So we are very good for

\[\ln |v_i| < 0 \quad \text{for } i = 2, \ldots, N + \mu \mu \]

we have here that \(\lambda \ln |v_i| < 0 \)

even if \(\lambda > 0 \), Dani suggested Tau notation which is better!

In general:

\[x_i(t+1) = \sum_{j=1}^{N} W_{ij} F(x_j(t)) \quad F : \mathbb{R}^m \to \mathbb{R}^m \]

when \(\sum_{j=1}^{N} W_{ij} = 1 \quad \forall i \)

and \(y(t+1) = F(y(t)) \) is a sequence (periodic or perhaps, not periodic)

Now to study stability of synchronous state. Let \(\nu_k \) be eigenvalue of \(M = (w_{ij}) \)

Then you must look at \(t \)

\[\lambda_k = \ln \nu_k + \lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^{t} \ln \left(|A(t)| \right) \]

where \(A(t) = D_x F(y(t)) \)

and \(|A(t)| \) is some matrix norm, for example:

\[|A| = \sup_{v \neq 0} \sqrt{\sum_{i,j} |A_{ij}|^2} \]
This can be done best numerically since you cannot usually find γ.

If $U(t)$ is periodic, then

$\gamma \leq 0$ and so any coupling will synchronize.

CAVEAT: "OF THIS FORM"

Thus, a very special type of coupling.

Let me clarify this.

Suppose you have the two-dimensional map:

\[
\begin{align*}
U(t+1) &= f(U(t), V(t)) \\
V(t+1) &= g(U(t), V(t))
\end{align*}
\]

\[
\begin{pmatrix} U(t+1) \\ V(t+1) \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix}(U(t), V(t))
\]

\[
\begin{pmatrix} U_i(t+1) \\ V_i(t+1) \end{pmatrix} = \sum_{j=1}^{N} \text{wij} \begin{pmatrix} f(U_j(t), V_j(t)) \\ g(U_j(t), V_j(t)) \end{pmatrix}
\]

Say that species U and species V migrate with exactly the same probability. In stead, the more general equation is
\[u_{j}(t+1) = \frac{1}{N} \sum_{j=1}^{N} m_{ij} f(u_{i}(t), v_{j}(t)) \]

\[v_{i}(t+1) = \sum_{j=1}^{N} m_{ij} g(u_{j}(t), v_{j}(t)) \]

So, if \(\delta_{ij} \neq m_{ij} \) then we cannot apply the previous result.

Indeed, we will see later with continuous differential equation, that different migration rates can have profound effects on synchrony.

Let's return to the map game and look at two different geometries of connectivity.

"All to All" \(m_{ij} = \begin{cases} 1 - \frac{c}{N-1} & i = j \\ \frac{c}{N-1} & i \neq j \end{cases} \)

Here \(c \) is the coupling rate.

\[
M = \begin{bmatrix}
1-c & \frac{c}{N-1} & \cdots & \frac{c}{N-1} \\
\frac{c}{N-1} & 1-c & \cdots & \frac{c}{N-1} \\
\vdots & \ddots & \ddots & \vdots \\
\frac{c}{N-1} & \cdots & \frac{c}{N-1} & 1-c
\end{bmatrix}
\]

What are eigenvalues?
Aside:
\[M = \begin{pmatrix} a & b & \cdots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix} = (a-b)I + b \begin{pmatrix} 1 & \cdots & 1 \\ 1 & \ddots & \vdots \\ \vdots & \ddots & 1 \\ 1 & \cdots & 1 \end{pmatrix} \]

Eigenvalues of \[\begin{pmatrix} 1 & \cdots & 1 \\ 1 & \ddots & \vdots \\ \vdots & \ddots & 1 \\ 1 & \cdots & 1 \end{pmatrix} \] are \(N, 0 (N-1) \times \) (N times)

Eigenvalues of \(M \) are \(a-b + bN \) and \(a-b \) \((N-1) \times \) (N times).

