1 Regular series

We will study the solutions to certain second order linear differential equations. We will start with equations that are analytic at \(t = 0 \) and then turn to those that have singularities. Recall that a function is analytic at a point \(t = t_0 \) if it has a convergent Taylor series at that point. We are interested first in equations of the form:

\[
x'' + p(t)x' + q(t)x = 0
\]

where \(p(t), q(t) \) have Taylor series at \(t = 0 \). The basic idea is to assume that there is a solution of the form:

\[
x(t) = a_0 + a_1 t + a_2 t^2 + \ldots
\]

and then try to prove that the series converges. In general, we will get an iterative series of equations for \(a_j \) in terms of already known coefficients. The first two coefficients will be determined by the initial conditions:

\[
x(0) = a_0 \quad x'(0) = a_1.
\]

Let's do a simple example that we already can solve:

\[
x'' + x = 0
\]

Substituting the series into the derivative:

\[
x''(t) = 2a_2 + 6a_3 t + 12a_4 t^2 + \ldots + j(j - 1)t^{j - 2}a_j + \ldots
\]

and equating the coefficients we get

\[
0 = a_0 + 2a_2 \\
0 = a_1 + 6a_3 \\
0 = a_2 + 12a_4 \\
0 = a_{2j - 1} + (2j + 1)(2j)a_{2j + 1} \\
0 = a_{2j} + (2j + 2)(2j + 1)a_{2j + 2}
\]

Thus we get a recursive relationship for the coefficients:

\[
a_{2j + 2} = - \frac{1}{(2j + 2)(2j + 1)} a_{2j} \\
a_{2j + 1} = - \frac{1}{(2j + 1)(2j)} a_{2j - 1}
\]

From this it is easy to see that

\[
a_{2j + 1} = (-1)^j \frac{a_1}{(2j + 1)!}
\]

and

\[
a_{2j} = (-1)^j \frac{a_0}{(2j)!}
\]

The series breaks into an even part that depends only on \(a_0 \) and an odd part that depends only on \(a_1 \). Writing the two series down, we immediately recognize them:

\[
x_{\text{even}}(t) = a_0 (1 - \frac{t^2}{2!} + \frac{t^4}{4!}) \ldots = a_0 \cos t
\]

and

\[
x_{\text{odd}}(t) = a_1 (t - \frac{t^3}{3!} + \frac{t^5}{5!}) \ldots = a_1 \sin t.
\]
Thus, we recover the already known solutions, \(\sin(t) \), \(\cos(t) \).

Let’s try an example that we don’t already know:

\[
x'' - tx = 0
\]

Once again we expand in a series and obtain

\[
\begin{align*}
2a_2 &= 0 \\
6a_3 - a_0 &= 0 \\
12a_4 - a_1 &= 0 \\
20a_5 - a_2 &= 0 \\
j(j - 1)a_j - a_{j-3} &= 0
\end{align*}
\]

This implies that

\[
a_j = \frac{1}{j(j - 1)} a_{j-3}.
\]

Note that \(a_2 = a_5 = a_8 \ldots = 0 \), \(a_3, a_6, \ldots, a_{3j} \) depend on \(a_0 \) and \(a_4, a_7, \ldots, a_{3j+1} \) depend on \(a_1 \). Note that the series converges for all \(t \) since

\[
\left| \frac{a_{j+3}t^{j+3}}{a_j t^j} \right| = |t|^3 \frac{1}{j(j - 1)}
\]

and this tends to zero as \(j \to \infty \) so by the ratio test the series converges for all \(t \). Some rearranging of terms yields

\[
\begin{align*}
a_{3j} &= \frac{1}{(3j)(3j - 1)} \frac{1}{(3j - 3)(3j - 4)} \ldots \frac{1}{3 \cdot 2} \cdot a_0 \\
a_{3j+1} &= \frac{1}{(3j + 1)(3j)} \frac{1}{(3j - 2)(3j - 3)} \ldots \frac{1}{4 \cdot 3} \cdot a_1.
\end{align*}
\]

This equation is called Airy’s equation and the two linearly independent solutions are called Airy functions.

In general we have the following result. Consider

\[
x'' + p(t)x' + q(t)x = 0 \quad x(0) = a_0 \quad x'(0) = a_1
\]

and suppose that

\[
p(t) = \sum_{k=0}^{\infty} p_k t^k, \quad q(t) = \sum_{k=0}^{\infty} q_k t^k
\]

converge in some interval \(J \) containing \(t = 0 \). Then

\[
x(t) = \sum_{j=0}^{\infty} a_j t^j
\]

where

\[
(j + 2)(j + 1)a_{j+2} + \sum_{k=0}^{j} p_{j-k} a_{k+1} (k + 1) + q_{j-k} a_k = 0
\]

and the series converges on the whole interval \(J \).

