
SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2005 Society for Industrial and Applied Mathematics
Vol. 4, No. 2, pp. 217–248

Existence and Stability of Standing Pulses in Neural Networks: I. Existence∗

Yixin Guo† and Carson C. Chow‡

Abstract. We consider the existence of standing pulse solutions of a neural network integro-differential equa-
tion. These pulses are bistable with the zero state and may be an analogue for short term memory
in the brain. The network consists of a single layer of neurons synaptically connected by lateral
inhibition. Our work extends the classic Amari result by considering a nonsaturating gain function.
We consider a specific connectivity function where the existence conditions for single pulses can be
reduced to the solution of an algebraic system. In addition to the two localized pulse solutions found
by Amari, we find that three or more pulses can coexist. We also show the existence of nonconvex
“dimpled” pulses and double pulses. We map out the pulse shapes and maximum firing rates for
different connection weights and gain functions.
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1. Introduction. The temporary storage of information in the brain for short periods of
time is called working memory [6]. It is known that the firing activity of certain neurons in the
cortex are correlated with working memory states, but it is not known what neural mechanisms
are responsible for maintaining the persistent neural activity [27, 30, 50, 73]. Experiments
find that a specific set of neurons become activated by a memory cue. They fire at a rate
above their background levels while the memory is being held and then return to baseline
levels after the memory is extinguished. When the neurons are active their firing rates are
low compared to their maximal possible rates. Cortical neurons are generally not intrinsically
bistable and do not fire unless given an input that is above a threshold [14, 49, 68]. It has been
suggested that recurrent excitatory inputs in a network could be responsible for maintaining
neural activity observed during memories [27, 30, 33, 49, 67, 68, 72, 73, 76, 77, 36, 46]. The
persistent activity is bistable with the background state. To match experimental data, a
memory network must have the ability to maintain persistent activity in a selected subset of
the neurons while keeping the firing rates low compared to their possible maximum.

Mathematically, this question has been probed by examining the existence and stability
of localized persistent stationary solutions of neural network equations [3, 17, 21, 23, 24, 33,
59, 64, 65, 76, 77]. These localized states have been dubbed “bump attractors” [45, 43, 46,
36, 73, 76]. In a one dimensional network they have also been called standing pulses [23, 59].
While these simple networks do not capture all of the biophysical features of cortical circuits,
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they do capture the qualitative behavior of working memory.
The coarse-grained averaged activity of a neural network can be described by [3, 23, 33,

76, 77]

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
Ω
w(x− y)f [u(y, t)]dy,(1.1)

where u(x, t) is the synaptic input to neurons located at position x ∈ (−∞,∞) at time
t ≥ 0, and it represents the level of excitation or amount of input to a neural element. The
connection function w(x) determines the connections between neurons. The nonnegative and
monotonically nondecreasing gain function f [u] denotes the firing rate at x at time t. We can
set the synaptic decay time τ to unity without loss of generality.

In his classic work, Amari [3] considered (1.1) with a “Mexican hat” connection function
(i.e., excitation locally and inhibition distally). While this is not biologically realistic for a
single layer of neurons, it has been argued that networks of combined excitatory and inhibitory
neurons with biophysically plausible connections can effectively mimic Mexican hat connec-
tivity under certain conditions [23, 39, 59, 74]. Neurophysiological recordings indicate that
the strength of excitatory connections between neurons generally decreases with spatial dis-
tance [15, 16, 19, 26, 71]. Recordings in inhibitory neurons involved in working memory task
experiments demonstrate that the range of effective inhibition between excitatory neurons
is broader than the excitation [16, 26]. This does not necessarily imply that the inhibitory
connections have a broader range. It implies only that the net effect of excitatory neurons
projecting onto local inhibitory neurons which project back onto excitatory neurons have a
broader effect. Hence, in a cortical network, the combined effect of excitatory and inhibitory
connections on the excitatory neurons can be approximated locally by a Mexican hat.

In his paper [3], Amari also made the assumption that f [u] is the Heaviside function. This
approximation made (1.1) analytically tractable, and he was able to find a host of solutions,
one of them being localized stable pulses that are bistable with zero activity. Kishimoto and
Amari [41] later showed these solutions also existed for a smooth sigmoidal gain function that
saturated quickly.

Later work considered two populations [58, 59], various connectivity functions [17, 45,
65], and two dimensions [38, 46]. However, all used either the Heaviside gain function or a
saturating sigmoidal gain function implying that neurons start to fire when their inputs exceed
threshold and saturate to their maximum rate quickly. However, in the brain persistently
active neurons fire at rates far below their saturated maximum [12, 13, 26, 72, 73]. How a
network can maintain persistent activity at low firing rates is not fully understood [10, 13, 33,
45, 47, 48, 63, 72, 73].

The problem of persistent activity at low firing rates cannot be addressed with a quickly
saturating gain function. To circumvent this limitation, we use a nonsaturating piecewise-
linear gain function with a jump (see Figure 2) having the form

g[u] =

{
α(u− uT ) + β, u > uT ,

0, u ≤ uT .
(1.2)

When the gain α is zero, (1.2) becomes the Heaviside function scaled by β. We note that
others have considered piecewise-linear gain functions but without the jump [7, 37, 69]. In
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these cases, persistent activity is not possible unless the threshold is set to zero and the gain
to unity, where a multistable “line attractor” is possible [69].

In this paper we show the existence of isolated convex standing pulse solutions (single
pulses) of (1.1). We consider a single one dimensional layer of neurons. Although this con-
figuration is a major simplification, it has been shown that such networks exhibit features
present in more realistic architectures. We investigate how the pulse solutions change when
parameters of the gain function and the connection function change. We demonstrate the
coexistence of two single-pulse solutions as seen by Amari [3] and give conditions where more
than two pulse solutions can coexist. We also show the existence of nonconvex “dimple-pulse”
solutions and double-pulse solutions. We derive the stability criteria for stable pulses in an
accompanying paper [35].

2. Neural network equations. We study a neural network (1.1) with lateral inhibition
or Mexican hat type connection function w(x) for which excitatory connections dominate for
proximal neurons and inhibitory connections dominate for distal neurons. In general, w(x)
satisfies the following six properties:

1. w(x) is symmetric; i.e., w(−x) = w(x).
2. w(x) > 0 on an interval (−x0, x0), and w(−x0) = w(x0) = 0.
3. w(x) is decreasing on (0, xm].
4. w(x) < 0 on (−∞,−x0) ∪ (x0,∞).
5. w(x) is continuous on R, and w(x) is integrable on R.
6. w(x) has a unique minimum xm on R+ such that xm > x0, and w(x) is strictly

increasing on (xm,∞).
For concreteness, we consider the connection function given by

w(x) = Ae−a|x| − e−|x|,(2.1)

where a > 1 and A > 1 guarantee that w(x) obeys properties 1–6. An example of (2.1) is
shown in Figure 1. This connection function is of the lateral inhibition or Mexican hat class.
Perhaps, given the cusp at zero, it should be called a “wizard hat” function.

For connection function (2.1), x0 = lnA
a−1 and xm = ln aA

a−1 . The area of w(x) above and
below the x-axis represents the net excitation and inhibition in the network, respectively. The
total area of (2.1) is 2(Aa −1). The amount of excitation and inhibition depends on the ratio of
A to a. If A > a, i.e., 2(Aa − 1) > 0, excitation dominates in the network, and if 2(Aa − 1) < 0,
inhibition dominates. In the balanced case, A = a; i.e., 2(Aa − 1) = 0.