So for us: \(a = 1-c \), \(b = \frac{c}{N-1} \)

\(a-b+bN = 1-c - c \frac{c}{N-1} + \frac{cN}{N-1} = 1 \)

\(a-b = 1-c-c \frac{1}{N-1} \)

So \(\lambda_1 = 1 \) as usual

\(\lambda_2, \ldots, N = 1-c-c \frac{1}{N-1} \)

and Neurem says synchrony will be stable if

\[\lambda + \ln \left| 1-c-c \frac{1}{N-1} \right| < 0 \]

For example, logistic map at \(\lambda \)

\[u(t+1) = ru(t)(1-u(t)), \quad r > 3.9 \]

\(\lambda = 0.492 \) so need strong coupling
Example 2 for coupling:

Nearest neighbor coupling

\[0 < c \leq \frac{1}{2} \]

\[M = \begin{bmatrix}
1 - 2c & c & 0 & \cdots & 0 & c \\
c & 1 - 2c & c & 0 & \cdots & 0 \\
0 & \cdots & c & 1 - 2c & c \\
\end{bmatrix} \]

Periodic ring of \(N \) elements.

Aside: (Always with \(N \) aside!)

Circulant matrices

Let \(\mathbf{c} = [c_0, c_1, c_2, \ldots, c_{N-1}] \)

Let \(M = \begin{bmatrix}
c_0 & c_1 & \cdots & c_{N-1} \\
c_{N-1} & c_0 & c_1 & \cdots & c_{N-2} \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
c_1 & c_2 & \cdots & c_{N-1} & c_0 \\
\end{bmatrix} \)

\(M \) is called a \textbf{circulant matrix}

\[(M \mathbf{x})_i = \sum_{j=0}^{N-1} c_{i-j} x_j \]

or \textbf{convolution}
\((\hat{M} \vec{x})_i = \sum_{j=1}^{n} C_{j-i} \vec{x}_j\)

where we take \(j-i\) modulo \(N\)

e.g. if \(j-i = -3\) then add \(N\) to make it \(N-3\).

We have identified all elements to lie in a circle which is why it is called a circulant matrix.

Coupling from \(j\) to \(i\) depends only on \(j-i\).

Eigenvalues of circulant matrices are easy to find.

Let \(z^N = 1\), so \(z\) is an \(N\)th root of 1.

For example, \(N = 2\), \(z = \pm 1, 2\pi i, -2\pi i\)

\(N = 3\), \(z = e^{\frac{2\pi i}{3}}, \frac{1}{e^{\frac{2\pi i}{3}}}, e^{\frac{2\pi i}{3}}\)

\(N = 4\), \(z = +1, -1, i, -i\)

In general, \(z = e^{\frac{2\pi i k}{N}}\), \(k = 0, \ldots, N-1\)

\(\sin\theta \leq z^N = (e^{\frac{2\pi i k}{N}})^N = e^{\frac{2\pi i k N}{N}} = 1\)
Claim: \[\mathbf{v} = \begin{bmatrix} 1 \\ z_n \\ z_{n-1} \\ \vdots \\ z_1 \end{bmatrix} \] is an eigenvector

Proof:
\[
\mathbf{v} e \begin{bmatrix} A & D \\ D & A \end{bmatrix} t \begin{bmatrix} 1 \\ z_n \\ z_{n-1} \\ \vdots \\ z_1 \end{bmatrix}
\]
\[
= \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} c_{kj} e \begin{bmatrix} A & D \\ D & A \end{bmatrix} t \begin{bmatrix} 1 \\ z_n \\ z_{n-1} \\ \vdots \\ z_1 \end{bmatrix}
\]
\[
= \sum_{j=0}^{N-1} c_{j} e \begin{bmatrix} A & D \\ D & A \end{bmatrix} t \begin{bmatrix} 1 \\ z_n \\ z_{n-1} \\ \vdots \\ z_1 \end{bmatrix}
\]
\[
\Rightarrow \mathbf{v} = \sum_{j=0}^{N-1} c_{j} e \begin{bmatrix} A & D \\ D & A \end{bmatrix} t \begin{bmatrix} 1 \\ z_n \\ z_{n-1} \\ \vdots \\ z_1 \end{bmatrix}
\]