As a last application of regular series, we apply it to the Legendre’s equation which arises in the study of certain partial-differential equations defined in a spherical domain:

\[
(1 - t^2)x'' - 2tx' + p(p + 1)x = 0.
\]

We rewrite this as

\[
x'' = \frac{2t}{1 - t^2} y' + \frac{p(p + 1)}{1 - t^2}.
\]
We use the binomial expansion to expand the denominator

\[(1 - t^2)^{-1} = 1 + t^2 + t^4 + \ldots + t^{2j} + \ldots.\]

Note that this series converges only for \(|t| < 1\). Using the above recursion we get after some manipulation (I will leave it to you to verify this) that

\[a_{j+2} = -\frac{(p + j + 1)(p - j)}{(j + 2)(j + 1)}a_j.\]

This series converges from the ratio test as long as \(|t| < 1\). Furthermore note that the even terms depend only on \(a_0\) and the odd on \(a_1\). Note that if \(p\) is an integer, the series is finite and only goes out to \(p + 2\) terms. If \(p = n\) is an integer, we call the solutions the Legendre polynomials:

\[P_0 = 1, \ P_1 = t, \ P_2 = \frac{1}{2}(3t^2 - 1), \ P_4 = \frac{1}{2}(5t^4 - 3t).\]

1.1 Homework

1. Find the first few 6 terms in the series solution for

\[x'' + \cos(t)x = 0\]

2. Solve

\[x'' + tx' + x = 0\]

with \(x(0) = 1\) and \(x'(0) = 0\). What is the interval of convergence?

3. Use series to find the first 3 nonzero terms to the solution to

\[x' = 1 + tx^2, \ x(0) = 0\]

Note that this is a nonlinear equation.

2 Singularities

Many interesting physical problems involve differential equations which do not have analytic coefficients as the cases above. The simplest such equation is the Cauchy-Euler equation:

\[t^2x'' + tp'x' + qx = 0.\]

If you try to solve this with series, it will not work as you can see that the coefficient involving \(x\) is actually \(q/t^2\) which is singular at \(t = 0\). There are several ways to solve this equation however. One is to change the independent variable letting \(t = e^s\). (How did I know to do that? I knew since I knew what the solution would look like...) In this case (using the chain rule) we get

\[x_{ss} + (p - 1)x_s + qx = 0\]

and we can easily solve this. Let \(r_1, r_2\) be the roots of the characteristic equation \(r^2 + (p - 1)r + q = 0\). If the roots are real and distinct, then \(x(s) = e^{r_1s}\) or \(x(t) = t^{r_1}\). If the roots are real and repeated, the other solution is \(se^{r_1s}\) or \(x(t) = \ln(t)t^{r_1}\). Finally, for complex roots, \(x(s) = e^{r_1s}\cos bs\) and \(x(s) = e^{r_1s}\sin bs\) or in terms of the original variable, \(x(t) = t^a \sin(b \ln t), \ x(t) = t^a \cos(b \ln t)\). Note that all of these have singularities at the origin unless the roots are real and positive integers.

Let’s turn to a general system

\[x'' + P(t)x' + Q(t)x = 0\]
We say that \(t = 0 \) is a regular singular point if \(t^2Q(t) \) and \(tP(t) \) are analytic at \(t = 0 \). If an equation has a regular singular point, we can write it in the form

\[
t^2x'' + tp(t)x' + q(t) = 0
\]

where \(t^2Q = q, t^2P = p \) and \(p, q \) are now analytic functions at \(t = 0 \). Once again, we write

\[
p(t) = \sum_{k=0}^{\infty} p_k t^k \quad q(t) = \sum_{k=0}^{\infty} q_k t^k.
\]

Suppose that the polynomial (called the indicial equation)

\[
f(r) = r^2 + (p_0 - 1)r + q_0
\]

has real roots, \(r_1, r_2 \) with \(r_2 \leq r_1 \). Then (2) has a solution of the form

\[
x_1 = |t|^{r_1} \sum_{j=0}^{\infty} a_j(r_1)t^j, \quad t < 0 \text{ or } t > 0
\]

with \(a_0 \neq 0 \) and

\[
f(r_1 + j)a_j(r_1) = -\sum_{k=0}^{j-1} [(k + r_1)p_{j-k} + q_{j-k}]a_k(r_1).
\]

The series converges in the same interval as that of \(p, q \) and if \(r_1 - r_2 \) is not an integer, there is a second linearly independent solution

\[
x_1 = |t|^{r_2} \sum_{j=0}^{\infty} a_j(r_2)t^j, \quad t < 0 \text{ or } t > 0
\]

where the coefficients are the same as above but \(r_2 \) replacing \(r_1 \).

This looks complicated, but if you proceed stepwise, it is not so bad.

