THE EIGENCURVE AT EISENSTEIN WEIGHT ONE POINTS

ALICE POZZI

A talk in the Oxford Number Theory Seminar.
Notes by Carl Wang-Erickson, c.wang-erickson@imperial.ac.uk, that have been edited by the speaker.

This talk represents joint work with Adel Betina and Mladen Dimitrov, as well as some of my PhD thesis.

1. \(p \)-adic families of Eisenstein families

Let \(k \geq 4 \) be even, and let \(p \) be an odd prime. We have the classical Eisenstein series of weight \(k \) and level 1,
\[
E_k(q) = \frac{\zeta(1-k)}{2} + \sum_{n>0} \left(\sum_{d|n} d^{k-1} \right) q^n \in M_k(1, \mathbb{Q}).
\]
The constant terms of the Eisenstein series satisfy the Kummer congruences: for \(k, h \in \mathbb{Z} \), \(k \equiv h \pmod{(p-1)p^{a}} \), we have
\[
\zeta(1-k)(1-p^k) \equiv \zeta(1-h)(1-p^h) \pmod{p^{a+1}}.
\]
In addition, we have the obvious congruences
\[
p \nmid d \implies d^{k-1} \equiv d^{h-1} \pmod{p^{a+1}}.
\]
Let
\[
E_{k, \text{ord}}(q) = E_k(q) - p^{k-1}E_k(q^p)
\]
\[
= (1 - p^{k-1}) \frac{\zeta(1-k)}{2} + \sum_{n>0} \left(\sum_{d|n,l|n} d^{k-1} \right) q^n \in M_k(p, \mathbb{Q})^{\text{ord}}.
\]

1. Date: 22 November 2018.
For an example of such characters, consider that given a pair \((\phi, k)\) where
\[\phi : (\mathbb{Z}/Np^a\mathbb{Z})^\times \rightarrow \mathbb{C}_p^\times, \quad k \in \mathbb{Z}_{\geq 1}, \]
there is a character
\[\mathbb{Z}_p^\times \times (\mathbb{Z}/N\mathbb{Z})^\times \ni (x, y) \mapsto \phi(\bar{x}, \bar{y}) \cdot x^k. \]
These characters are exactly the \textit{classical weights}, by definition.

Theorem 1.3 (Serre). Let \(N = 1; \) there exists a \(\Lambda \)-adic \(q \)-series
\[\mathcal{E}_1(q) = \sum_{n \geq 1} a_n q^n \in K(\Lambda) \oplus q\Lambda[q] \]
such that its weight \(k \)-specialization is
\[\mathcal{E}_1 \otimes_{\Lambda, (1, k)} \mathbb{C}_p = E_k^{\text{cusp}} \]
for \(k \geq 4. \)

Thus, \(\mathcal{E}_1 \) can be thought of as a family parametrized by the weight space.

1.1. \textbf{Classical weight one phenomena}. We need to introduce an odd character in order to get an Eisenstein series of weight one. Let
\[\phi : (\mathbb{Z}/N\mathbb{Z})^\times \rightarrow \mathbb{C}^\times \text{ primitive, } (p, N) = 1. \]
Let
\[E_1(1, \phi)(q) = \frac{L(\phi, 0)}{2} + \sum_{n \geq 1} \left(\sum_{d|n} \phi(d)d^0 \right) q^n \]
\[= \frac{L(\phi, 0)}{2} + \sum_{n \geq 1} \left(\sum_{d|n} \phi(n/d)d^0 \right) q^n = E(\phi, 1)(q). \]
The \(p \)-th Hecke polynomial is
\[X^2 - a_p(E_1(1, \phi)) + \phi(p) = (X - 1)(X - \phi(p)). \]
So we have the two stabilizations
\[f_1 = E_1(1, \phi)(q) - \phi(p)E_1(1, \phi)(q^p), \text{ on which } U_p = 1, \]
which interpolates to \(\mathcal{E}_{1, \phi} \), and
\[f_1 = E_1(1, \phi)(q) - E_1(1, \phi)(q^p), \text{ on which } U_p = \phi(p), \]
interpolating to \(\mathcal{E}_{\phi, 1} \). Therefore, we have two possibilities:

Case 1: \(\phi(p) \neq 1 \), and therefore there the two Eisenstein families \(\mathcal{E}_{1, \phi} \) and \(\mathcal{E}_{\phi, 1} \) do not meet in weight 1.

Case 2: we have \(f = f_1 = f_2 \), and the two Eisenstein families meet in weight 1. In this case, we find that
\[a_0(f) = (1 - \phi(p))L(\phi, 0) = 0. \]
The constant term is given by the associated \(p \)-adic \(L \)-function \(L_p(\phi\omega, s) \) evaluated at the trivial zero \(s = 0 \).

Fact. \(f \) is a cuspidal form when viewed as a \(p \)-adic form.
Goal. Understand all cuspidal families passing through f, including how it lies over the weight space via the weight map w.