so \(\mathbf{v} \) is an eigenvalue

Proposition: If \(M \) is a circulant matrix with first row \(c_0, \ldots, c_{N-1} \), then the \(N \) eigenvalues are
\[\mathbf{v}_k = \sum_{j=0}^{N-1} c_j e^{2\pi ik/j} \]
For nearest neighbor coupling
\[c_0 = 1 - 2c \quad c_1 = c \quad c_{N-1} = c \quad c_N = 0 \]
so
\[\nu_k = c_0 \cdot 1 + c_1 e^{\frac{-2\pi i k}{N}} + c_{N-1} e^{\frac{2\pi i k}{N}} \]
\[= 1 - 2c + 2c \cos \frac{2\pi k}{N} \]
\[= 1 - 2c \left(1 - \cos \frac{2\pi k}{N} \right) \]
\[k = 0, \ldots, N-1 \]
so the eigenvalues are all real.

Others are less than 1, but for \(N \) large, \(1 - \cos \frac{2\pi k}{N} \)

is very close to zero.

The largest of these eigenvalues is
\[\nu_{\text{max}} = 1 - 2c \cos \left(1 - \cos \frac{2\pi}{N} \right) \quad (\nu_0 = 1 \text{ is largest}) \]
For \(N \) large, \(\cos x = 1 - \frac{x^2}{2} \quad (x \text{ small}) \)
so
\[1 - 2c \left(1 - \cos \frac{2\pi}{N} \right) \approx 1 - 2c \frac{4\pi^2}{N^2} \]
and
\[\ln \nu_{\text{max}} \approx -c \frac{4\pi^2}{N^2} \quad (N \text{ large}) \]
so we can only overcome a slightly positive 2
For example in our Logistic map example when $r = 3.9$ and $\lambda = .492$, we will not be able to synchronize large regions since $\ln \nu_{\max} = -c \frac{4\pi^2}{N^2}$ is small ($0 < c < \frac{1}{2}$).

MONTE: Global (all-all) chaining is much better for synchrony than local.

However, in many systems you can only access local information, such as Firefly. Thus λ does not always be synchrony even for identical elements.

For this I will have you look at a bunch of other forms of matrices including Fe mammillary sparse cases.
Two metronomes or for now, pendulums

That rest on a board of mass \(M \)

Let \(X \) be center of mass of board

Let pendulums be at \(X + a_i \); \(i = 1, 2 \)

Let \(\theta_1, \theta_2 \) be angle of bobs + let

\(l = \text{length} \) + let \(m \) be mass of pendulums

Potential energy is just due to gravity (we will derive from later)

\[-mgL \left[\cos \theta_1 + \cos \theta_2 \right] = PE\]

\[y_1 = -mgL \cos \theta_1, \quad y_2 = -mgL \cos \theta_2\]

\[x_1 = x + a_1 + L \sin \theta_1, \quad x_2 = x + a_2 + L \sin \theta_2\]

\[\dot{x}_1 = \dot{x} + \dot{\theta}_1 L \cos \theta_1, \quad \dot{x}_2 = \dot{x} + \dot{\theta}_2 L \cos \theta_2\]

\[\ddot{y}_1 = mgL \dot{\theta}_1 \sin \theta_1, \quad \ddot{y}_2 = mgL \dot{\theta}_2 \sin \theta_2\]
\[\text{L.E.} = \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{\theta}_1^2 + \dot{\theta}_2^2 \right) + \frac{M}{2} \dot{x}^2 \]

\[= \frac{m}{2} \left(2\dot{x}^2 + \dot{\theta}_1^2 + \dot{\theta}_2^2 + 2x \dot{\theta}_1 \cos \theta_1 + 2x \dot{\theta}_2 \cos \theta_2 \right) + \frac{M}{2} \dot{x}^2 \]

Lagrangian = \text{Potential + K.E.} = L

Dynamics:

