Low Mg^{++} Waves:
An Elliptic Burster?

Bard Ermentrout

University of Pittsburgh
March 2002
Biological motives

- Pinto induces waves with blocked inhibition
- What terminates activity?

Low Mg$^{++}$ Waves: – p.2/10
Biological motives

- Pinto induces waves with blocked inhibition
- What terminates activity?
 - Depolarization block may be one mechanism
Pinto induces waves with blocked inhibition

What terminates activity?
- Depolarization block may be one mechanism

In low Mg$^{++}$ wave is sometimes followed by slow oscillations

We suggest interaction between NMDAr & sodium inactivation
Expt’l depolarization block

- Intracellular recordings during wave
- Large synaptic current
- APs appear to be blocked
Model

- Golomb-Amitai single cell
- Type 1 spiking dynamics
- Has low threshold for depolarization block
- Used in past for waves in disinhibited slice
- Excitatory synapses only
The burster

\[C \frac{dV}{dt} = -I_{ion} - g_s(V - E_{syn}) \]

\[\frac{ds}{dt} = \left[\alpha(V)(1 - s) - s \right]/\tau \]
The burster

\[C \frac{dV}{dt} = -I_{ion} - g_s(V - E_{syn}) \]
\[\frac{ds}{dt} = \frac{[\alpha(V)(1 - s) - s]}{\tau} \]

- Treat \(s \) as a slow variable
- Traverse upper branch
- Synaptic time course governs period
- Exists for small range of \(g_{syn} \) but period is fixed
Slow-fast picture

Low Mg Waves: – p.7/16
\[C \frac{dV_j}{dt} = -I_{ion}(V_j) - g_{syn} \left(\sum_k w_{j-k}s_k \right) [V - E_{syn}] \]

\[\frac{ds_j}{dt} = \left[\alpha(V_j)(1 - s_j) - s_j \right] / \tau \]
Simulation

Waves Splinters

Low Mg++ Waves: – p.10/11
Splinters

- As time constant decreases, get a splintering of the wave
- Spatial patterns of localized activity
- “Negative coupling”
Splinters

- As time constant decreases, get a splintering of the wave
- Spatial patterns of localized activity
- "Negative coupling"

Normal form for coupled elliptic bursters

\[
\frac{\partial z}{\partial t} = z(c + a|z|^2 - |z|^4 - dK(x) * s(x))
\]

\[
\tau \frac{\partial s}{\partial t} = (|z|^2 - s)
\]
Simulation

Low Mg$^{++}$ Waves: – p.12/16
Explanation I.

- Let \(r = |z|^2 \) and look for stationary solns
- Get simple equation:

\[
0 = r(x)(c - dK(x) * r(x) + ar(x) - r(x)^2)
\]

- Solns include \(r(x) > 0 \) on \(x \in \Omega \) where

\[
\Omega = \bigcup_{\zeta}(\alpha_\zeta, \beta_\zeta)
\]

- “neutrally stable”
Explanation II.

Transition is best understood with a pair:

\[r_j' = r_j(c - d(s_1 + s_2) + ar_j - r_j^2) + \epsilon \]
\[s_j' = (r_j - s_j)/\tau \]

Bifurcation as τ decreases

Synchrony loses stability at pitchfork
Diagram

Low Mg++ Waves – p.15/16
Questions etc

- Can this be induced in real tissue
- If not, casts suspicion on depolarization block as only means of termination
- What determines splinter spacing?
Questions etc

- Can this be induced in real tissue
- If not, casts suspicion on depolarization block as only means of termination
- What determines splinter spacing?

ACKNOWLEDGMENTS

David Pinto (data, etc), Joyeeta Dutta (early simulations), NSF (food...)

Low Mg^{++} Waves: – p.16/10