The gain function (1.2) can be written as

f [u] = [α(u− uT ) + β]Θ(u− uT ),(2.2)

where Θ(u− uT ) is the Heaviside function such that

Θ(u− uT ) =

{
1 if u > uT ,

0 otherwise.
(2.3)

The gain function (2.2) does not saturate with a positive slope α. Without loss of generality,
we set β = 1. The gain function (2.2) turns into the Heaviside function when α = 0 (see
Figure 2).
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Figure 1. Connection function with A = 2.8, B = 1, a = 2.6, b = 1.

u
T

u0

f

α
β

Figure 2. Piecewise-linear gain function.

A stationary solution of (1.1) satisfies the equilibrium equation

u(x) =

∫ ∞

−∞
w(x− y)f [u(y)]dy.(2.4)

An example of a working memory state can be seen by considering constant solutions of (2.4).
For u(x) = u0, the integral equation becomes

u0 = f [u0]

∫ ∞

−∞
w(y)dy.(2.5)

Using (2.1), the constant solution satisfies

u0 = w0f [u0],(2.6)
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where w0 = 2(A/a − 1). From (2.6), we immediately see that u0 = 0 is a solution. In fact,
zero is a solution of (2.4) for any positive threshold uT and any values of parameters a, A,
and α.

Inserting gain function (2.2) into (2.6) gives

u0 = w0(α(u0 − uT ) + 1), u0 > uT .(2.7)

The existence of constant solutions can be deduced graphically (see Figure 3). Nontrivial
constant solutions (u0 > 0) require w0 > 0 which means that A/a > 1. Thus only for net
excitatory connections are nontrivial constant solutions possible. A simple stability calculation
shows that α < 1 is necessary for stability. Condition (2.7) shows that for uT < 0 and α < 1,
there is a single stable solution. If uT > 0 and α > 0, there can be three solutions (see
Figure 3). Two of the solutions, u0 = 0 and u0 > uT , are stable. The third solution at
u0 = uT is unstable. For this parameter set, the network exhibits working memory–like
behavior. The network is stable in the background state u0 = 0. A transient input from
a memory cue can switch the network into the stable u0 > uT state which represents the
memory. This is a state of persistent activity that is sustained by positive feedback. The
state can be switched off to zero by another transient input when it is no longer needed. The
next section will examine spatially localized pulses that have the same memory property.

uT

u
0

y

w
0 f[u

0 ]

Figure 3. Bistability of constant solutions. The solid circles are the two stable constant solutions, and the
open circle is an unstable solution. w0 is the integral of w(x) on its domain.

3. Single-pulse solutions. We prove the existence and determine the properties of local-
ized stationary persistent states which we call single pulses. We consider single-pulse solutions
of (2.4) that satisfy the following definition.

Definition 3.1. Single-pulse solution:

u(x)

⎧⎪⎨
⎪⎩
> uT if x ∈ (−xT , xT ), xT > 0,

= uT if x = −xT , x = xT ,

< uT otherwise,
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such that (u, u′, u′′, u′′′) → (0, 0, 0, 0) exponentially fast as x → ±∞ and u, u′ ∈ L1(R).
u and u′ are bounded and continuous on R. u′′, u′′′, and u′′′′ are continuous everywhere
except at x = ±xT and bounded everywhere on R. u(x) is symmetric with u′′(0) < 0; u(0) is
the maximum between −xT and xT (Figure 4).

We note that there also exist pulses where u′′(0) > 0, which implies u(0) is no longer the
maximum of the pulse. We call this solution a dimple pulse. The theorem below gives a range
for which there is no single-pulse solution.

Theorem 3.2. For fixed a, A, and β = 1, there is no single-pulse solution if both α < a
2A

and uT > 2A
a are true.

Proof. Substituting the exponential connection function (2.1) and gain function (2.2) into
the integral equation (2.4) gives

u(x) =

∫ ∞

−∞
(Ae−a|x−y| − e−|x−y|)[α(u(y) − uT ) + 1]Θ(u− uT )dy.(3.1)

Suppose there is a single-pulse solution as defined above when both α < a
2A and uT > 2A

a are
satisfied. For a single pulse to exist,

u(0) =

∫ ∞

−∞
(Ae−a|y| − e−|y|)[α(u(y) − uT ) + 1]Θ(u− uT )dy

=

∫ xT

−xT

(Ae−a|y| − e−|y|)[α(u(y) − uT ) + 1]dy

≤
∫ xT

−xT

Ae−a|y|[α(u(y) − uT ) + 1]dy,

where u(x) ≥ uT is continuous on I := [−xT , xT ]. Ae−a|y| is integrable on I and Ae−a|y| ≥ 0
for all x ∈ I. By the mean value theorem for integrals, ∃ c0 ∈ I such that

u(0) ≤ (αu(c0) − αuT + 1)

∫ xT

−xT

Ae−a|y|dy

≤ αPu(c0) + (1 − αuT )P ,(3.2)

where P =
∫∞
−∞Ae−a|y|dy = 2A

a . If αP < 1 and (1−αuT ) ≤ 0 are both true, then u(0) < u(c0),
c ∈ I. However, this cannot be true because u(0) is the maximum of u(x) on R. From αP < 1,
we get α < a

2A . From (1 − αuT ) ≤ 0, uT ≥ 1
α > 2A

a . Therefore, there is no single pulse when
α < a

2A and uT > 2A
a are both true. In other words, if the gain is too low or the threshold too

high, there cannot be a single pulse.

3.1. Strategy to construct a single-pulse solution. The general approach to studying
integral equation (2.4) is to derive an associated differential equation whose solutions are also
solutions of the integral equation. We derive the differential equation by using the Fourier
transform

F [g(x)] =

∫ ∞

−∞
g(x)eisxdx,
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where g ∈ L1(R) and s ∈ R, with the inverse Fourier transform

g(x) =
1

2π

∫ ∞

−∞
F [g(x)]e−isxds.

For our conditions on u(x) and w(x), an application of the Fourier transform to (2.4) is
well defined and turns the convolution into a pointwise product

F [u] = F [w]F [f [u]].(3.3)

Computing F [w] in (3.3) gives

F [u] =
(2aA + 2as2A− 2a2 − 2s2)

(a2 + a2s2 + s2 + s4)
F [f ].(3.4)

Multiplying both sides of (3.4) by the denominator of the right-hand side and using the linear
property of the Fourier transform with the identities F [u′′] = −s2F [u] and F [u′′′′] = s4F [u]
give

F [u′′′′ − (a2 + 1)u′′ + a2u] = F [2(aA− a2)f ] + 2(aA− 1)F [s2f ].(3.5)

By the definitions of u(x) and f [u],

F [u′′′′ − (a2 + 1)u′′ + a2u]

and

F [2(aA− a2)f ]

are in L1(R).
Integrating F [s2f ] by parts yields

F [s2f ]

=

∫ ∞

−∞
s2eisxf [u(x)]dx

=

∫ xT

−xT

s2eisxf [u(x)]dx

= f [u(xT )](−iseisxT + ise−isxT ) + f ′[u(x−T )]u′(xT )(eisxT + e−isxT )

−
∫ xT

−xT

eisx
d2f [u(x)]

dx2
dx.