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \frac{\partial}{\partial \dot{x}} \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial \dot{x}} \right) \]

\[L = mgL \cos \theta_1 + mgL \cos \theta_2 + \frac{2m+M}{2} \dot{x}^2 + \frac{mL^2}{2} \dot{\theta}_1^2 + mL \dot{\theta}_1 \dot{\theta}_2 \cos \theta_2 \]

\[= \frac{2m+M}{2} \dot{x}^2 + mL \dot{\theta}_1 \dot{\theta}_2 \cos \theta_2 \]

\[\frac{\partial L}{\partial \dot{x}} = \left(2m+M \right) \dot{x} + mL \dot{\theta}_1 \dot{\theta}_2 \cos \theta_2 \]

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0 \Rightarrow \frac{\partial L}{\partial x} = C \Rightarrow \]

\[x = C - \frac{mL}{2m+M} \left(\cos \theta_1 + \cos \theta_2 \right) \]

\[= \frac{C}{2m+M} \]

\[2m+M \]
\[
\begin{align*}
\frac{d^2 \theta_1}{d \theta_1} &= m g l^2 \dot{\theta}_1 + m l \dot{x} \cos \theta_1 \\
\frac{d^2 \theta_2}{d \theta_2} &= m g l^2 \dot{\theta}_2 + m l \dot{x} \cos \theta_2 - m g l \dot{\theta}_1 \sin \theta_1 \\
\end{align*}
\]

\[
\begin{align*}
ml^2 \ddot{\theta}_1 &= -m g l \sin \theta_1 - m l \cos \theta_1 \ddot{x} \\
ml^2 \ddot{\theta}_2 &= -m g l \sin \theta_2 - m l \cos \theta_2 \ddot{x} \\
\end{align*}
\]

\[
x = -\frac{m l}{2m + M} \left[\dot{\theta}_1 \cos \theta_1 + \ddot{\theta}_2 \cos \theta_2 - \dot{\theta}_1 \sin \theta_1 - \ddot{\theta}_1 \sin \theta_1 \right] \\
ml \cos \theta_1 \ddot{x} = -\frac{m l^2}{2m + M} \left[\dot{\theta}_1^2 \cos^2 \theta_1 + \dot{\theta}_2 \cos \theta_2 (\cos \theta_1^2 - \sin \theta_1 \sin \theta_2) - \dot{\theta}_1 \sin \theta_1 \cos \theta_1 \sin \theta_2 \right] \\
ml \cos \theta_2 \ddot{x} = -\frac{m l^2}{2m + M} \left[\dot{\theta}_2 \cos \theta_2 + \dot{\theta}_1 \cos \theta_2 \cos \theta_1 - \dot{\theta}_1 \sin \theta_1 \cos \theta_2 \sin \theta_1 \cos \theta_2 \right] \\
\frac{m l^2}{2m + M} \left[\begin{array}{c}
\dot{\theta}_1^2 \cos^2 \theta_1 \\
\dot{\theta}_2 \cos \theta_2 (\cos \theta_1^2 - \sin \theta_1 \sin \theta_2) \\
\dot{\theta}_1 \sin \theta_1 \cos \theta_1 \sin \theta_2 \end{array} \right] \\
\frac{m l^2}{2m + M} \left[\begin{array}{c}
\dot{\theta}_2 \cos \theta_2 + \dot{\theta}_1 \cos \theta_2 \cos \theta_1 \\
\dot{\theta}_1 \sin \theta_1 \cos \theta_2 \sin \theta_1 \cos \theta_2 \end{array} \right]
\]

Thus \(\text{invertible} \) so we can solve for \(\dot{\theta}_1 \) \(\dot{\theta}_2 \).
\[L = \frac{1}{2} (M + 2m) \dot{x}^2 + m l \lambda (\dot{\theta}_1 \cos \theta_1 + \dot{\theta}_2 \cos \theta_2) \]
\[+ \frac{1}{2} ml^2 (\dot{\theta}_1^2 + \dot{\theta}_2^2) + mgl (\cos \theta_1 + \cos \theta_2) \]
\[+ k \sum \frac{\Delta x}{\Delta x} \Rightarrow \]
\[\frac{d}{dt} \frac{dx}{dt} = \frac{dx}{\Delta x} \Rightarrow \]
\[\frac{d}{dt} \left[(M + 2m) \dot{x} + ml (\dot{\theta}_1 \cos \theta_1 + \dot{\theta}_2 \cos \theta_2) \right] = -kx \]