2.1 Bessel’s equation

Bessel functions are the main reason that I have introduced this. In many linear PDEs that involve cylindrical coordinates, Bessel’s differential equation arises. This is

\[
t^2x'' + tx' + (t^2 - p^2)x = 0.
\]

Obviously, \(t = 0 \) is a regular singular point and the indicial equation is

\[r^2 - p^2 = 0.\]

The roots are \(r = \pm p \). If \(p \) is an integer, then the procedure we have illustrated gives only one linearly independent solution. But lets just work with this solution for now. Substitute \(x_1 = t^p \sum_{j=0}^{\infty} a_j t^j \) into this obtaining

\[
t^2 \sum_{j=0}^{\infty} (j + p)(j + p - 1)a_j t^{j+p-2} + \sum_{j=0}^{\infty} (j + p)a_j t^{j+p-1} + t^2 \sum_{j=0}^{\infty} a_j t^j - p^2 \sum_{j=0}^{\infty} a_j t^j = 0
\]

After some manipulation, this leads to

\[
(1 + 2p)a_1 t + \sum_{j=2}^{\infty} [j(j + 2p)a_j + a_{j-2}]x^j = 0.
\]
giving us the desired recursion,
\[a_1 = 0 \quad a_j = -1 \frac{a_{j-2}}{j(j + 2p)} \]

which depends on the arbitrary constant \(a_0 \). If \(p \) is not an integer, then replacing \(p \) with \(-p\) yields a second solution. If \(p \) is an integer, then clearly negative values of \(p \) will cause the recursion to become singular.

Otherwise, the ratio test shows that this is analytic on the whole line. We can write the series in a compact form by noting that the odd coefficients disappear \(a_1 = 0 \) so that

\[x_1 = a_0 x^p \left\{ 1 + \sum_{j=1}^{\infty} \frac{(-1)^j t^{2j}}{2j j!(1 + p) \cdots (j + p)} \right\}. \]

Suppose that \(p = n \) is an integer and we choose \(a_0 = 1/(2^n n!) \). Then we get the Bessel function of the first kind of integer order:

\[J_n(t) = \left(\frac{t}{2} \right)^n \sum_{j=0}^{\infty} \frac{(-1)^j}{j!(j + n)!} \left(\frac{1}{2} \right)^{2j}. \]

They looked like damped trig functions.

Bessel functions have many interesting properties.

If \(r_1 = r_2 \) in the indicial equation, then the second linearly independent solution is

\[x_2 = x_1 \ln |t| + |t|^{r_1} \sum_{j=0}^{\infty} c_j t^j \]

If \(r_1 - r_2 \) is a positive integer, then

\[x_2 = \alpha x_1 \ln |t| + |t|^{r_2} \left(1 + \sum_{j=1}^{\infty} d_j t^j \right) \]

where \(\alpha \) is a possibly 0 constant.

As a last example, consider

\[t^2 x'' - tx = 0. \]

The indicial equation has roots 0 and 1. One solution is

\[x_1 = t \sum_{j=0}^{\infty} a_j t^j \]

and we find that

\[x_1 = \sum_{j=0}^{\infty} \frac{t^{j+1}}{(j + 1)!j!} \]

Now we find the other solution. Set

\[x_2 = \alpha x_1 \ln |t| + \sum_{j=0}^{\infty} d_j t^j \quad d_0 = 1 \]

We rewrite the equation in simpler form as \(Lx = tx'' - x \). We use the fact that \(Lx_1 = 0 \) to get

\[0 = Lx_2 = \alpha x_1 L \ln |t| + L \sum_{j=0}^{\infty} d_j t^j \]

and applying the required differentiations:

\[0 = \alpha \sum_{j=0}^{\infty} \frac{2j + 1}{(j + 1)!j!} x^j + \sum_{j=0}^{\infty} [j(j + 1)d_{j+1} - d_j] x^j. \]
This leads to
\[j(j+1)d_{j+1} - d_j = -\alpha \frac{2j+1}{(j+1)!j!}. \]
This gives e.g.
\[-d_0 = -\alpha, \quad 2d_1 - d_2 = -\frac{3\alpha}{2}, \quad 6d_3 - d_2 = -\frac{5\alpha}{12}. \]
Since \(d_0 = 1 \) this determines \(\alpha \). The rest follow. The parameter \(d_1 \) is arbitrary so we set it to 0 for convenience.

2.2 Homework

Find series solutions to

1. \[t^2x'' - t/2x' + tx = 0 \]

2. Laguerre’s equation:
\[tx'' + (1-t)x' + px = 0 \]

Hint: The answer to this is in your book (problem 10, 11.4) Show that if \(p \) is a non-negative integer, then \(x(t) \) is a polynomial. Assume that \(x(0) = 1 \) and find the first 5 such polynomials (that is \(p = 0, p = 1 \) up to \(p = 5 \).

3. \[t^2x'' - tx' + tx = 0 \]

(Note the indicial equation has roots that differ by an integer in this case.)