect

(Table 1), qualitatively matching the results of those

clinical trials. Unfortunately, the lack of coagulation in

the ABM precludes the modeling of the single positive

mediator directed therapy, namely, activated protein C.

The ODE model does include the coagulation cascade,

but this pathway still requires calibration. Ongoing work

in both models is being directed at simulating the actions

of activated protein C. Reproduction of a positive inter-

vention would strengthen the population response level

of validation of both models.

Conclusions and future directions
In summary, it is our contention that the state of medi-

cine is at a point at which the traditional research para-

digm of linear reductionism has reached its limits. In

system-level disease processes, like sepsis/SIRS/MOF, a

synthetic framework is necessary, and mathematical

modeling can provide that [9–13]. There are many ap-

proaches to mathematical modeling, and here we present

two approaches, ABM and ODE, that have different fo-

cuses but produce similar results. It is hoped that this

paper will stimulate interest in these and other tech-

niques.
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