Note that f [u(x)] = 0 outside of (−xT , xT ) and F [s2f ] ∈ L1(R).
Applying the inverse Fourier transform to (3.5) gives a fourth order ODE

u′′′′ − (a2 + 1)u′′ + a2u = 2(aA− a2)f [u(x)](3.6)

+ 2(aA− 1)

{
f [u(xT )]M ′(x) + f ′[u(x−T )]u′(xT )M(x) − d2f [u(x)]

dx2

}
,
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where

M ′(x) = δ′(x− xT ) + δ′(x + xT )

and

M(x) = δ(x− xT ) + δ(x + xT ).

Here δ(x) and δ′(x) are defined as

δ(x) =
1

2π

∫ ∞

−∞
eisxds,

∫ ∞

−∞
f(x)δ′(x)dx = −f ′(0).

If u(x) is a solution of (3.6) where (3.3)–(3.5) hold, then u(x) is also a solution of (2.4).
We construct a single-pulse solution as in Figure 4 by decomposing ODE (3.6) into two

linear differential equations:

u′′′′ − (a2 + 1)u′′ + a2u = 2a(A− a)f(u) − 2(aA− 1)
d2f [u]

dx2
if u > uT (region I),(3.7)

u′′′′ − (a2 + 1)u′′ + a2u = 0 if u < uT (region II and III).(3.8)

x

u

u

III        I            II

T

−x xT T

Figure 4. Single-pulse solution.

We label the solution of (3.6) on regions I, II, and III by uI(x), uII(x), and uIII(x), respec-
tively. The solutions uI(x), uII(x), and uIII(x) must be connected together at −xT and xT

to get a continuous and smooth u(x) on R. uI(x) and uII(x) are connected at xT with five
matching conditions:

uI(xT ) = uT ,(3.9)

uII(xT ) = uT ,(3.10)

u′I(xT ) = u′II(xT ),(3.11)

u′′I (xT ) = u′′II(xT ) − 2(aA− 1)f(u(xT )),(3.12)

u′′′I (xT ) = u′′′II(xT ) − 2(aA− 1)f ′(u(xT ))u′(xT ).(3.13)
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Conditions (3.9)–(3.11) are given by the continuity of u(x) and u′(x). Equation (3.13) is
obtained by integrating (3.6) over a small neighborhood of xT . Equation (3.12) is obtained
by integrating (3.6) twice—first with respect to x and then over a small neighborhood of xT .
u′′(x) and u′′′(x) are discontinuous at xT ; i.e., there are jumps in u′′(xT ) and u′′′(xT ). Since
u(x) is symmetric, similar matching conditions apply to uI(x) and uIII(x) at −xT .

In region II, the solution for a single pulse that satisfies the boundary conditions is

uII(x) = Ee−ax + Fe−x, E, F ∈ R.(3.14)

By symmetry, the solution in region III is

uIII(x) = Eeax + Fex, E, F ∈ R.(3.15)

In region I, substituting f [u(x)] = α(u− uT ) + 1 and d2f [u(x)]
dx2 = αu′′(x) into (3.7) gives

u′′′′ − (a2 + 1 − 2α(aA− 1))u′′ + (a2 − 2aα(A− a))u = 2a(A− a)(1 − αuT ).(3.16)

The eigenvalues of (3.16) are ω1, −ω1, ω2, −ω2, where

ω2
1 = R + S,(3.17)

ω2
2 = R− S(3.18)

with

R =
(a2 + 1 − 2α(aA− 1))

2
,(3.19)

S =

√
∆

2
,(3.20)

and

∆ = (a2 + 1 − 2α(aA− 1))2 − 4(a2 − 2aα(A− a)).(3.21)

Imposing symmetry and u′(0) = 0, the general solution of ODE (3.16) can be written in the
form

uI(x) = C(eω1x + e−ω1x) + D(eω2x + e−ω2x) + U0,(3.22)

where

U0 =
2(A− a)(β − αuT )

a− 2α(A− a)

for x ∈ (−xT , xT ), xT ∈ R, C,D ∈ C, and uI(x) ∈ R.
The single-pulse solutions of (3.6) are found by matching uI , uII , and uIII across xT and

−xT using the matching conditions (3.9)–(3.10). We investigate the existence and shape of
single-pulse solutions as we change the gain and connection function. For simplicity, we call
xT the width of a pulse although it is actually the half width. The height of a single pulse is
u(0). The firing rate of the pulse is given by f [u].
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3.2. Solutions for the Amari case (α = 0). Amari found conditions for which single-
pulse solutions exist for (2.4) with general Mexican hat connectivity and the Heaviside gain
function [3]. Here, we revisit the Amari case for the exponential connection function (2.1).
When α = 0 and β = 1, the gain function (2.2) becomes the Heaviside function Θ(u) and the

term 2(aA− 1)d
2f [u]
dx2 does not exist in ODE (3.7). The eigenvalues (3.17) and (3.18) become

simple and the solutions (3.22) and (3.14) are

uI(x) = C(eax + e−ax) + D(ex + e−x) + U0,(3.23)

uII(x) = Ee−ax + Fe−x,(3.24)

respectively. Applying conditions (3.9)–(3.13) to (3.23) and (3.24) yields the system

Ee−axT + Fe−xT = uT ,(3.25)

C(eaxT + e−axT ) + D(exT + e−xT ) +
2(A− a)β

a
= uT ,(3.26)

aC(eaxT − e−axT ) + D(exT − e−xT ) = −aEe−axT − Fe−xT ,(3.27)

a2C(eaxT + e−axT ) + D(exT + e−xT ) = a2Ee−axT + Fe−xT − 2(aA− 1)β,(3.28)

a3C(eaxT − e−axT ) + D(exT − e−xT ) = −a3Ee−axT − Fe−xT .(3.29)

The system (3.25)–(3.29) is linear in the coefficients C, D, E, and F , which can be solved in
terms of xT :

C = −A

a
e−axT ,

D = e−xT ,

E =
A

a
(eaxT − e−axT ),

F = −(exT − e−xT ).

From these coefficients we arrive at the following proposition for single-pulse solutions.

Proposition 3.3. There are two pulse solutions when uT ≤
∫ (lnA)/(a−1)
0 w(x)dx and (Aa −

1) < uT for A > a and 0 ≤ uT for A < a.
Proof. Substituting E and F into (3.25) (or C and D into (3.26)) gives an existence

condition for a single pulse Φ(xT ) = uT , where

Φ(x) =
A

a
(1 − e−2ax) − (1 − e−2x).(3.30)

We term Φ(x) the “existence function.” Two examples are shown in Figures 6 and 7 where
the curve Φ(x) crosses uT twice, implying that there are two single-pulse solutions (example
is shown in Figure 5).

Since

lim
x→∞

Φ(x) =
A

a
− 1 =

{
< 0 if A < a (Figure 6),

≥ 0 if A ≥ a (Figure 7),
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Figure 5. Large single pulse l and small single pulse s for A = 2.8, a = 2.6, α = 0, uT = 0.3. (Left)
Single pulse l: xl

T = 0.68633, height = u(0) = 0.79991. (Right) Single pulse s: xs
T = 0.12985, height = u(0) =

0.37358.

