Exam 1 - Solutions

1. An arrow is shot into the air at a velocity of 10 m/sec, at a height of 2 meters, and an angle of 30°. What is the maximum height that it will reach?

 SOL. $a_y = -9.8 m/s$, so $v_y = v_y(0) - 9.8t$. $v_y(0) = 10 \sin 30 = 5 m/s$, so $v_y = 10 - 9.8t$. Note the max height occurs when $v_y = 0$, or $t = 5/9.8 = .51 s$. $r_y = r_y(0) + 5t - 4.9t^2$, so max height is 3.27 m.

2. Let $a = < 1, 2, 0 >$, $b = <-1, -1, 3 >$, and $c = < 2, -4, 1 >$.

 (a) What is $a \cdot (b - 3c)$?

 SOL. $b - 3c = <-7, 11, 0 >$, so $a \cdot (b - 3c) = -7 + 22 + 0 = 15$.

 (b) What is the equation for the plane formed by the vectors a and b?

 SOL. Cross product is orthogonal to the plane, so

 $$a \times b = \begin{vmatrix} i & j & k \\ 1 & 2 & 0 \\ -1 & -1 & 3 \end{vmatrix} = \begin{pmatrix} 6 \\ -3 \\ 1 \end{pmatrix}$$

 So, $6x - 3y + z = 0$ is eqn for the plane.

 (c) Find the scalar component of a onto c, that is $\text{comp}_c a$.

 SOL.

 $$\text{comp}_c a = \frac{a \cdot c}{|c|} = \frac{-8 + 0}{\sqrt{4 + 16 + 1}} = -\frac{6}{\sqrt{21}}.$$

3. Let $r(t) = < t^2, t, t^3 >$.

 (a) What is the unit tangent vector at $t = 1$?

 SOL. $r' = < 2t, 1, 3t^2 >$, $r'(1) = < 2, 1, 3 >$, $T = r'(1)/|r'(1)| = < 2, 1, 3 > / \sqrt{14}$.

 (b) What is the curvature at $t = 1$?

 SOL. $\kappa = |r' \times r''|/|r'|^3$. $r'' = < 2, 0, 6t >$. $r''(1) = < 2, 0, 6 >$

 $$r' \times r'' = \begin{vmatrix} i & j & k \\ 2 & 1 & 3 \\ 2 & 0 & 6 \end{vmatrix} = \begin{pmatrix} 6 \\ -6 \\ -2 \end{pmatrix}.$$

 $$\kappa = \sqrt{36 + 36 + 4}/\sqrt{14}^3 = \sqrt{76}/\sqrt{14}^3.$$

 (c) Find an equation for the plane normal to the curve at $t = 1$.

 SOL. Normal plane is perpendicular to the tangent! At $t = 1$, $r = < 1, 1, 1 >$, so from part a: $2(x - 1) + 1(y - 1) + 3(z - 1) = 0$, or, $2x + y + 3z = 6$.

 (d) Express the arclength of the curve from the point $< 0, 0, 0 >$ to $< 4, 2, 8 >$ as an integral (you don’t have to evaluate it.)

 SOL. At $t = 0$, $r = < 0, 0, 0 >$ and at $t = 2$, $r = < 4, 2, 8 >$. $ds = |r'(t)|dt$ so

 $$s = \int_0^2 \sqrt{4t^2 + 1 + 9t^4} dt.$$

4. A projectile with acceleration $a(t) = < \sin(t), \cos(t), -4 >$ starts at $r(0) = < 1, 1, 1 >$ with an initial velocity of $v(0) = < 0, 0, 3 >$.

(a) Find its position as a function of time.

SOL.
\[v(t) = \int a(t) + c_1, \quad r(t) = \int v(t) + c_2. \]
Thus \(v(t) = \langle -\cos t, \sin t, -4t \rangle + c_1 \). At \(t = 0, < 0, 0, 3 >= < -1, 0, 0 > + c_1 \), so \(c_1 = < 1, 0, 3 > \) and \(v(t) = \langle 1 - \cos t, \sin t, 3 - 4t \rangle \).
\[r(t) = \langle t - \sin t, -\cos t, 3t - 2t^2 \rangle > + c_2. \]
At \(t = 0, < 1, 1, 1 > = < 0, -1, 0 > + c_2 \), so, \(c_2 = < 1, 2, 1 > > \) and
\[r(t) = \langle 1 + t - \sin t, 2 - \cos t, 1 + 3t - 2t^2 \rangle > . \]

(b) At what point in time does the projectile reverse its direction in the \(z \)-direction? How high up is it at this point?