Here C_N denotes the eigencurve of tame level N, and C_N^{cusp} is its closed cuspidal sublocus. We have that $f \in C_N(\mathbb{C}_p)$. We remark that $C_N(\mathbb{C}_p)$ is naturally isomorphic to the set of systems of Hecke eigenvalues of overconvergent forms of tame level N and of finite slope.

2. Definition of a cuspidal deformation ring

Let $\Lambda(1)$ denote the completed local ring of W at 1. This is isomorphic to $E[[X]]$, where E/\mathbb{Q}_p is generated by the values of ϕ.

Heuristically, we expect that $\Lambda(1)$ = $E[[X]]$-families of cusp forms deforming f biject with representations $\rho: G_\mathbb{Q} \to \text{GL}_2(E[[X]])$ such that $(\rho \mod X) = 1 \oplus \phi$, and ρ is generically irreducible.

This behavior was studied by Ribet.

Lemma 2.1 (Ribet). Let A be a complete DVR with $A/\pi A \cong k$. Let $K = \text{Frac}(A)$. If $\rho: G \to \text{GL}_K(V)$ is two-dimensional and irreducible, while $\bar{\rho} := \rho (\mod \pi)$ satisfies $\bar{\rho}^{ss} = \chi_1 \oplus \chi_2$, then there exists $L \subseteq V$, a G-stable A-lattice, such that $L \otimes_A k$ determines a non-trivial extension $\text{Ext}(\chi_1, \chi_2)$.

In this situation, write $\rho^u := \begin{pmatrix} \phi & * \\ 0 & 1 \end{pmatrix}$, (where u stands for “upper triangular”) and write $R^\text{ord}_{\rho^u}$ for the deformation ring for ρ^u. This sends a completely Noetherian local E-algebra with residue field E to the set of $\rho^u_A: G_\mathbb{Q} \to \text{GL}_2(A)$ such that

- $(\rho^u_A \mod m_A) = \rho^u$
- ρ^u_A is ordinary, i.e. $\rho^u_A|_{G_{\mathbb{Q}_p}} = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$

with an unramified quotient.

We can calculate that the tangent space $t_{R^\text{ord}_{\rho^u}} := \text{Hom}(R^\text{ord}_{\rho^u}, E[\varepsilon]/\varepsilon^2)$ is a 2-dimensional E-vector space. This does not show that there is a unique cuspidal locus – this would follow from being 1-dimensional. This is not hard to
see – we can write down a deformation to \(E[X] \) that is not cuspidal. Namely, \(\mathcal{E}_{1,\phi} \) gives rise to
\[
\begin{pmatrix}
\phi \chi & * \\
0 & 1
\end{pmatrix}
\]
where \(\chi \) is the log-cyclotomic deformation specializing to the trivial character at \(X = 0 \), and where we simply choose an extension class \(* \) that, going modulo \(X \), is equal to that of \(\rho^u \).

To eliminate this, we produce \(R_{\text{ord}} \), where \(l \) is for “lower triangular,” similarly to before. The ordinary flag is lower triangular.

Thus we set up \(R_{\text{cusp}} \), a deformation ring classifying pairs, one lower triangular and one upper triangular deformation as above,
\[
(\rho^u_A, \rho^l_A),
\]
such that
\[
\text{Tr} \rho^u_A = \text{Tr} \rho^l_A, \quad \text{and} \quad \text{Tr} \rho^u_{A,I_p} = \text{Tr} \rho^l_{A,I_p}.
\]
We prove that the tangent space of \(R_{\text{cusp}} \) is one-dimensional. Thus we have

Theorem 2.2 (Betina–Dimitrov–P). *The cuspidal eigencurve is étale at \(f \).*

Describing the tangent space of the cuspidal deformation ring, one obtains the derivatives of the coefficients of the unique cuspidal family \(F \) specializing to \(f \) at weight 1. These coefficients satisfy a congruence with a linear combination of Eisenstein series that can be written in terms of \(\mathcal{L} \)-invariants. Let \(H \) be the splitting field of the character \(\phi \) and consider
\[
U_{\phi} \subset (\mathcal{O}_H[1/p]^\times \otimes E)^{\phi^{-1}}.
\]
It is 1-dimensional over \(E \). There exists a generator \(u_{\phi} \) so that \(\langle u_{\phi} \rangle = U_{\phi} \). The \(\mathcal{L} \)-invariant of \(\phi \) is
\[
\mathcal{L}(\phi) = -\frac{\log_v(u_{\phi})}{\text{ord}_v(u_{\phi})}.
\]

Theorem 2.3. Let \(F \in E[[X]][[q]] \) be the unique cuspidal form reducing to \(f \). Then
\[
a_{\ell}(F) = \frac{\mathcal{L}(\phi^{-1})}{\mathcal{L}(\phi) + \mathcal{L}(\phi^{-1})} a_{\ell}(\mathcal{E}_{1,\phi}) + \frac{\mathcal{L}(\phi)}{\mathcal{L}(\phi) + \mathcal{L}(\phi^{-1})} a_{\ell}(\mathcal{E}_{\phi,1}) \pmod{X^2}
\]
for primes \(\ell \neq p \).