1 2 3xT

l
xT

s

xA/a−1

0.2

0

Φ

Figure 6. Existence function Φ(x) when A < a with α = 0, A = 2.6, a = 3. limx→∞ Φ(x) = A
a
− 1 =

−0.1333. Φ(x) gives the range of thresholds uT that supports two single-pulse solutions. Example: At uT = 0.2,
Φ(x) shows that we have a single-pulse solution l with width xl

T ; the second single-pulse solution s is narrower
and has width xs

T .

the lower bound of uT that supports two pulses is 0 if A < a and the lower bound of uT that
guarantees two pulses is A

a − 1 when A > a.
The upper bound on threshold uT that supports two pulse solutions is the maximum of

Φ(x). Solving

dΦ

dx
= Ae−2ax − 2e−2x = 0

gives x = lnA
2(a−1) . Thus Φ reaches its maximum at

Φ(x) =
A

a
(1 − e−

a lnA
a−1 ) − (1 − e−

lnA
a−1 ) =

∫ lnA
a−1

0
w(x)dx,(3.31)
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1 2 3xT
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xT
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P
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A/a−1

0.2

0.4
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uT
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Φ

P

Figure 7. Existence function Φ(x) when A > a. α = 0, A = 2.8, a = 2.6, limx→∞ Φ(x) = A
a
−1 = 0.07692.

Example: At uT = 0.3, Φ(x) shows that there is a wide single-pulse solution l with width xl
T = 0.68633 and a

narrower single-pulse solution s with width xs
T = 0.12985. P is the transition point where single pulse l changes

into a dimple pulse d. At the transition, uP
T = 0.15672 and xP

T = 1.24379.

62 4
x

−0.45

0.65

u

u
T

Figure 8. Dimple pulse d for A = 2.8, a = 2.6, α = 0, uT with width xd
T = 1.8832.

proving the proposition.

Proposition 3.3 does not distinguish between convex single pulses and dimple pulses which
are in the family of single-pulse solutions. An example of a dimple pulse which usually exists
for small threshold is shown in Figure 8. In Figure 7, as uT is lowered, P is the transition point
where u′′ = 0 and the convex single pulse l transforms into the dimple pulse d. The small
single pulse s always remains a single pulse. The transition point P is identified by following
u′′(0) as a function of uT using the continuation program AUTO. In the accompanying paper
we compute the stability of these solutions. In agreement with Amari [3] we find that the
large pulse is stable and the small pulse is unstable. Additionally, we find that dimple-pulse
solutions can also be stable.
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3.3. Solutions for the general case. For the general case of α 	= 0, the complex eigen-
values ω1, −ω1, ω2, −ω2 given by (3.17) and (3.18) will change form for different parameter
values. The transition points for the eigenvalues are given by the relative signs of functions
R (3.19), S (3.20), and ∆ (3.21). There are three cases: both eigenvalues ω1,2 are real, both
are complex, or both are imaginary.

We consider the transitions when α is changed for fixed a and A. We find that there
are five critical points where the eigenvalue structure changes. At α = α0 ≡ a/(2(A − a)),
R − S = 0, with R > 0 and ∆ > 0. The solutions of the quadratic equation ∆(α) = 0 give
α1 and α3. At α2, R = 0. At α4 = a/(2(A − a)), R + S = 0 with R < 0 and ∆ > 0. We
arrange αi (i = 0, 1, 2, 3, 4) in increasing order. ω1 and ω2 are complex conjugates for both
α ∈ (α1, α2) and α ∈ (α2, α3). In our analysis, we consider only the case where α > 0 (i.e.,
the firing rate is increasing with input). The case of α = 0 with the general connection weight
function was fully treated in [3] and is reevaluated in section 3.2. Tables 1, 2, and 3 enumerate
all the possible forms of ω1 and ω2.

Table 1
Eigenvalue chart when A > a.

E1 E2 E3 E4 E5 E6

� > 0 � > 0 � > 0 � = 0 � < 0 ∆ > 0
R < 0 < |R| R < 0 < S R < 0 < |R|
|R| < S 0 < S < R S < |R| |R| = S

ω1 real real imaginary = ω2 = ω∗
2 , complex =

√
2R

ω2 imaginary real imaginary = ω1 = ω∗
1 , complex 0

α (α4,∞) (−∞, α1) (α3, α4) α1, α3 (α1, α3) α4

Table 2
Eigenvalue chart when A < a.

E1 E2 E3 E4 E5 E6

� > 0 � > 0 � > 0 � = 0 � < 0 ∆ > 0
0 < R < S 0 < S < R R < 0 < S < |R| 0 < R = S

ω1 real real imaginary = ω2 complex =
√

2R

ω2 imaginary real imaginary = ω1 complex 0

α (−∞, α0) (α0, α1) (α3,∞) α1, α3 (α1, α3) α0

Table 3
Eigenvalue chart when A = a.

E1 E2 E3 E4 E5 E6

� > 0 � > 0 � > 0 � = 0 � < 0
0 < R < S 0 < S < R R < 0 < S < |R| R = S

ω1 real imaginary = ω2 = ω∗
2 , complex

ω1 ∅ real imaginary = ω2 = ω∗
1 , complex ∅

α (−∞, α1) (α3,∞) α1, α3 (α1, α3)

Although both α0 and α4 have the same expression, they do not coexist. When A < a,
α0 = a

2(A−a) < 0, and when A > a, α4 = a
2(A−a) > 0. For all values of ω1 and ω2, uII(x) and

uIII(x) always have the form (3.14) and (3.15), respectively.



230 YIXIN GUO AND CARSON C. CHOW

3.4. Solutions for real eigenvalues.

3.4.1. Construction of single-pulse solutions. For α ∈ (0, α1), both ∆ and R are positive,
so ω1 and ω2 are both real. Hence uI(x) and uII(x) have the following form:

uI(x) = C(eω1x + e−ω1x) + D(eω2x + e−ω2x) +
2(A− a)(β − αuT )

a− 2α(A− a)
,(3.32)

uII(x) = Ee−ax + Fe−x.(3.33)

When eigenvalues ω1 and ω2 are real, C and D must also be real for real uI(x). Applying the
matching conditions (3.9)–(3.13) to (3.32) and (3.33) yields

Ee−axT + Fe−xT = uT ,(3.34)

C(eω1xT + e−ω1xT ) + D(eω2xT + e−ω2xT ) + U0 = uT ,(3.35)

ω1C(eω1xT − e−ω1xT ) + ω2D(eω2xT − e−ω2xT ) = −aEe−axT − Fe−xT ,(3.36)

ω2
1C(eω1xT + e−ω1xT ) + ω2

2D(eω2xT + e−ω2xT ) = a2Ee−axT + Fe−xT(3.37)

− 2(aA− 1)β,

ω3
1C(eω1xT − e−ω1xT ) + ω3

2D(eω2xT − e−ω2xT ) = (−a3 + 2aα(aA− 1))Ee−axT(3.38)

+ (−1 + 2α(aA− 1))Fe−xT .

