Homework 4

1. Three's a crowd. Consider the following system of interactions:

\[X \rightarrow * \]
\[2X \rightarrow 3X \]
\[3X \rightarrow 2X \]

at rates \(k_1, k_2, k_3 \) respectively. Use the laws of mass action to write the differential equations for \(X \). Show that \(X = 0 \) is always stable. Find conditions on the rate constants, \(k_{1,2,3} \) so that there are other positive roots and determine their stability. Graph the right-hand side for \(k_1 = 1, k_2 = 3, k_3 = 1 \) over \(0 \leq x \leq 3 \) and graphically determine the stability of the equilibria.

2. Here is a simple linear negative feedback system:

\[x' = -x - by \]
\[y' = x - y \]

Show that \(b > 0 \) implies the origin is always stable. Now consider the 3 stage system:

\[x' = -x - bz \]
\[y' = x - y \]
\[z' = y - z \]

(Think of it as if \(x \) helps \(y \), \(y \) helps \(z \) and \(z \) attacks \(x \).) Write the matrix for this and then write down the characteristic polynomial. Apply the Routh-Hurwitz criteria to see if \(0 \) is stable for all \(b \) positive. You will find that if \(b \) is big enough, there is an oscillatory exponential growth. This is the basis of many famous feedback oscillators.