Homework # 5

1. Problems 5,6,9 chapter 10 (page 322-323)

2. Consider the extended Wilson-Cowan model:

\[
\begin{align*}
\tau_{11} z_{11}' &= -z_{11} + f_1(g_{11} z_{11} + g_{12} z_{12}) \\
\tau_{21} z_{21}' &= -z_{21} + f_1(g_{11} z_{11} + g_{12} z_{12}) \\
\tau_{12} z_{12}' &= -z_{12} + f_2(g_{21} z_{21} + g_{22} z_{22}) \\
\tau_{22} z_{22}' &= -z_{22} + f_2(g_{21} z_{21} + g_{22} z_{22})
\end{align*}
\]

Prove that if \(\tau_{11} = \tau_{21} \) and \(\tau_{12} = \tau_{22} \) that all solutions to this ODE satisfy:

\[
\lim_{t \to \infty} |z_{1j}(t) - z_{2j}(t)| = 0, \quad j = 1, 2
\]

and thus, they reduce to the WC equations. By reversing the derivation in class, show that if \(\tau_{11} = \tau_{12} \) and \(\tau_{21} = \tau_{22} \), show that the resulting model reduces to two equations (The Hopfield model).

3. Consider the two models for a scalar neural network with second and third order synapses:

\[
\begin{align*}
u'' + au' + bu &= bf(gu + I), \quad (A) \\
u'' + au'' + bu' + cu &= cf(gu + I), \quad (B)
\end{align*}
\]

where \(a, b, c \) are all positive, and \(f'(y) \) is monotone increasing (e.g. \(f(u) = 1/(1 + \exp(-u)) \)) Can Model (A) undergo any Hopf Bifurcations to oscillations? How about Model (B) (Hint: use the Routh-Hurwitz criteria for these.) if your answer is yes to any of them, simulate an example. What is the sign of \(g \) in order to get oscillations. Prove that if \(g < 0 \), then each model has exactly one equilibrium point.

4. Problems 15,18 page 364-365

5. Page 399-401 number 1, 6,7,10