System (3.34)–(3.38) can be solved for the five unknowns C, D, E, F , and xT using Math-
ematica [78], giving an explicit formula for uI(x) and uII(x). The single pulse is then given
by uI(x) on (−xT , xT ), uII(x) on (xT ,∞), and uIII(x) on (−∞, xT ). For the parameter
set (a,A, α, β, uT ) = (2.6, 2.8, 0.15, 1, 0.400273), the solution is (C,D,E, F, xT ) = (−0.8532,
1.16865, 2.94108,−0.89571, 0.41902). Figure 9 shows a graph of this single pulse. The height
uI(0) of the pulse is 0.77892. Its width is xl

T = 0.41902. There also exists a second smaller and
narrower single-pulse solution to (3.34)–(3.38) for the same set of parameters (see Figure 10).
The height and the width of this pulse are uI(0) = 0.6123 and xs

T = 0.2582, respectively.

When ∆ = 0 and R > 0 (α = α1), there are repeating real eigenvalues ω1, ω1, −ω1, −ω1,
where ω1 =

√
R. By the symmetry of uI(x), C1 = D1 and C2 = D2, so uI(x) from (3.22) can

be written as

uI(x) = C(eω1x + e−ω1x) + Dx(eω1x + e−ω1x) + U0.(3.39)

Applying matching conditions (3.9)–(3.13) gives a similar system to (3.34)–(3.38) to which
solutions can be found numerically.

3.4.2. Finding solutions for real eigenvalues using the existence function. In order to
perform numerical continuation on the single-pulse solutions, it is more convenient to utilize
the existence function Φ(x) introduced by Amari [3] and calculated in section 3.2. We compute
it for the general case by first eliminating the threshold uT from system (3.34)–(3.38) to get
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Figure 9. Construction of large single pulse l. A = 2.8, a = 2.6, α = 0.15, uT = 0.3. xl
T = 0.41092,

height = u(0) = 0.77892.
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Figure 10. Large single pulse l and small single pulse s. A = 2.8, a = 2.6, α = 0.15, uT = 0.3. (Left) Single
pulse l: xl

T = 0.41092, height = u(0) = 0.77892. (Right) Single pulse s: xs
T = 0.2582, height = u(0) = 0.6123.

an equivalent four equation system

C(eω1xT + e−ω1xT ) + D(eω2xT + e−ω2xT ) + U0(3.40)

=
a

a− 2α(A− a)
(Ee−axT + Fe−xT ),

ω1C(eω1xT − e−ω1xT ) + ω2D(eω2xT − e−ω2xT ) = −aEe−axT − Fe−xT ,(3.41)

ω2
1C(eω1xT + e−ω1xT ) + ω2

2D(eω2xT + e−ω2xT ) = a2Ee−axT + Fe−xT(3.42)

− 2(aA− 1)β,

ω3
1C(eω1xT − e−ω1xT ) + ω3

2D(eω2xT − e−ω2xT ) = (−a3 + 2aα(aA− 1))Ee−axT(3.43)

+ (−1 + 2α(aA− 1))Fe−xT .
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Equations (3.40)–(3.43) form a linear system in C, D, E, and F . To obtain an existence
function Φ(x), we construct coefficient vectors

m1 =

⎛
⎜⎜⎜⎝

eω1xT + e−ω1xT

ω1(e
ω1xT − e−ω1xT )

ω2
1(e

ω1xT + e−ω1xT )

ω3
1(e

ω1xT − e−ω1xT )

⎞
⎟⎟⎟⎠, m2 =

⎛
⎜⎜⎜⎝

eω2xT + e−ω2xT

ω2(e
ω2xT − e−ω2xT )

ω2
2(e

ω2xT + e−ω2xT )

ω3
2(e

ω2xT − e−ω2xT )

⎞
⎟⎟⎟⎠,

m3 =

⎛
⎜⎜⎜⎝

a
a−2α(A−a)

a

−a2

a3 − 2aα(aA− 1)

⎞
⎟⎟⎟⎠, m4 =

⎛
⎜⎜⎜⎝

a
a−2α(A−a)

1

−1

1 − 2α(aA− 1)

⎞
⎟⎟⎟⎠,

m0 =

⎛
⎜⎜⎜⎝

(A−a)β
a−2α(A−a)

0

−2(aA− 1)β

0

⎞
⎟⎟⎟⎠.

Let DETxT (α) = | m1 m2 m3 m4 |, where |.| is the determinant. For parameters
(a,A, α, β, uT ) = (2.6, 2.8, 0.15, 1, 0.400273), the solution (C,D,E, F, xT ) = (−0.8532, 1.16865,
2.94108,−0.89571, 0.41902) with DETxT (α) = −243.2415568475 is given by Mathematica.
We use this solution as an initial guess to continue system (3.34)–(3.38) using AUTO while
following DETxT (α) as α decreases to 0 and then increases to α1. The recorded value of
DETxT shows that DETxT (α) 	= 0 as α < α1. Therefore, we can always solve the linear
system (3.40)–(3.43) by Cramer’s rule. The solutions for E and F given by

E =

∣∣ m1 m2 m0 m4

∣∣∣∣ m1 m2 m3 m4

∣∣ e−axT
,

F =

∣∣ m1 m2 m3 m0

∣∣∣∣ m1 m2 m3 m4

∣∣ e−xT

are then substituted back into uII(x) = E(x)e−ax + F (x)e−x to obtain the existence function

Φ(x) = Ee−ax + Fe−x =

∣∣ m1 m2 m0 (m3 −m4)
∣∣∣∣ m1 m2 m3 m4

∣∣ .(3.44)

Figure 11 shows Φ(x) (3.44). Φ(x) approaches a limit as x → ∞, but this limit is different
from the limit of Φ(x) in the Amari case (α = 0).

Single pulses of width xT are given by solutions of Φ(xT ) = uT . Since all four eigenvalues
are real, there are no oscillations in Φ(x) and so there are at most two pulse solutions. One is
a small single pulse, and the other is either a large single pulse or a dimple pulse depending
on the threshold uT .
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Figure 11. Existence function Φ(x) for α = 0.15, A = 2.8, a = 2.6. At uT = 0.400273, Φ(x) has a single
pulse l which has width xl

T = 0.4109; the second single pulse s is narrower with width xs
T = 0.2582. At P ,

threshold uP
T = 0.1489, and u′′(0) of the pulse at P is 0.
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Figure 12. Example of P -pulse with a = 2.6, A = 2.8, α = 0.15, uP
T = 0.14838. The width of this pulse is

xP
T = 1.27978 and u′′(0) = 0.

3.4.3. Transition point P between single pulses and dimple pulses. The existence func-
tion Φ(x) gives a range of thresholds uT for which there exist two pulse solutions; a large pulse l
(or dimple pulse d) and a small pulse s, or only one small single-pulse solution. The x-value
of the intersection of uT and Φ(x) is the width of a pulse. In Figure 11, xs

T is the width of s,
and xl

T is the width of l. At P , the curvature at the peak of the pulse solution is zero (i.e.,
u′′(0) = 0) as seen in Figure 12. For this set of parameters, dimple pulses appear if uT is
between uPT = 0.1489 and limx→∞ Φ(x) (see Figure 11). Figure 13 shows the continuation
plot of u′′(0); u′′(0) crosses zero at uT = uPT .