B is damping

We can rewrite this as

\[(M + 2m) \ddot{x} + B \dot{x} + kx = -ml \left[\sin \theta_1 + \sin \theta_2 \right] \]

\[\frac{d}{dt} \frac{dx}{dt} = \frac{dx}{\Delta \theta_k} \Rightarrow \]
\[ml^2 \ddot{\theta}_k + mgl \sin \theta_k = -ml \dot{x} \cos \theta_k - b ml \dot{\theta}_k \]
\[+ ml^2 \dot{\theta}_k \]

Here b is friction or damping.

F_k is restoring force for the clock.
Let $Y = \frac{v}{l}$, $Z = \frac{\sqrt{g}}{l}$. Then we get

$$\theta_k'' + 2\pi \theta_k' + \sin \theta_k = -Y'' \cos \theta_k + f_k$$

$$Y'' + 2\pi Y' + \frac{\pi^2}{l^2} Y = -M (\sin \theta_1 + \sin \theta_2)^{\prime \prime}$$

Where $Y = b\sqrt{g/l}$, $\Gamma = B\sqrt{g/l}$, $\Omega^2 = \frac{K}{M+2m}$

$M = \frac{m}{(M+2m)}$

This is a messy non-linear equation.

However, if $\theta_0, \pi \approx 0$, we can approximate it by a linear equation.

Before doing so, we need to determine Γ.

Perfunctory force of π (clockwise; otherwise, it will just damp to zero!)

We introduce a simple mechanism. Whenever the pendulum reaches a threshold angle $\pm \varphi$, its angular velocity reverses direction and its magnitude changes according to

$$|\theta_k'| \rightarrow (1-c) |\theta_k'| + \varepsilon$$

c, ε are small. Since $M > m$, the impulse has negligible effect on the platform.

The linear approximation is

$$\theta_1'' + 2\pi \theta_1' + \theta_1 = -Y'' + f_1$$

$$\theta_2'' + 2\pi \theta_2' + \theta_2 = -Y'' + f_2$$

$$Y'' + 2\pi Y' + \frac{\pi^2}{l^2} Y = -M (\theta_1'' + \theta_2'')$$
We rewrite these as

\[\theta''_1 + \gamma'' = \zeta_1 = -28\theta'_1 + \theta_1 f_1 \text{ Note } m < 1 \]

\[\theta''_2 + \gamma'' = \zeta_2 = -28\theta'_2 - \theta_2 f_2 \]

\[\gamma'' + m \theta''_1 + m \theta''_2 = \zeta_3 = -2 \Gamma \gamma' - \delta^2 \gamma \]

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
m & m & 1
\end{bmatrix}
\begin{pmatrix}
\theta''_1 \\
* \theta''_2 \\
\gamma''
\end{pmatrix} =
\begin{pmatrix}
\zeta_1 \\
\zeta_2 \\
\zeta_3
\end{pmatrix}
\]

\[
\begin{align*}
\theta''_1 &= \frac{\zeta_1 + m(\zeta_2 - \zeta_1) - \zeta_3}{1 - 2m} \\
\theta''_2 &= \frac{\zeta_2 + m(\zeta_1 - \zeta_2) - \zeta_3}{1 - 2m} \\
\gamma'' &= \frac{\zeta_3 - m(\zeta_1 + \zeta_2)}{1 - 2m}
\end{align*}
\]

Thus linear between impulses. I tried solving it but only found out of phase locking.
Before moving on, I want to look at a variation with nonlinear forcing terms:

\[\dot{\theta}'' + \gamma (\dot{\theta}^2 - \dot{\theta}_0^2) \dot{\theta}' + \theta = 0 \]

This cannot self-sustain. Suppose we consider:

\[\dddot{\theta} + \gamma (\dot{\theta}^2 - \dot{\theta}_0^2) \dot{\theta}' + \theta = 0 \]

For small crease \(\theta = \theta_0 \phi \)

\[\dot{\theta}_0 \dot{\phi}'' + \gamma \theta_0^2 (\dot{\theta}^2 - 1) \dot{\phi}' + \theta_0 \dot{\phi} = 0 \]

\[\Rightarrow \dddot{\phi} + \gamma (\dot{\phi}^2 - 1) \dot{\phi}' + \theta = 0 \]

This is self-sustained - not oscillator.

