Homework #3

1. The quadratic integrate and fire model can have squarewave bursts in some parameter regimes. Consider:

\[V' = V^2 + a - W, \quad W' = \epsilon W \]

where when \(V = 10 \), \(V \) is reset to 1 and \(W \) is incremented by \(d \). For what range of \((a, d)\) does fast-slow analysis predict bursting. Here is how to proceed. Treat \(W \) as a parameter and look at the \(V \) equation. Figure out where the "homoclinic" is and when there will be repetitive spiking. Figure out how big \(W \) has to get to stop the spiking. Then you can estimate how long it will take \(W \) to decay enough to start spiking again. Use this to get an estimate of \(a \). Note that \(d \) will mostly control how many spikes per burst. If you set \(\epsilon \) small enough, you can pretend that \(W \) does not decay at all between spikes and from this figure out how many spikes per burst as a function of \(a, d \). You may want to simulate this to check your theory.

2. As I mentioned in class, you can create a 1-dimensional map for the burster. The map is piecewise defined and I have found it to be:

\[
\begin{align*}
f_1(x) &= a_1 + b_1 x \\
f_2(x) &= f_1(x_1) - b_2(x-x_1) \\
f_3(x) &= f_2(x_2) \\
a_1 &= 0.2, b_1 = 0.8, b_2 = 15, x_1 = 1.3, x_2 = 1.36 \\
f(x) &= \text{if}(x < x_1) \text{then}(f_1(x)) \text{else}(\text{if}(x < x_2) \text{then}(f_2(x)) \text{else}(f_3(x)))
\end{align*}
\]

The map is defined as:

\[x_{n+1} = f(x_n) + i \]

where \(i \) is the parameter. A fixed point is defined as \(x = f(x) \) and it will be stable if \(|f'(x)| < 1 \). A fixed point corresponds to a tonic spiking solution in the burster if it occurs on the first part of \(f \). That is, it is not bursting. Find the maximum value of \(i \) so that there is a tonic spiking solution. Note that the slope of \(f \) is 0.8 on the first part, \(-15\) on the second part, and 0 on the third part. You should be able to do this analytically since you just have to solve a linear equation. Through simulation, try to find some periodic solutions, that is, \(x_{n+M} = x_n \) for \(M > 1 \). For example, if you pick \(i = 0.15 \), you should find a period 11 solution! Try to get period 5, 4, and 3. At what value of \(i \) does spiking cease? Hint: this corresponds to a fixed point on the flat part of \(f \) \((x > x_2)\).

3. For the elliptic burster, we consider the simple model. If we ignore the \(\theta \) variable, then:

\[
\begin{align*}
r' &= r(p + r - r^2) \\
p' &= \epsilon(r_0 - r)
\end{align*}
\]
Simulate this simple model for \(r_0 = 0.5 \) and \(\epsilon = .05 \). You will see an oscillation in \(r \) if you start with initial conditions, \(r(0) > 0 \) and, say, \(p = 0 \). This corresponds to bursting since the regions where \(r \) is near zero are silent and those where \(r \) is close to 1 are spiking. Regular spiking corresponds to an equilibrium where \(r > 0 \). Find this equilibrium and its stability. For what values of \(\epsilon, r_0 \) will there be a Hopf bifurcation. Compute the period in the singular limit; it involves computing this integral:

\[
f(r_0) = \int_0^{-1/4} dp / (r_0 - (1/2 + \sqrt{(1/4 + p)}))
\]

(Maple make a mess of this, but it is really not so bad. REDUCE works much better!) If you want, try to compute the singular period in terms of \(r_0 \) given this integral. (The key here is showing that this integral actually shows up!)

4. Now onto parabolic bursting. Consider:

\[
\begin{align*}
\dot{u} &= 1 - \cos(u) + (1 + \cos(u))(a + b \cdot x - c \cdot y) \\
\dot{x} &= \epsilon(-x + \delta(u - \pi)) \\
\dot{y} &= \epsilon(-y + \delta(u - \pi)) / \tau
\end{align*}
\]

where by \(\delta(u - \pi) \) we mean that each time \(u \) crosses \(\pi \), increment by 1. If you fix \(x, y \), show that the frequency of \(u \) (That is, the period is the time it take \(u \) to go from \(-\pi \) to \(\pi \) is \(1/f \)) is \(f = \sqrt{\max(a + bx - cy, 0)} \). The average of \(\delta(u - \pi) \) is exactly \(f \). Thus, the averaged \((x, y)\) system is:

\[
\begin{align*}
\dot{x} &= \epsilon(-x + f) \\
\dot{y} &= \epsilon(-y + f) / \tau
\end{align*}
\]

Show via nullclines, simulation, etc, that there are some values of \(a, b, c, \tau \) where the above system has a limit cycle. Note by rescaling time in the above, you can set \(\epsilon = 1 \).

5. Compute the velocity of the wavefront in the piecewise linear model:

\[
V_t = f(V) + V_{xx}
\]

where \(f(V) = -V + H(V - \theta) \) and \(H \) is the step function. Proceed as follows. First the traveling system is

\[
-\epsilon V' = f(V) + V''
\]

Note that \(f(0) = f(1) = 0 \) when \(0 < \theta < 1 \). You want a solution that satisfies \(V(-\infty) = 1 \) and \(V(\infty) = 0 \). Note that the equation is always linear except at the jump. Finally, since the wave is translation invariant, you should choose coordinates so that \(V(0) = \theta \). So, \(V(\xi) > \theta \) for \(\xi < 0 \) and \(V(\xi) < \theta \) for \(\xi > 0 \).
6. Using the results of the above exercise, compute the singular solution to the Rinzel pulse model:

\[-cV' = f(V) - w + V''\]
\[-cw' = \epsilon[V - bw]\]

Note that you should make sure b is chosen so that there is only the equilibrium $(0, 0)$. Proceed as follows. When $\epsilon = 0$ start at rest, so $w = 0$ and use the previous exercise to jump up to the $V > \theta$ branch. Now rescale ξ and set $\epsilon = 0$ to get

\[0 = f(V) - w\]
\[-cw' = V^+(w) - bw\]

where you need to solve for $V^+(w)$. This is a linear equation in w starting with $w(0) = 0$ so you have to integrate it until $w = w_{\text{jump}}$. Figure out w_{jump} from the previous problem since it requires that the velocity be opposite the jump up velocity. Last but not least, compute the solution to the w' equation with V^+ replaced by V^-, the low V root of $f(V) - w = 0$. An interesting extension of this is to try to compute the singular periodic orbits that happen for a lower value of c than the singular homoclinic. Here is how to do this. Pick a small value of w, call it w_1 that is near zero. There will be 2 roots to $f(V) - w_1 = 0$, so choose $c(w_1)$ to create a wave that jumps from one to the other. Now on the right branch $V^+(w)$, solve the w system. Figure out the place to jump back (w_2) to the V^- side by matching the velocity to your jump up velocity. Then solve the w equation on V^- until w again equals w_1. The total transit time is the period, T. Both c and T are parametrized by w_1, so you should be able to compute the singular dispersion relation!

7. Problem 1,6,7 Chapter 6.