3.4.4. Loss of existence for unbalanced synaptic connectivity. An examination of the
shape of Φ(x) shows why single pulses do not exist when excitation and inhibition are too
much out of balance. When excitation dominates, A/a > 1. For fixed a, α, and threshold uT ,
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Figure 13. Plot of u′′(0) when α = 0.15, A = 2.8, a = 2.6. P is the transition point between single pulse l
and dimple pulse d. When threshold uP

T = 0.1489, u′′(0) = 0.

0 1 2 3 4 5

x

0.2

u
T

0.6

Φ

Figure 14. Φ(x) with excitation dominating inhibition. a = 2.6, α = 0.05, uT = 0.400273, and there are
different values of A: A = 3 (cyan); A = 3.5 (blue); A = 3.62 (black); A = 3.7 (red); A = 4.5 (green). When
Φ(x) is tangential to threshold uT for large x, the width of the large pulse is ∞.

as A becomes larger, the existence function Φ(x) moves up and limx→∞ Φ(x) becomes larger.
The width of the large pulse l (or dimple pulse) increases (Figure 14). When Φ(x) is tangent
to uT for large x (black curve in Figure 14), the width becomes ∞ and the pulse no longer
exists. The pulse l or d can be regained by increasing uT . However, for large enough A/a,
Φ(x) will become monotonic (see Figure 15) and only s exists.

When A/a < 1, inhibition dominates excitation in the network. For fixed a and α,
Φ(x) diminishes as A is decreased (ratio A/a becomes smaller). Eventually, the ratio is small
enough to make Φ(x) negative (see Figure 16), and for uT > 0, single pulses no longer exist.
Inputs to the neurons in the network never exceed threshold so the neurons cannot fire.

3.5. Solutions for complex eigenvalues. As seen in Tables 1, 2, and 3, the eigenvalues
ω1 and ω2 form a complex conjugate pair for α1 < α < α3. Thus as long as α1 < α3,
complex eigenvalues can be found for arbitrary a and A. Suppose ω1 = ω∗

2 = p + iq. Then

p = (R2 + S2)
1
4 cos θ, p = (R2 + S2)

1
4 sin θ, where θ = 1

2 arctan

√
|∆|

2R for α ∈ (α1, α2) or

θ = π
2 + 1

2 arctan

√
|∆|

2R for α ∈ (α2, α3). When α > α3, ∆ > 0, R < 0, and S =
√

∆
2 < |R|.
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Figure 15. Φ(x) with excitation dominating inhibition: A = 29.6, a = 2.6, α = 0.03. There exists only
pulse s; pulse l or d do not exist.
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Figure 16. Φ(x) with inhibition dominating excitation. a = 2.6, α = 0.05, uT = 0.400273, and there are
different values of A: A = 2.5 (cyan); A = 2 (blue); A = 1.6 (red); A = 1.05 (black). There is neither pulse s
nor pulse l for positive uT when A/a is small enough (black).

The real parts of ω1 and ω2 are both zero and w1 = iq1, w2 = iq2, where q1 =
√

|R + S| and
q2 =

√
|R− S|.

3.5.1. Construction of a single pulse with complex eigenvalues. To ensure that uI(x)
is real, C and D must be complex. Imposing symmetry gives C = D∗. Setting C = CR + iCI

implies D = CR − iCI . Substituting C, D, ω1, and ω2 into (3.22) for uI(x) gives

uI(x) = 4CR cos(qx) cosh(px) − 4CI sin(qx) sinh(px) + U0.

For simplicity, we relabel with C = 4CR and D = −4CI . When ω1 and ω2 are both imaginary,
we have

uI(x) = C cos(q1xT ) + D cos(q2xT ) + U0.

Applying the matching conditions (3.9)–(3.13) results in five algebraic equations with un-
knowns C, D, E, F , and xT , which can be solved numerically to obtain the explicit form of
uI(x). The plots of pulses l and s are shown in Figure 17.

When α = α3, R < 0, implying ω1 = ω2 =
√
R = i

√
−R. Let ω =

√
−R ∈ R. Then

uI(x) = C1 cosωx + C2 sinωx + D1x cosωx + D2x sinωx + U0.
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Figure 17. Two single pulses with A = 2.8, a = 2.6, α = 0.6178, uT = 0.3. (Left) Single pulse l with
xl

T = 0.58384 and u(0) = 1.0901. (Right) Single pulse s with xs
T = 0.21317 and u(0) = 0.5744.
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Figure 18. Existence function Φ(x). α = 0.6178, A = 2.8, a = 2.6. At uT = 0.400273, Φ(x) shows that
there is a single pulse l which is wider and has width xl

T = 0.58385; the second single pulse s is narrower and
has width xs

T = 0.21317. As we increase uT to the maximum of Φ(x), pulses s and l annihilate in a saddle-node
bifurcation. At P , uP

T = 0.0767, xP
T = 1.454, and u′′(0) = 0. At both P1 and P2, uT = 0.063, u′′(0) > 0, and

the widths are 1.6 and 1.9, respectively. See Figure 19.

Since uI(x) = uI(−x), then C2 = D1 = 0, leaving

uI(x) = C cosωx + Dx sinωx + U0.

3.5.2. Finding solutions for complex eigenvalues using the existence function. The
existence function Φ(x) with complex ω1 and ω2 (Figures 18 and 20) can be obtained using
methods similar to those in section 3.4.2. The main difference from the real case is that Φ(x)
for complex eigenvalues can oscillate as seen in Figure 18. After the first local minimum
between P1 and P2, Φ(x) will approach a constant with decaying oscillations for increasing x.
Additionally, if the threshold is between the first local minimum and the next local maximum,
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Figure 19. Dimple pulses with parameters A = 2.8, a = 2.6, α = 0.6178, uT = 0.063. (Left) Dimple pulse
at P1 with xd

T = 1.6. (Right) Dimple pulse at P2 with xd
T = 1.9.
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Figure 20. Existence function Φ(x) with imaginary ω1 = ω2 for A = 2.8, a = 2.6, α = α3, u
P
T = 0.0967003.

The empty circles are small single pulses. The solid circles are large single pulses. The triangle is a dimple
pulse. Point P is where the dimple pulse (Figure 21) breaks into a double pulse. The crosses are not valid
solutions.

there exist more than two pulse solutions. Figure 19 shows an example where there are a small
single pulse and two dimple pulses. There are never more than two coexisting pulses for real ω1

and ω2, which includes the Amari case, because the existence function Φ(x) does not oscillate.
It is important to note that satisfying the existence condition Φ(x) = uT is a necessary but
not a sufficient condition for a pulse solution. It is possible to satisfy the matching conditions
and not be a pulse. Thus although in principle an infinite number of pulses could exist, in our
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Figure 21. The transition from a dimple pulse to a double pulse at P with uP
T = 0.0967003, and u(0) =

0.0967003.

experience we find that most of the larger x solutions are not pulses. As will be shown in the
accompanying paper [35], pulse s is unstable and pulse l is stable. If there are three pulses,
the largest third pulse which can be either a single pulse or a dimple pulse is unstable.

Oscillations in Φ(x) also exist when the eigenvalues are purely imaginary. As before,
more than two pulses, including dimple pulses, can coexist (see Figure 20) depending on
the threshold uT . Figure 21 shows a special case of a dimple pulse where the dimple min-
imum reaches the threshold. If the minimum drops below the threshold, the dimple pulse
breaks into two disjointed single pulses or a double pulse. This double pulse is not a valid
solution because it violates the assumptions of the equations from which the solution was
derived. However, double pulses can exist, and we show this using a separate formalism in
section 5.