Exact same as before but:

\[z_1 = -\gamma (\dot{\theta}^2 - \dot{\theta}_0^2) \dot{\theta}' \text{ - } \theta \]

\[z_2 = -\gamma (\dot{\theta}_0^2 - \dot{\theta}^2) \dot{\theta}_0' \text{ - } \theta_0 \]

Later we will explore this in detail using some weakly nonlinear perturbation analysis.
Flows

So, what can we say about Flows

Review of Limit Cycles & Stability

- Linear systems

\[\dot{x} = Ax \quad A \text{ is constant} \quad (1) \]

\[x(t) = e^{tA}x(0) \]

\[e^{tA} = \text{exponential of matrix}. \quad \text{if } AV = AV \]

Then \(x = Ve^{t} \) is a solution.

\[\lambda \in \text{spectrum of } A \]

If some \(\lambda \in \sigma(A) \) have negative real part then all solutions \(x(t) \to 0 \) decay to 0 at \(t \to -\infty \). \(x = 0 \text{ N. Assym stable} \)

- Linear periodic systems

\[\dot{x} = A(t)x \quad A(t+T) = A(t) \quad (2) \]

Floquet Theorem Here

let \(\Phi(t) \) be the fundamental matrix for (2)

That is \(\dot{\Phi}(t) = A(t)\Phi(t) \) and suppose

\[\Phi(0) = I \]

Then \(\Phi(t) = e^{\int_{0}^{t} \phi(t) dt} \)

Then \(\Phi(t) = e^{\int_{0}^{t} \phi(t) dt} \)

\[\Phi(0) = I \Rightarrow \Phi(t) = e^{\int_{0}^{t} \phi(t) dt} \]

\[\Phi(T) = e^{\int_{0}^{T} \phi(t) dt} \]

\[\Phi(T) = e^{\int_{0}^{T} \phi(t) dt} \]
\[\Delta(nT) = \rho(nT) e^{nTB} \]

Call \(M = e \)

\[M^n \to 0 \quad \text{as} \quad n \to \infty \quad \text{if all eigenvalues of} \ M \ \text{are in unit circle.} \]

We call \(\rho \in \Sigma(M) \) a **Floquet Multiplier**

If we write \(\rho = e^{\lambda T} \) then \(\lambda \) is called a **Floquet Exponent**

These are defined up to multiplies of \(2\pi i \).

If \(\text{Re} \lambda < 0 \iff |\rho| < 1 \iff \rho^n \to 0 \)

Theorem: If all Floquet exponents have negative real parts then all solutions to (2) decay to 0 as \(t \to \infty \).

Theorem: If there is a nontrivial periodic solution to (2) then there must be at least one multiplier \(\rho \) s.t. \(|\rho| = 1 \).

Autonomous systems & L.C.

(consider \(\dot{U} = FU \))

\[\text{If } \dot{U}(t) + U_0(t + T) = U(t+T) \text{ is } T\text{-periodic solution.} \]
Write \(u(t) = u_0(t) + y \) where \(y \) is small.

Then
\[
\dot{u} = \dot{u}_0 + \dot{y} = F(u_0(t)) + \dot{y}(t) \\
\approx D_u F(u_0(t)) y(t) + u_0(t) + O(1/y^2)
\]

\(D_u F(u_0(t)) y(t) \equiv A(t) \) is \(T \)-periodic.

So... What happen to \(y(t) \).

Remark \(\dot{y} = A(t) y \) has a multiplier \(\rho = 1 \).