SOL. Reverses \(z \)-direction when \(z \)-velocity is zero, so that \(3 - 4t = 0 \) or \(t = 3/4 \). The height is \(z_{\text{max}} = 1 + 3(3/4) - 2(3/4)^2 = 17/8 \).

5. Find the limits or prove that they do not exist.

(a)
\[\lim_{(x,y) \to (1,1)} \frac{x^2 - 3y^2}{x^3 + y^3} \]

SOL. Rational functions are continuous and the denominator is not zero when at \((1,1) \), so limit is found by putting in the numbers, \(L = (1 - 3)/(1 + 1) = -1. \)

(b)
\[\lim_{(x,y) \to (0,0)} \frac{x^3 - y^3}{x^2 + y^2} \]

SOL. This is \(0/0 \) so we have to be careful. Let \(x = r \cos \theta, y = r \sin \theta \) so that this becomes
\[\lim_{r \to 0} \frac{r^3 [\cos^3 \theta - \sin^3 \theta]}{r^2} = \lim_{r \to 0} r [\cos^3 \theta - \sin^3 \theta] \to 0 \]

(c)
\[\lim_{(x,y) \to (0,0)} \frac{x^3 y - xy^3}{(x^2 + y^2)^2} \]

SOL. Does not exist. Set \(x = ky \) and plug in to get
\[\frac{k^3 - k}{(k^2 + 1)^2} \]

which has many values.

6. Find a parametric equation for the surface of the lower half of the ellipsoid, \(2x^2 + 4y^2 + z^2 = 1 \) (that is, the part with \(z \leq 0 \)).

SOL. Simple solution, \(x = x, y = y, z = -\sqrt{1 - 2x^2 - 4y^2} \) along with \(1 - 2x^2 - 4y^2 \geq 0 \). A better way, \(x = (1/\sqrt{2}) \sin \theta \cos \phi, y = (1/2) \cos \theta \cos \phi \) and \(z = \sin \phi \) with \(0 \leq \theta \leq 2\pi \) and \(\pi \leq \phi \leq 2\pi \).

7. Find the magnitude of the torque around the point \(P \) given the diagram below.

![Diagram of the torque problem](attachment:image.png)
SOL. Angle between r and F is 45, so $|\tau| = |F||r|\sin \theta = (50)(0.2)(\sin 45) = 5\sqrt{2}$ Nm.

8. Let $f(x, y) = x^3 + x^2y - y^2 - x - y^3$.
 (a) Find $f_x, f_y, f_{xx}, f_{xy}, f_{yy}$.
 SOL. $f_x = 3x^2 + 2xy - y^2$, $f_y = x^2 - 2gx - 3y^3$, $f_{xx} = 6x + 2y$, $f_{yy} = -2x - 6y$, $f_{xy} = 2x - 2y$.
 (b) Find the linear approximation to $f(x, y)$ at the point $(1, 1)$ and use this to estimate the value of $f(x, y)$ at $(.9, .9)$.
 SOL. $z \approx L(x, y) := f(1, 1) + f_x(1, 1)(x-1) + f_y(1, 1)(y-1) = 0 + 4(x-1) - 4(y-1) = 4(x-y)$.
 $L(.9, .9) = 0$ so $f(.9, .9) \approx 0$.

9. A boat is pulled by two ropes as shown in the picture. Given a force of 255 N is needed to move the boat, find the magnitude of the force on each rope.

<table>
<thead>
<tr>
<th>20°</th>
<th>30°</th>
</tr>
</thead>
<tbody>
<tr>
<td>255 N</td>
<td></td>
</tr>
</tbody>
</table>

SOL: $|T_1| \sin 20 = |T_2| \sin 30$. $|T_1| \cos 20 + |T_2| \cos 30 = 255$. Thus, $|T_2| = |T_1| \sin 20/\sin 30$. Thus,

$$|T_1| \left(\cos 20 + \frac{\cos 30 \sin 20}{\sin 30} \right) = 255$$

so $|T_1| = 166.439$ N and $|T_2| = 113.85$ N.

10. Match the contours with the surfaces.
 SOL: A1, B6, C2, D5, E4, F3