3.5.3. Blow-up for large α. For large enough α, the large pulse l blows up at a critical
value α0 and does not exist for α ≥ α0. The blow-up occurs in the regime where both ω1

and ω2 are imaginary. Thus the height of pulse l is

u(0) = C + D +
2(A− a)(β − αuT )

a− 2α(A− a)
,(3.45)

which can be expressed as

u(0) =

∣∣ (m1 −m2) m0 m3 m4

∣∣∣∣ m1 m2 m3 m4

∣∣ ,(3.46)

where the coefficient factors m1, m2, m3, m4 for C, D, E, F , and m0 are defined in section
3.4.2. The blow-up occurs because the denominator of (3.46) goes to zero at α = α0 while the
numerator remains finite, sending the height u(0) of the large pulse to infinity.

We can also see the loss of l in the existence function:

Φ(x) = Ee−ax + Fe−x =

∣∣ m1 m2 m0 (m3 −m4)
∣∣∣∣ m1 m2 m3 m4

∣∣ .
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Figure 22 shows that when α ≥ α0, there is always the small single pulse s but no large single
pulse l. A third solution (the third intersection of uT and Φ(x)) could also exist, but we have
not examined this solution. As α increases, the height of l becomes very large, but the width
of the large pulse remains finite. This can be observed both from the existence function Φ(x)
and the continuation plot (Figure 24) in section 4.
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Figure 22. Existence function Φ for imaginary ω1,2 with A = 2.8, a = 2.6, uT = 0.400273. (Left) α = 1.4.
There is a single pulse l, and xl

T = 0.8491539857774331, height = u(0) = 146.2227855915919, which is big
because α = 1.4 is close to α0 where DET = 0. (Right) α = 1.41 > α0. Single pulse l no longer exists. The
vertical line in both pictures is where Φ(x) blows up.

4. Continuation in parameter space. One of our original goals was to understand how
the shape of stationary pulses and their corresponding firing rates change as the parameters
of synaptic connectivity and gain are changed. Here we give a global picture in the parameter
space of uT , a, A, and α. A difficulty in this undertaking is that as the parameters are
altered, the eigenvalue structure will make abrupt transitions. Hence, one must keep track of
the eigenvalues and switch the form of the solutions when appropriate to construct a global
picture.

As we saw before, the small and large pulses arise out of a saddle-node bifurcation [22, 25].
This gives a minimal condition for when pulses can exist. In Figures 23 and 24, we show the
large pulse l and the small pulse s arising from a saddle-node bifurcation as α is increased for
fixed a and A. We have set the threshold to

u0
T =

∫ lnA/(a−1)

0
w(x)dx

so that the saddle-node is exactly at α = 0. Note that at the saddle-node bifurcation, the
pulse arises with nonzero height and width.

We can now track the location of the saddle-node and the maximum firing rate of the pulse
at the saddle-node in parameter space. We reduce the four dimensional parameter space by
projecting to the space (α, a/A, uT ). The saddle-node location can be found by setting the
threshold uT to the value of the first local maximum of Φ(x). This gives an upper bound for
allowable thresholds of the gain function to support a pulse solution. As long as uT is below
this upper bound and positive, a single pulse can exist.

We first set A = 1.5 and vary the ratio a/A and α to identify the saddle-node threshold uT .
We then calculate the maximum firing rate fmax of the single-pulse solution at this threshold
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Figure 23. Width of single pulse l (upper branch) and s (lower branch) for a = 2.6, A = 2.8, and
uT = 0.400273. For α ∈ [α∗, α0), there are two single pulses. For α ∈ [α0,∞), there is only one single-pulse
solution. At α = 0 there is a saddle-node bifurcation where the large single pulse l and the small single pulse s
arise. At α0, the large single pulse l blows up.
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Figure 24. Height of single pulse l (upper branch) and s (lower branch) for the same conditions as in
Figure 23.

which creates a two dimensional surface in the space of (a/A, α, uT ). We increment A in steps
of 1 and create a set of surfaces. The surface plots of uT and fmax versus a/A and α are
shown in Figures 25 and 26. Single-pulse solutions exist below a given surface (with uT > 0).
Depending on the parameters, solutions could include one single pulse s, a coexistence of
single pulses s and l (or a dimple pulse d but in a smaller global range), or coexistence of
more than two pulses.

When excitation dominates inhibition (i.e., a/A is small) the single-pulse solution can
blow up as mentioned in section 3.5.3. We note that the crucial parameter for maintaining
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Figure 25. Surface plot of saddle-node point in parameter space of (a/A, α, uT ). The separate leaves
correspond to values of A ranging from 1.5 to 10.5.
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Figure 26. Maximum point of firing rate of the single pulse at the saddle-node for same the conditions as
in Figure 25.

low firing rates is for inhibition to dominate excitation (i.e., a/A to be large). Even for the
balanced case of a = A, for gain slope α beyond unity, the firing rate rises dramatically. This
is in correspondence with observations of numerical simulations [72, 73].
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5. Construction of double-pulse solutions. The neural network equation (1.1) can also
support double-pulse or even multiple-pulse solutions [34, 44]. Double pulses are solutions
that have two disjoint open and finite intervals for which the synaptic input u(x) is above
threshold.

Definition 5.1. Double-pulse solution: A solution u(x) of (2.4) is called a double pulse or
a 2-pulse if there are x1 > 0 and x2 > 0 such that

u(x)

⎧⎪⎨
⎪⎩
> uT if x ∈ (x1, x2) ∪ (−x2,−x1), x1,2 > 0,

= uT if x = −x2,−x1, x1, x2,

< uT otherwise

with

(u, u′, u′′, u′′′) → (0, 0, 0, 0)

exponentially fast as x → ±∞. u and u′ are bounded and continuous on R. u′′, u′′′, and u′′′′

are continuous everywhere for x ∈ R except x = ±x1,2 and bounded everywhere on R. u(x) is
symmetric with u′′(0) > 0; u(0) is the minimum between −x1 and x1 (Figure 27).

The approach to finding and constructing double-pulse solutions is similar to that for
single pulses. The connection function is (2.1) and the gain function is (2.2). Laing and
Troy [44] found that double pulses can exist for the Amari case (α = 0). However, for the
exponential connection function (2.1), the double pulses are unstable. Coombes, Lord, and
Owen [17] found that double and higher number multiple-pulse solutions could exist in a
network with a saturating sigmoidal gain function. As in the single-pulse case, a fourth order
ODE on x ∈ (−∞,∞) for double pulses can be derived:

u′′′′ − (a2 + 1)u′′ + a2u(5.1)

= 2a(A− a)f [u(x)] + 2(aA− 1)
{
f [u(x2)]∆

′
2(x) − f [u(x1)]∆

′
1(x)

}
− 2(aA− 1)

{
f ′[u(x1)]u

′(x1)∆1(x) + f ′[u(x1)]u
′(x1)∆2(x)

}
− 2(aA− 1)

d2f [u(x)]

dx2
,

where

∆1(x) = δ(x− x1) + δ(x + x1),

∆2(x) = δ(x− x2) + δ(x + x2),

∆′
1(x) = δ′(x− x1) − δ′(x + x1),

∆′
2(x) = δ′(x− x2) − δ′(x + x2).