Proof \(\frac{d}{dt} u_0 = F(u_0(t)) \)

Differentiating:
\[
\frac{d}{dt} u_0(t) = \frac{d^2 u_0}{dt^2} - D_u F(u_0(t)) \frac{du_0}{dt} = A(t) \dot{u}_0
\]

Thus \(T \)-periodic solution \(u_0 \) s.t. \(\dot{y} = A(t) y \)

\[\Rightarrow \rho = 1 \]

We say a limit cycle is asymptotically stable if remaining Floquet multipliers are inside unit circle.

Example
\[
\dot{x} = x(1-x^2-y^2) - y \\
\dot{y} = y(1-x^2-y^2) + x
\]

\(x = \cos t \) \(y = \sin t \) is limit cycle, exponent

Exercise: Find the nonzero Floquet exponent
Helpful hint: Let \(\Phi(t) = \mathbf{A}(t) \) be a fundamental matrix then
\[
\int_0^T \text{tr} \mathbf{A}(s) ds \quad \rho_1, \rho_2, \ldots, \rho_n = e^{-\frac{\int_0^T \text{det} \Phi(t) dt}{n}}
\]
(This is a well-known identity from ODE’s -- I think it’s called Abel’s formula?)

With this background, we are now ready to study coupled systems:

\[
\begin{align*}
X_1 &= F(X_1) + \mathbf{K}(X_2-X_1) \\
X_2 &= F(X_2) + \mathbf{K}(X_1-X_2)
\end{align*}
\]

\(F : \mathbb{R}^n \rightarrow \mathbb{R}^n\) \(\mathbf{K} \in \mathbb{R}^{n \times n}\)

\(\dot{u}_0 = F(u_0(t))\) has a \(T\)-periodic \(L^2\) solution

\(X(t) = X_2 = u_0(t)\) is a synchronous solution

Write \(X_j = u_0(t) + y_j(t)\)

\(\Rightarrow\)

\[
\begin{align*}
\dot{y}_1 &= A(t) y_1 + \mathbf{K}(y_2-y_1) \\
\dot{y}_2 &= A(t) y_2 + \mathbf{K}(y_1-y_2)
\end{align*}
\]

where \(A(t) = DuF(u_0(t))\)
\[
\begin{pmatrix}
 y_1 \\ y_2
\end{pmatrix} =
\begin{bmatrix}
 A(t) & 0 \\
 0 & A(t)
\end{bmatrix}
\begin{pmatrix}
 y_1 \\ y_2
\end{pmatrix} +
\begin{bmatrix}
 -k & +k \\
 k & -k
\end{bmatrix}
\begin{pmatrix}
 y_1 \\ y_2
\end{pmatrix}
\]

Notationally, it is sometimes nice to write this as the Kronecker product of matrices:

\[
\begin{bmatrix}
 A(t) \otimes I + k \otimes Q
\end{bmatrix}
\]

\[
I = \begin{bmatrix}
 1 & 0 \\
 0 & 1
\end{bmatrix}
\]

\[
A(t) \otimes I = \begin{bmatrix}
 A(t) \cdot 1 & 0 \\
 A(t) \cdot 0 & A(t) \cdot 1
\end{bmatrix}
\]

\[
Q = \begin{bmatrix}
 -1 & 1 \\
 1 & -1
\end{bmatrix}
\]

"adjacency matrix"

Oops

\[
I \otimes A(t) + Q \otimes K
\]

Where \(Q = \begin{bmatrix}
 -1 & 1 \\
 1 & -1
\end{bmatrix} \) = adjacency matrix

\[
I = \begin{bmatrix}
 1 & 0 \\
 0 & 1
\end{bmatrix}
\]

\[
I \otimes A(t) = \begin{bmatrix}
 1 \cdot A & 0 \cdot A \\
 0 \cdot A & A \cdot A
\end{bmatrix} = \begin{bmatrix}
 A & 0 \\
 0 & A
\end{bmatrix}
\]

