1. Show that the eigenvalues of a triangular matrix (all zeros above or below the main diagonal) are the diagonal elements.

2. Show that if λ is an eigenvalue of AB it is also an eigenvalue of BA where A, B are square matrices or equal dimension.

3. Show that if $I - AB$ is invertible then so $I - BA$ and that
 \[(I - BA)^{-1} = I + B(I - AB)^{-1} A\]

4. Find the characteristic polynomial for:
 \[M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -c & -b & -a \end{pmatrix}\]

 Suppose that r is a root of the characteristic polynomial. Show that $v = [1, r, r^2]^T$ is the corresponding eigenvector.

5. Use the previous exercise to find the eigenvectors and eigenvalues for
 \[M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}\]
 find a matrix, P such that
 \[PMP^{-1}\]
 is a diagonal matrix.

6. Let
 \[M = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\]
 Show that there is no matrix P such that PMP^{-1} is diagonal.

7. Let $T : P_2 \rightarrow P_2$ be defined as
 \[T(a + bt) = (4b - a) + (a - b)t.\]
 Find the eigenvalues and eigenvectors for T.

1