Double pulses can be constructed using ODE (5.1) and the following set of matching conditions
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(5.2)–(5.11) at both x1 and x2:

uI(x1) = uT ,(5.2)

uII(x1) = uT ,(5.3)

uII(x2) = uT ,(5.4)

uIII(x2) = uT ,(5.5)

u′I(x1) = u′II(x1),(5.6)

u′′I (x1) = u′′II(x1) + 2(aA− 1)f(u(x1)),(5.7)

u′′′I (x1) = u′′′II(x1) + 2(aA− 1)f ′(u(x1))u
′(x1),(5.8)

u′II(x2) = u′III(x2),(5.9)

u′′II(x2) = u′′III(x2) − 2(aA− 1)f(u(x2)),(5.10)

u′′′II(x2) = u′′′III(x2) − 2(aA− 1)f ′(u(x2))u
′(x2),(5.11)

where x1 and x2 are the x-values where the double pulse crosses the threshold uT . uI(x) is
the solution of ODE (5.1) on the middle region I = (−x1, x1), uII(x) is the solution of (5.1)
on region II = (x1, x2), and uIII is the solution of (5.1) on region III = (x2,∞) (see examples
in Figures 27 and 28). The explicit forms for uI, uII, and uIII are given in (5.12)–(5.14):

uI = C(eax + e−ax) + D(ex + e−x),(5.12)

uII = E1e
ω1x + E2e

−ω1x + F1e
ω2x + F2e

−ω2x +
2(A− a)(β − αuT )

a− 2α(A− a)
,(5.13)

uIII = Ge−ax + He−x.(5.14)

Here ω1 and ω2 are the eigenvalues of the linear ODE reduced from (5.1) on region I. All the
constants x1, x2, C, D, E1, E2, F1, F2, G, and H can be found using matching conditions
(5.2)–(5.11).

For the general α > 0 case, we have found two coexisting double pulses as shown in
Figure 27. We have not investigated how the double pulses vary in the global regime of
connection weights and the gain. The coexistence of more than two double pulses for fixed a,
A, and α (> 0) remains an open problem as well.

In the Amari case (α = 0), for the same set of values of a, A, uT we find that there are at
most two coexisting double-pulse solutions. The existence conditions are

f1(x1, x2) = u(x1) =

∫ −x1

−x2

w(x1 − y)dy +

∫ x2

x1

w(x1 − y)dy = uT ,(5.15)

f2(x1, x2) = u(x2) =

∫ −x1

−x2

w(x2 − y)dy +

∫ x2

x1

w(x2 − y)dy = uT .(5.16)

Both x3 = f1(x1, x2) and x3 = f2(x1, x2) form two dimensional surfaces in the three di-
mensional space (x1, x2, x3). The two surfaces intersect in a convex up space curve. The
intersection of this space curve with the plane x3 = uT are widths of candidate double pulse
solutions. Since the surfaces do not oscillate for the Amari case there are at most two inter-
section points. These two points give two double-pulse solutions. An example is shown in
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Figure 27. Two coexisting double pulses. A = 2.8, a = 2.6, α = 0.98, uT = 0.26. For the large double
pulse (blue), x1 = 0.19266, x2 = 1.38376. For the small double pulse (red), x1 = 0.50582, x2 = 0.752788.
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Figure 28. Double pulse for the Amari case in which α = 0. A = 2.8, a = 2.6, α = 0, uT = 0.26. For
the large double pulse (blue), x1 = 0.279525, x2 = 1.20521. For the small double pulse (black), x1 = 0.49626,
x2 = 0.766206.

Figure 28. In particular, we have found two coexisting double pulses when a = A and α = 0.
In the accompanying paper [35] we confirm the Laing and Troy finding [44] that the double
pulses in the Amari case are unstable.

6. Discussion. In this paper, we consider a population neural network model of the form
(1.1) with a nonsaturating gain function of the form (1.2). We show the existence of stationary
solutions that satisfy the equilibrium equation (2.4) by explicitly constructing single-pulse
solutions for a specific synaptic connection function (2.1). The strategy was to convert the
integral equation (2.4) into a fourth order ODE. This may seem like a roundabout approach
given that a single-pulse solution u(x) satisfies the Fredholm integral equation (6.1) of the



EXISTENCE OF PULSES IN NEURAL NETWORKS 245

second kind

u(x) = µh(x) + α

∫ xT

−xT

w(x− y)u(y)dy, µ = 1 − αuT ,(6.1)

where h(x) =
∫ xT

−xT
w(x−y)dy, and xT is the pulse width. This can be solved with a Neumann

series. Additionally, if a, A, α, uT , and xT are fixed and satisfy certain conditions, it is not
difficult to show the existence of a unique solution u(x) of (6.1) by a fixed point theorem.
However, it is difficult to show using this approach that this solution is a single pulse. As
we are interested in examining how parameters affect the precise shape of the single-pulse
solutions, we need the explicit solution of (6.1). While it may be possible to obtain a closed
form expression by summing the Neumann series exactly, we feel that given the discontinuities
at the boundaries ±xT , it is simpler to map (6.1) to an ODE and solve that.

In the ODE approach, a proof for the existence of a single pulse of (2.4) becomes a proof
for the existence of a homoclinic orbit of the ODE. Since the ODE has discontinuities across
the threshold points, the ODE on the real line is reduced to three different linear ODEs on
three regions separated by threshold points. The matching conditions for the solutions of the
ODEs across the threshold points must satisfy a system of five equations. From this system,
we are able to construct different single-pulse solutions.

The eigenvalue structure of the linear ODEs is important for determining how many pulses
exist. For real ω1 and ω2, there are at most two pulses—the small single pulse and the large
one. Amari’s case (α = 0) belongs to this regime. A large convex single pulse can transform
into a dimple pulse depending on the threshold value (Figure 12). If the eigenvalues are
complex, there could be a small single pulses and two large pulses with different widths.
Depending on the threshold, these two large pulses could be dimple pulses (Figure 19). There
also exists a transition point where a dimple pulse breaks into a double pulse.

There are three ways that the large pulse can disappear. First, for fixed gain α and
threshold uT , if the excitation is too strong, i.e., ratio A/a is large, the width of the large
pulse becomes wider and eventually loses existence. Second, with fixed excitation, i.e., fixed a
and A, if the gain is too large, i.e., α is large, the large pulse increases in height and blows up
at a finite value of α. Third, with too little excitation or gain, the stable large pulse coalesces
with the unstable small pulse and vanishes in a saddle-node bifurcation.

The pulses are a proposed mechanism of persistent neuronal activity observed during
working memory. Therefore, it is crucial to access their stability. In the accompanying paper,
we show that the large pulse is stable and the small pulse is unstable. We also show that
dimple pulses, like large pulses, can be stable. We show that single pulses can exist for a wide
variety of gain and connection functions. However, for single pulses to exist with low firing
rates, we require the gain to not be too large and inhibition to dominate excitation. This
suggests that the cortex could be dominated by inhibition.

Acknowledgments. We would like to thank G. Bard Ermentrout, Jonathan Rubin, Bjorn
Sandstede, and William Troy for illuminating discussions.
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