Assignment 4

1. Problems 1 (p15), 3 (p19), 4 (p26)

2. Let $T : R^2 \to R^2$ be defined by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Prove

$$T^2 - (a + d)T + (ad - bc)I = 0$$

Use this to express T^4 in terms of T, I.

3. $T : R^3 \to R^2$ given by

$$T(x_1, x_2, x_3) = (x_1 - 2x_2 + x_3, x_3 - 4x_2)$$

(a) Write the matrix for T using the standard bases for R^3, R^2

(b) Find a basis for the nullspace of T

(c) What is T'

4. Fix $T \in L(X, X)$. Prove that the set of $S \in L(X, X)$ which commutes with T is a vector space. Show that the dimension of this space is at least 2 if the dimension of X is greater than 1. Consider $X = R^2$ and

$$T = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$$

What is the basis for the set of matrices commuting with T. Find a basis for the annihilator of this subspace.

5. Suppose that A, B are complex matrices. Show that $AB - BA = I$ is impossible.

6. Suppose S is a linear operator on R^2 and $S^2 = S$. Show that either $S = I, S = 0$ or there is a basis for R^2 such that in terms of that basis,

$$S = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$