Firing rates & spike time precision

The link to membrane characteristics

Bard Ermentrout

University of Pittsburgh

July 2002
Many results on spike time precision: theoretical, \textit{in vitro}, and \textit{in vivo}
Many results on spike time precision: theoretical, \textit{in vitro}, and \textit{in vivo}.

With constant stimuli & noise, precision is low;
Many results on spike time precision: theoretical, *in vitro*, and *in vivo*

With constant stimuli & noise, precision is low;

Rapidly varying stimuli can be very precise
Many results on spike time precision: theoretical, *in vitro*, and *in vivo*

With constant stimuli & noise, precision is low;

Rapidly varying stimuli can be very precise

Precision is tied to background level of excitation
Outline

- Many results on spike time precision: theoretical, *in vitro*, and *in vivo*
- With constant stimuli & noise, precision is low;
- Rapidly varying stimuli can be very precise
- Precision is tied to background level of excitation
- This can be related to the PRC by treating the neuron as a generalized oscillator
Neurons code via rate & timing

What is the relationship between rate and timing?
Neurons code via rate & timing

- What is the relationship between rate and timing?
- Rate seems to matter at high spike rates
Neurons code via rate & timing

- What is the relationship between rate and timing?
 - Rate seems to matter at high spike rates
 - Timing may be more important at low rates
Theoretical results

- Shadlen et al elegantly show that presence of input correlations destroys rate codes at low frequencies
Theoretical results

- Shadlen et al elegantly show that presence of input correlations destroys rate codes at low frequencies.
- Many have shown timing carries information:
 - de Ruyter et al work on fly lobular plate
 - Reich et al Primary visual cortex
Theoretical results

- Shadlen et al elegantly show that presence of input correlations destroys rate codes at low frequencies.

- Many have shown timing carries information
 - de Ruyter *et al* work on fly lobular plate
 - Reich *et al* Primary visual cortex

- *In vitro* Mainen & Sejnowski show cortical neurons respond reliably to fast stimuli
How does the neuron multiplex?

Slowly changing inputs are coded with rate code and fast inputs with spike timing.
How does the neuron multiplex?

- Slowly changing inputs are coded with rate code and fast inputs with spike timing.
- The two cannot be separate.
How does the neuron multiplex?

- Slowly changing inputs are coded with rate code and fast inputs with spike timing
- The two cannot be separate
- Can we quantify this interaction?
How does the neuron multiplex?

- Slowly changing inputs are coded with rate code and fast inputs with spike timing
- The two cannot be separate
- Can we quantify this interaction?
- **Strategy**: Use dynamics of action potential initiation to study the role of frequency on spike timing
Canonical models

- Most cortical neurons are type 1
 - All or none action potentials
 - Arbitrarily low frequencies
 - Square root (instantaneous) or linear (steady state) F-I curve
Canonical models

- Most cortical neurons are type 1
 - All or none action potentials
 - Arbitrarily low frequencies
 - Square root (instantaneous) or linear (steady state) F-I curve
- E & K, I & H show the form:

\[
\frac{d\theta}{dt} = 1 - \cos \theta + (1 + \cos \theta)(\beta + I(t))
\]
Canonical models

- Most cortical neurons are type 1
 - All or none action potentials
 - Arbitrarily low frequencies
 - Square root (instantaneous) or linear (steady state) F-I curve
- E & K, I & H show the form:

 \[
 \frac{d\theta}{dt} = 1 - \cos \theta + (1 + \cos \theta)(\beta + I(t))
 \]

- Ermentrout et al extended to include SFA:

 \[
 I(t) = I_0(t) - g_m z \quad \frac{dz}{dt} = f(\theta)(1 - z) - z/\gamma
 \]
Intuitive picture
With adaptation

Low SFA

High SFA
Precision

- Background noise plus baseline depolarization plus stimulus.
- Measure spike time histogram over many repeated trials.
Jitter

- ... is a diffusion process when the cell is oscillating

- ... but not when bias is low
Generic behavior

What determines the temporal sensitivity?
Generic behavior

- What determines the temporal sensitivity?
- Can we understand this precision from the dynamics of excitability?
Generic behavior

- What determines the temporal sensitivity?
- Can we understand this precision from the dynamics of excitability?
- Use the theta model with adaptation – all class I models are equivalent.
The Phase-response curve

- A convenient measure of neural response for oscillators
The Phase-response curve

- A convenient measure of neural response for oscillators
- Tells how timing of inputs affect the time of next spike
The Phase-response curve

- A convenient measure of neural response for oscillators
- Tells how timing of inputs affect the time of next spike
- Easily computed for models and for experiments
Application to coding

Stimulus consists of a slow DC bias
Application to coding

- Stimulus consists of a slow DC bias
- plus phasic terms from inputs (fast and synchronous)
Application to coding

- Stimulus consists of a slow DC bias
- plus phasic terms from inputs (fast and synchronous)
- Thus PRC informs us when the neuron will fire
Experiment & theory

- first spike
- second spike
- theta+adapt
Firing rate & sensitivity

Low adapt

High adapt

At low frequencies - very sensitive
With much adaptation, a coincidence detector
At high frequencies - low sensitivity; “integrator”
Firing rate & sensitivity

- At low frequencies - very sensitive
- With mauch adaptation, a coincidence detector
- At high frequencies - low sensitivity; “integrator”
Consequences

- At low firing rates, inputs have a greater effect on spike timing than they do at high rates.
Consequences

- At low firing rates, inputs have a greater effect on spike timing than they do at high rates.
- The effect of SFA on the PRC can enhance the ability of coupled cells to synchronize.

Many neuromodulators affect SFA. Dopamine & ACh decrease K_m, which should decrease synchrony at lower frequencies by decreasing skew of PRC.
Consequences

- At low firing rates, inputs have a greater effect on spike timing than they do at high rates.
- The effect of SFA on the PRC can enhance the ability of coupled cells to synchronize.
- Many neuromodulators affect SFA:
 - Dopamine & ACh decrease K_m
 - Should decrease synchrony at lower frequencies by decreasing skew of PRC.
Acknowledgments

- Boris Gutkin
- Alex Reyes
- National Science Foundation
- National Institutes of Health