(1) \(\rightarrow\) (2) adjacency matrix

Who is coupled to who
\[
\begin{align*}
\text{Let } & \quad z = y_1 - y_2 \quad \text{ } w = z_1 + z_2 \\
\dot{z} & = \dot{y}_1 - \dot{y}_2 = A(t) y_1 - A(t) y_2 + k(y_2 - y_1) \\
& \quad - k(y_1 - y_2) \\
& = A(t) z - 2k z \\
\dot{w} & = A(t) w
\end{align*}
\]

As we did earlier, we have reduced the system to two equations of smaller dimension.

\[
\begin{align*}
U \quad z &= (A(t) - 2k) z(t) \\
\end{align*}
\]

\(w = A(t) w \)

\(z \) is just the single isolated limit cycle. Since \(\mu \) is stable, we know that \((2) \) has all multipliers inside the unit circle, except for \(1 \) which is due to \(\mu \).

So we can say that synchrony will be stable if all solutions to \((1) \) decay to zero as \(t \to \infty \) since

\[
\begin{align*}
\dot{z}(t) & \to 0 \implies y_1 - y_2 \to 0 \implies y_1 - y_2 \to 0 \\
\text{as } t \to \infty & \implies \text{synchrony!}
\end{align*}
\]

So it is hard to say what happens with equation \((1) \)

Rem: Notice that the eigenvalues of \(\dot{Q} \) are \(0 \) and \(-2 \) ! (Sound familiar??)
Suppose \(k = 0 \), that is \(k \) is a scalar multiple of the identity. Then we can draw some conclusions.

Let \(\mathbf{z}(t) \) satisfy

\[
\dot{\mathbf{z}}(t) = A(t) \mathbf{z}(t)
\]

and suppose \(\mathbf{z}(t) \).

Then we can see that

\[
\eta(t) = e^{-2\sigma t} \mathbf{z}(t)
\]
satisfies:

\[
\frac{d\eta}{dt} = -2\sigma e^{-2\sigma t} \mathbf{z}(t) + e^{-2\sigma t} \dot{\mathbf{z}}(t) = -2\sigma \eta + e^{2\sigma t} A(t) \mathbf{z}(t)
\]

\[
= A(t) \eta(t) - 2\sigma \eta(t)
\]

That is \(\eta(t) \) solves (1) (only when \(k = 0 \)).

So if \(\mathbf{z}(t) \) is periodic then \(\eta(t) \) will decay for \(\sigma > 0 \) and grow exponentially if \(\sigma < 0 \).

If \(\mathbf{z}(t) \) decays then so will \(\eta(t) \) as long as \(\sigma > 0 \).

From (1) we can conclude that scalar "dissipative" coupling of oscillators will always synchronize them.
The main interest comes from non-scalar coupling case.

(N.B. for chaotic systems, the matrix \(A(t) \) is not periodic and so you must look at the long term growth of

\[
\dot{y} = A(t) y \tag{3}
\]

When you choose, there is always a solution to (3) such that \(|y(t)| = Ce^\lambda t \) where \(\lambda \geq 0 \). This number \(\lambda \) is called the maximal Lyapunov exponent.

The variational equation for the coupled system with scalar diffusive coupling is

\[
\dot{z} = A(t) z -2\omega z \tag{4}
\]

so if \(2\omega > \lambda \) then all solutions to (4) will decay and synchrony will be stable.

With scalar coupling of oscillators, magnitude does not matter but with chaos it does (!!!)

Non-scalar coupling is much more interesting

So how do we analyse it?

End
Recovar-Carroll Master Stability equation.

\[\dot{Z} = A(t) Z + (\alpha + i \beta) K \bar{Z} \]

Find the regions in \((\alpha, \beta)\) where \(Z(t) \to 0\) as \(t \to \infty\).

If we write \(Z = R + i S\) then

\[\frac{dR}{dt} = A(t) R + \alpha K R - \beta K S \]
\[\frac{dS}{dt} = A(t) S + \alpha K S + \beta K R \]

For periodic \(A(t)\), you can just integrate this, or you can compute the monodromy matrix as a function of \(0 + (\alpha, \beta)\).